
1

Programming in Python

Online module to accompany Invitation to Computer Science, 6th Edition, ISBN-10:
1133190820; ISBN-13: 9781133190820 (Cengage Learning, 2013).

1. Introduction to Python
1.1 A Simple Python Program
1.2 Creating and Running a Python Program

2. Virtual Data Storage
3. Statement Types

3.1 Input/Output Statements
3.2 The Assignment Statement
3.3 Control Statements

4. Another Example
5. Managing Complexity

5.1 Divide and Conquer
5.2 Using and Writing Functions

6. Object-Oriented Programming
6.1 What Is It?
6.2 Python and OOP
6.3 One More Example
6.4 What Have We Gained?

7. Graphical Programming
7.1 Graphics Hardware
7.2 Graphics Software

8. Conclusion
E X E R C I S E S

A N S W E R S T O P R A C T I C E P R O B L E M S

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 1

1 Introduction to Python

Hundreds of high-level programming languages have been developed; a
fraction of these have become viable, commercially successful languages.
There are a half-dozen or so languages that can illustrate some of the concepts
of a high-level programming language, but this module uses Python for this
purpose.

Our intent here is not to make you an expert Python programmer—any
more than our purpose in Chapter 4 was to make you an expert circuit
designer. Indeed, there is much about the language that we will not even
discuss. You will, however, get a sense of what programming in a high-level
language is like, and perhaps see why some people think it is one of the most
fascinating of human endeavors.

1.1 A Simple Python Program

Figure 1 shows a simple but complete Python program. Even if you know
nothing about the Python language, it is not hard to get the general drift of
what the program is doing.

2 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#Computes and outputs travel time

#for a given speed and distance

#Written by J. Q. Programmer, 6/15/13

speed = input(“Enter your speed in mph: ”)

speed = int(speed)

distance = input(“Enter your distance in miles: ”)

distance = float(distance)

time = distance/speed

print(“At”, speed, “mph, it will take”)

print(time, “hours to travel”, distance, “miles.”)

input(“\n\nPress the Enter key to exit”)

A Simple Python Program

FIGURE 1

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 2

Someone running this program (the user) could have the following
dialogue with the program, where boldface indicates what the user types:

Enter your speed in mph: 58
Enter your distance in miles: 657.5
At 58 mph, it will take

11.3362068966 hours to travel 657.5 miles.

To aid our discussion of how the program works, Figure 2 shows the same pro-
gram with a number in front of each line. The numbers are there for reference
purposes only; they are not part of the program. Lines 1–3 in the program of
Figure 2 are Python comments. Anything appearing on a line after the pound
symbol (#) is ignored by the compiler, just as anything following the double
dash (––) is treated as a comment in the assembly language programs of
Chapter 6. Although the computer ignores comments, they are important to
include in a program because they give information to the human readers of
the code. Every high-level language has some facility for including comments,
because understanding code that someone else has written (or understanding
your own code after some period of time has passed) is very difficult without
the notes and explanations that comments provide. Comments are one way to
document a computer program to make it more understandable. The comments
in lines 1–3 of Figure 2 describe what the program does plus tell who wrote
the program and when. These three comment lines together make up the
program’s prologue comment (the introductory comment that comes first).
A prologue comment is always a good idea; it’s almost like the headline in a
newspaper, giving the big picture up front.

Blank lines in Python programs are ignored and are used, like comments,
to make the program more readable by human beings. In our example
program, we’ve used blank lines (lines 4, 9, 11, 14) to separate sections of the
program, visually indicating groups of statements that are related. Except for
blank lines, Python by default considers each line of the program to be an
individual program instruction, also called a program statement, so you end a
statement by just pressing the Enter key and going to the next line to write
the next statement.

31 Introduction to Python

©2013 Course Technology, a part of Cengage Learning.

1. #Computes and outputs travel time

2. #for a given speed and distance

3. #Written by J. Q. Programmer, 6/15/13

4.

5. speed = input(“Enter your speed in mph: ”)

6. speed = int(speed)

7. distance = input(“Enter your distance in miles: ”)

8. distance = float(distance)

9.

10. time = distance/speed

11.

12. print(“At”, speed, “mph, it will take”)

13. print(time, “hours to travel”, distance, “miles.”)

14.

15. input(“\n\nPress the Enter key to exit”)

The Program of Figure 1 (line
numbers added for reference)

FIGURE 2

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 3

The three quantities involved in this program are the speed of travel and
the distance traveled (these are input by the user) and the time to complete
that travel (this is computed and output by the program). The program code
itself uses descriptive names—speed, distance, and time—for these quantities,
to help document their purpose in the program. Lines 5–8 prompt the user to
enter values for speed and distance, and store those values in speed and
distance. Later, we’ ll see more details on how this works. Line 10 computes the
time required to travel this distance at this speed. Finally, lines 12 and 13 print
the two lines of output to the user’s screen. The values of speed, time, and dis-
tance are inserted in appropriate places among the strings of text shown in
double quotes. The final program statement, line 15, has the effect of holding
the output on the user’s screen until the user presses the Enter key; otherwise,
the output might just flash by and be gone when the program ends.

Python, along with every other programming language, has specific rules
of syntax—the correct form for each component of the language. Any viola-
tion of the syntax rules generates an error message from the compiler because
the compiler does not recognize or know how to translate the offending code.
Python’s rules of syntax are much simpler than those of many other program-
ming languages, which is one reason that Python programs are often shorter
and, many would claim, easier to write than programs in C++, Java, Ada, or C#,
for example. Nonetheless, a typing error such as

printt(“Hello World”)

will produce an error message, as will

Print(“Hello World”)

because Python is a case-sensitive language, which means that uppercase let-
ters are distinguished from lowercase letters, and the instruction is print, not
Print.

1.2 Creating and Running a Python Program

Creating and running a Python program is basically a two-step process. The
first step is to type the program into a text editor. When you are finished, you

4 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

The Python programming language was created in the early
1990s by the Dutch computer scientist and applied mathe-
matician Guido van Rossum as a successor to a language
called ABC. It was not actually named for a snake. It was
named for the BBC comedy show Monty Python’s Flying
Circus. Make of that what you will!

Since its original release, Python has gone through a
number of revisions. Guido van Rossum remains the project

leader and final arbiter of new enhancements to the
language, although—because it is an open-source
language—anyone can tinker with it and propose new
features or additions, and many have contributed to its
development.

Python is prized for its low-stress (minimalist and
intuitive) syntax, which leads to quick development time.
While the basics of the language are simple, an extensive
library of supporting code makes it a flexible and powerful
language.

How About
That Snake?

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 4

save the file, giving it a name with the extension .py. So the file for Figure 1
could be named

TravelPlanner.py

The second step is to execute the program. Details of how to run the program
depend on your system; you may be able to double-click on the TravelPlan-
ner.py file, or you may have to type the command “TravelPlanner.py” at the
operating system prompt. Whenever you run a Python program, the Python
compiler (it’s actually called an interpreter)1 translates the Python code first
into low-level code called bytecode, which is not yet object code, then
finishes the translation into machine-specific object code and executes it.
(Referring to Figure 9.1 in the Invitation to Computer Science textbook, there
are no explicit linker or loader steps. The program goes quite seamlessly from
high-level code to execution.) A Python program will therefore run on any
computer that has Python on it.

Another approach is to do all of your work in an Integrated Develop-
ment Environment, or IDE. The IDE lets the programmer perform a number of
tasks within the shell of a single application program. A modern programming
IDE provides a text editor, a file manager, a way to run the program, and tools
for debugging, all within this one piece of software. The IDE usually has a
graphical user interface (GUI) with menu choices for the different tasks. This
can significantly speed up program development. Python comes with its own
Integrated Development Environment called IDLE, so you can do all your
Python program development with this one tool.

This Python exercise is just a beginning. In the rest of this module, we’ll
examine the features of the language that will enable you to write your own
Python programs to carry out more sophisticated tasks.

51 Introduction to Python

©2013 Course Technology, a part of Cengage Learning.

PYTHON INTERPRETER
A free Python interpreter is available to download at www.python.org/download.
Python comes with its own IDE called IDLE. You can do all your Python program
development within this one tool. There are versions for Windows, Linux, and
Mac OS X.

The graphics software used in Section 7 of this module is courtesy of Dr. John
Zelle of Wartburg College, Iowa. This is open-source software released under
the terms of the GPL (General Public License; see www.gnu.org/licenses/gpl.html)
and may be downloaded for free from http://mcsp.wartburg.edu/zelle/python.
Put the file (graphics.py) in the Python Lib folder after you have installed
Python.

1The difference between a compiled language and an interpreted language is that a compiler
translates source code into object code once. The compiled code is then used over and over,
unless the source code is changed, requiring a recompile. An interpreter translates source
code into object code each time the program is executed, and no object code is saved for
later use.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 5

2 Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from
having to manage data movement within memory. Assembly language does
not require us to give the actual memory address of the storage location to be
used for each item, as in machine language. However, we still have to move
values, one by one, back and forth between memory and the arithmetic logic
unit (ALU) as simple modifications are made, such as setting the value of A to
the sum of the values of B and C. We want the computer to let us use data
values by name in any appropriate computation without thinking about where
they are stored or what is currently in some register in the ALU. In fact, we do
not even want to know that there is such a thing as an ALU, where data are
moved to be operated on. Instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level
language allows this, and it also allows the names for data items to be more
meaningful than in assembly language.

Names in a programming language are called identifiers. Each language has
its own specific rules for what a legal identifier can look like. In Python an iden-
tifier can be any combination of letters, digits, and the underscore symbol (_),
as long as it does not begin with a digit. An additional restriction is that an
identifier cannot be one of the few words, such as “while”, that have a special
meaning in Python and that you would not be likely to use anyway. The three
integers B, C, and A in our assembly language program can therefore have more
descriptive names, such as subTotal, tax, and finalTotal. The use of descriptive
identifiers is one of the greatest aids to human understanding of a program.
Identifiers can be almost arbitrarily long, so be sure to use a meaningful identi-
fier such as finalTotal instead of something like A; the improved readability is
well worth the extra typing time. Remember that Python is case sensitive; thus,
FinalTotal, Finaltotal, and finalTotal are three different identifiers.

6 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

CAPITALIZATION OF IDENTIFIERS
There are two standard capitalization patterns for identifiers, particularly “multiple
word” identifiers:

camel case: First word begins with a lowercase letter, additional words
begin with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

The code in this chapter uses the following convention for creating identifiers
(examples included):

Simple variables – camel case: speed, time, finalTotal

Named constants - all uppercase: PI, FREEZING_POINT

Function names – camel case: myFunction, getInput

Class names – Pascal case: MyClass

Object names – camel case: myObject

The underscore character is not used except for named constants. Occasionally,
however, we’ll use single capital letters for identifiers in quick code fragments.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 6

Data that a program uses can come in two varieties. Most quantities used in a
program have values that change as the program executes, or values that are
not known ahead of time but must be obtained from the computer user
(or from a data file previously prepared by the user) as the program runs.
These quantities are called variables. Some programs may use quantities that
are fixed throughout the duration of the program, and their values are known
ahead of time. These quantities are called constants. The names for both
variables and constants must follow the Python identifier syntax rules given
previously.

Identifiers for variables and constants serve the same purpose in program
statements as pronouns do in ordinary English statements. The English
statement “He will be home today” has specific meaning only when we plug in
the value for which “He” stands. Similarly, a program statement such as

time = distance/speed

becomes an actual computation only when numeric values have been stored in
the memory locations referenced by the distance and speed identifiers.

We now know how to name variables, but how do we actually create them
in a Python program? The syntax is very simple; variables are created and
given values all in one statement of the form

identifier = value

For example,

myNumber = 15

associates the identifier myNumber with some (unknown to us and we don’t
care) memory location and stores the integer value 15 in that location. This
statement is equivalent to the assembly language statement

myNumber: .DATA 15

Python recognizes different types of data that can be stored in variables,
namely string data or numeric data. A string is just a sequence of characters;
the statement

print(“Hello World”)

prints the exact sequence of characters within the quote marks. Such a string
is sometimes called a literal string because it is printed out exactly as is. The
first statement below stores that same string in a variable, and the second
statement then prints out the contents of that variable:

message = “Hello World”

print(message)

The effect is the same in either case—the user sees

Hello World

on the screen.

72 Virtual Data Storage

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 7

There are also several different types of numeric data, the most common
being type int and type float. Whole numbers with no decimal points, such as
–28 and 5231, are of type int; numbers with decimal points, such as 25.8 or
–52.976, are of type float. Figure 3 lists these common Python data types.

We know that all data are represented internally in binary form. In Chap-
ter 4 we noted that any one sequence of binary digits can be interpreted as a
whole number, a negative number, a real number (one containing a decimal
point, such as –17.5 or 28.342), etc. In Python, a variable doesn’t have a fixed
data type associated with it. Instead, it takes on the data type of whatever
value it currently contains. After execution of

myNumber = 15

the binary string in memory location myNumber will be interpreted as an inte-
ger. If the statement

myNumber = 65.81

is executed later in the same program, Python will then interpret the binary
string in myNumber as a decimal value. Still later, myNumber could take on
the string data type with the statement

myNumber = “This is my number”

although at this point the identifier would be somewhat misleading! And this
points out a difficulty with the ability of an identifier to take its data type
from the value assigned to it at the moment. If the reader of the program has
to remember, “let’s see, in this section of code the variable xyz means
something-or-other, but down in that section of code it means something-or-
other-else,” then there is room for confusion. Good programming practice says
that an identifier should represent only one thing in a given program.

Let’s consider program constants. An example of a constant is the integer
value 2. The integer 2 is a constant that we don’t have to name by an identifier,
nor do we have to build the value 2 in memory manually by the equivalent of a
.DATA pseudo-op. We can just use the symbol “2” in any program statement.
When “2” is first encountered in a program statement, the binary representation
of the integer 2 is automatically generated and stored in a memory location. In
a program that does computations about circles, an approximation to �, say
3.1416, could be used just as easily by simply sticking this number wherever in
the program we need it. But if we are really using this number as an approxima-
tion to �, it is more informative to use the identifier PI. The statement

PI = 3.1416

stores the desired decimal value in a memory location with the identifier PI.
The convention among Python programmers is that an identifier of all caps,

8 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

int an integer quantity
float a real number (a decimal quantity)
string a sequence of characters

Some of the Python Data Types

FIGURE 3

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 8

like PI, represents a constant value in the program. Therefore the value of PI
should not be changed by a later program statement. However, Python won’t
prevent you from later making a change in the value of PI, so it’s up to you as
the programmer to treat this value of PI as unchangeable. In Python, then, a
named constant is really just a variable.

In addition to variables of a primitive data type that hold only one unit of
information, we can create a whole collection, called a list, of logically related
variables at one time. This allows storage to be set aside as needed to contain
each of the values in this collection. For example, suppose we want to create
a roster of students in the class. We can do this using a Python list that con-
tains string data.2 The following two statements create a Python list and print
its contents.

roster = ["Martin", "Susan", "Chaika", "Ted"]

print(roster)

The output is

['Martin', 'Susan', 'Chaika', 'Ted']

While roster refers to the list as a whole, individual list elements can be
accessed by giving their position or index in the list. List indices begin at 0, so

print(roster[1])

produces output of

Susan

Figure 4 illustrates this list.
Here is an example of the power of a high-level language. In assembly

language, we can name only individual memory locations—that is, individual
items of data—but in Python we can also assign a name to an entire collection
of related data items. A list thus allows us to talk about an entire table of
values, or the individual elements making up that table. If we are writing
Python programs to implement the data cleanup algorithms of Chapter 3, we
can use a list of integers to store the 10 data items.

A Python list can perform many different actions. For example, the list
can be put into sorted order:

roster.sort()

print(roster)

92 Virtual Data Storage

©2013 Course Technology, a part of Cengage Learning.

Martin Susan

roster[1]

Chaika Ted
A 4-Element List roster

FIGURE 4

2A Python list serves the same purpose as what is usually called an “array” in other languages.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 9

produces output of

['Chaika', 'Martin', 'Susan', 'Ted']

10 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

1. Which of the following are legitimate Python identifiers?

martinBradley C3P_OH Amy3 3Right Print

2. What is the output from the following fragment of Python code?

myVariable = 65

myVariable = 65.0

myVariable = “Sixty Five”

print(myVariable)

3. Using the roster list of Figure 4, how do you reference the last item
in the list?

PRACTICE PROBLEMS

3 Statement Types

Now that we understand how to create variables to hold data, we will examine
additional kinds of programming instructions (statements) that Python provides.
These statements enable us to manipulate the data items and do something
useful with them. The instructions in Python, or indeed in any high-level
language, are designed as components for algorithmic problem solving, rather
than as one-to-one translations of the underlying machine language instruction
set of the computer. Thus, they allow the programmer to work at a higher level of
abstraction. In this section we examine three types of high-level programming
language statements. They are consistent with the pseudocode operations
described in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input
statement collects a specific value from the user for a variable within the
program. In our TravelPlanner program, we need input statements to get the
values of the speed and distance that are to be used in the computation. An
output statement writes a message or the value of a program variable to the
user’s screen. Once the TravelPlanner program computes the time required to
travel the given distance at the given speed, the output statement displays
that value on the screen, along with other information about what that value
means.

Another type of statement is the assignment statement, which assigns a
value to a program variable. This is similar to what an input statement does,
except that the value is not collected directly from the user, but is computed
by the program. In pseudocode we called this a “computation operation.”

Control statements, the third type of statement, affect the order in which
instructions are executed. A program executes one instruction or program

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 10

statement at a time. Without directions to the contrary, instructions are
executed sequentially, from first to last in the program. (In Chapter 2 we called
this a straight-line algorithm.) Imagine beside each program statement a light
bulb that lights up while that statement is being executed; you would see a
ripple of lights from the top to the bottom of the program. Sometimes,
however, we want to interrupt this sequential progression and jump around in
the program (which is accomplished by the instructions JUMP, JUMPGT, and so
on, in assembly language). The progression of lights, which may no longer be
sequential, illustrates the flow of control in the program—that is, the
path through the program that is traced by following the currently executing
statement. Control statements direct this flow of control.

3.1 Input/Output Statements

Remember that the job of an input statement is to collect from the user
specific values for variables in the program. In pseudocode, to get the value
for speed in the TravelPlanner program, we would say something like

Get value for speed

In the Python TravelPlanner program, the equivalent program statement is

speed = input(“Enter your speed in mph: ”)

This statement accomplishes several things at once, and we should look at it
in pieces. The right-hand side of the equals sign,

input(“Enter your speed in mph: ”)

is done first, using the built-in Python input function (“built-in” means that
this function is supplied with the Python language). We pass information to
the input function in the form of a literal string (enclosed in quote marks).
This writes a message to the user requesting information about the speed.
Such a message is called a user prompt; it alerts the user that the program is
waiting for some input. The input function also reads the user’s response from
the keyboard and “returns” this input data. The complete Python statement

speed = input(“Enter your speed in mph: ”)

stores the result that input returns in the variable speed. But input always
captures the input data as a string of characters. If the user enters 58, then
the input function captures the string consisting of a 5 followed by an 8; this
is just a two-character string, similar to the string “ab” consisting of an a fol-
lowed by a b. In other words, the two-length string of characters “58” is not
the same as the integer numeric value of 58, and we could not do any numer-
ical computations with it. The next statement of our sample program

speed = int(speed)

converts the string value “58” into the integer number 58 and again stores the
result in speed. This statement uses the built-in Python int function; we give
this function information in the form of the current value of speed (which is

113 Statement Types

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 11

string data). The int function converts the string into its integer equivalent
and “returns” the integer value 58. This in turn is stored in the speed variable,
which now contains data of type int.

The statements

distance = input(“Enter your distance in miles: ”)

distance = float(distance)

do the same thing using the built-in float function that converts the string
returned by the input function into a decimal value that then gets stored in
distance. Here we have assumed that the user might enter a decimal value for
distance, as in the sample dialogue, so we used the float conversion function
rather than the int function.

It’s possible to chain functions together in one statement. The statement

speed = int(input(“Enter your speed in mph: ”))

works by putting the string value returned by the input function directly into
the int function (skipping the intermediate step of storing it in speed) and
then storing the result returned by the int function in speed. This single state-
ment has the same effect as the two statements we used earlier, and makes it
clear that the real purpose of speed in the program is to store an integer value.

This conversion, or type casting, from string data to integer data only
works if the user entered a string that can be interpreted as an integer. If the
user interaction with the TravelPlanner program is

Enter your speed in mph: abc

an error message will result that says something like “invalid literal for int()
with base 10.” In other words, Python could not convert the literal string
“abc” that the user entered into a base 10 integer. The following

Enter your speed in mph: 45.7

produces a similar result. However, if the user enters 145 in response to

distance = float(input(“Enter your distance in miles: ”))

the float function will happily perform automatic type casting and convert
the string value “145” to the equivalent decimal value 145.0.

The int and float functions also perform conversions on numeric data. The
result returned by

float(145)

is, not unexpectedly, 145.0. The result returned by

int(45.7)

is 45. Notice that while the int function could make nothing of the string
“45.7”, it will truncate the numeric value 45.7.

12 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 12

To complete the picture, there is a Python str function that converts
numeric data into string data. The result returned by

str(56)

is the string “56”.
Once the value of time has been computed in the TravelPlanner program,

we want to write it out. A pseudocode operation for producing output would
be something like

Print the value of time

and the Python output statement is almost the same thing:

print(time)

This statement uses the built-in Python print function. The print function
writes out the information given to it as a string. If the value of time is
2.35, the print function converts that to the string sequence of four
characters “2.35” and that is what is output. Of course the sequence of
characters 2.35 and the decimal value 2.35 look exactly the same, so it
doesn’t matter.

But we don’t want the program to simply print a number (or something
that looks like a number) with no explanation; we want some words to make
the output meaningful. In our TravelPlanner program, we used the print func-
tion twice, in each case giving the function a mixture of literal strings and
numeric variables, separated by commas.

print(“At”, speed, “mph, it will take”)

print(time, “hours to travel”, distance, “miles.”)

Each print function produced one line of output. The output was

At 58 mph, it will take

11.3362068966 hours to travel 657.5 miles.

The print function type cast the numeric variables into their string equiva-
lents, and helpfully inserted blanks before each piece (except the first string
piece) so that the output looks nice and is not jammed together.

The appearance of the output string can be modified by using an escape
sequence within a literal string. An escape sequence consists of a backslash
(\) followed by a single character; the combination is treated as a unit
that results in special output-formatting effects, not as two characters of the
literal string itself. Two useful escape sequences are

\n Insert a new line
\t insert a tab character

The result of

print(“This is my favorite \n\t yellow puppydog.”)

133 Statement Types

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 13

is

This is my favorite

yellow puppydog.

The \n forces the second part of the literal string to print on a new line, and the
\t indents the second line one tab distance from the left margin. In this way a
single print function can print more than one line. Conversely, it’s possible to
make several print functions produce only a single line of output. The result of

print(3, end = “ “)

print(6, end = “ “)

print(7)

is

3 6 7

We mentioned earlier that Python by default considers each line of the
program to be an individual program statement, but a single statement can be
spread over multiple lines by putting a backslash at the end of a line. This
use of the backslash means that the next line is a continuation of this same
statement, and the \ is called a line continuation character. The following is
one statement spread over two lines,

print(“Oh for a sturdy ship to sail, ”\

“and a star to steer her by.”)

and the result is

Oh for a sturdy ship to sail, and a star to steer her by.

The print function prints a blank line if no information is passed to it.
Therefore

print(“Hello”)

print()

print(“World”)

would result in

Hello

World

Another way to get a blank line is to insert the \n escape sequence several
times within a literal string. This explains the last line of code in the Travel-
Planner program:

input(“\n\nPress the Enter key to exit”)

The input function prints the user prompt on a new line in any case, so the
effect of the \n escape sequences is to add two extra blank lines before the

14 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 14

user prompt. Because the program is waiting to read input, the screen remains
visible until the user presses Enter, at which point the program terminates.
We’ve usually stored the string returned by the input function in a program
variable, but here it just gets ignored.

Literal strings can be joined together by the concatenation operator,
represented by a � sign. The statement

print("First part. " + "Second part.")

produces

First part. Second part.

Here we put a space at the end of the first string in order to separate the
printed result from the second string. We could use string concatenation to
write the output from the TravelPlanner program, but we’d have to convert
the numerical values into strings because concatenation only works on
strings. This would look like

print(“At ” + str(speed) + “ mph, it will take”)

print(str(time) + “ hours to travel ”\

+ str(distance) + “ miles.”)

where again we had to insert spaces into the literal strings. This is a lot of
work compared to the original two statements that let the print function do
the type casting, spacing, and concatenation for us automatically!

Finally, in our sample execution of the TravelPlanner program, we got the
following output:

At 58 mph, it will take

11.3362068966 hours to travel 657.5 miles.

This is fairly ridiculous output—it does not make sense to display the result to
10 decimal digits. Exercise 11 at the end of this module tells you how decimal
output can be formatted to a specified number of decimal places.

153 Statement Types

©2013 Course Technology, a part of Cengage Learning.

1. Write a single statement that prompts the user to enter an integer
value and stores that value (as an integer) in a variable called
quantity.

2. A program has computed a value for the variable average that
represents the average high temperature in San Diego for the month
of May. Write an appropriate output statement.

3. What appears on the screen after execution of the following
statement?

print(“This is” + “goodbye” + “, Steve”)

PRACTICE PROBLEMS

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 15

3.2 The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program vari-
able. This is accomplished by evaluating some expression and then writing the
resulting value in the memory location referenced by the program variable.
The general pseudocode operation

Set the value of “variable” to “arithmetic expression”

has as its Python equivalent

variable = expression

The expression on the right is evaluated, and the result is then written into
the memory location named on the left. For example, the assignment
statements

B = 2

C = 5

result in B taking on the value 2 and C taking on the value 5. After execution of

A = B + C

A has the value that is the sum of the current values of B and C. Assign-
ment is a destructive operation, so whatever A’s previous value was, it is
gone. Note that this one assignment statement says to add the values of
B and C and assign the result to A. This one high-level language statement
is equivalent to three assembly language statements needed to do this
same task (LOAD B, ADD C, STORE A). A high-level language program
thus packs more power per line than an assembly language program. To
state it another way, whereas a single assembly language instruction is
equivalent to a single machine language instruction, a single Python
instruction is usually equivalent to many assembly language instructions or
machine language instructions, and allows us to think at a higher level of
problem solving.

In the assignment statement, the expression on the right is evaluated
first. Only then is the value of the variable on the left changed. This means
that an assignment statement like

A = A + 1

makes sense. If A has the value 7 before this statement is executed, then the
expression evaluates to

7 + 1 or 8

and 8 then becomes the new value of A. (Here it becomes obvious that the
assignment operator = is not the same as the mathematical equals sign =,
because A � A � 1 does not make sense mathematically.)

16 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 16

All four basic arithmetic operations can be done in Python, denoted by

� Addition
- Subtraction
* Multiplication
/ Division

For the most part, this is standard mathematical notation, rather than the
somewhat verbose assembly language op code mnemonics such as SUBTRACT.
The reason a special symbol is used for multiplication is that � would be
confused with x, an identifier, � (a multiplication dot) doesn’t appear on
the keyboard, and juxtaposition (writing AB for A*B) would look like a single
identifier named AB.

As soon as an arithmetic operation involves one or more real numbers,
any integers are converted to their real number equivalent, and the calcula-
tions are done with real numbers. Thus the following divisions behave as we
expect:

7.0/2 7/2.0 7.0/2.0

all result in the value 3.5. In Python, the division

7/2

also results in the value 3.5, even though both the numerator and denomina-
tor are integers.3 But if we think of grade-school long division of integers:

we see that the division of 7 by 2 results in an integer quotient of 3 and an
integer remainder of 1. In other words,

7 = 2 * 3 + 1

Python provides two operations, symbolized by // and %, that break down
integer division into its integer quotient and its integer remainder, respec-
tively. Using these operators,

7 // 2

results in the value 3, and

7 % 2

results in the value 1.

3
2q7

6
1

173 Statement Types

©2013 Course Technology, a part of Cengage Learning.

3This is new beginning with Python 3.0. Earlier versions of Python performed integer division
when two integer values were divided.

C7934_chapter_python.qxd 12/20/11 12:34 PM Page 17

If the values are stored in variables, the result is the same. For example,

numerator = 7

denominator = 2

quotient = numerator/denominator

intQuotient = numerator//denominator

remainder = numerator % denominator

print(“The result of”, numerator,\

“/”, denominator, “is”, quotient)

print(“The integer quotient of”, numerator, \

“/”, denominator, “is”, intQuotient)

print(“and the remainder is”, remainder)

produces the output

The result of 7 / 2 is 3.5

The integer quotient of 7 / 2 is 3

and the remainder is 1

The expression on the right side of an assignment statement need not evalu-
ate to a numerical value. The input statement

speed = input(“Enter your speed in mph: ”)

is also an assignment statement. The expression on the right applies the input
function to write a user prompt and read the sequence of characters the user
types in at the keyboard. The resulting string that the input function returns
is then assigned to the speed variable.

The Python print function does something neat with arithmetic expres-
sions. For example, the result of

number = 25

print(“New number is”, 3 + number)

is

New number is 28

18 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

1. newNumber and next contain integer values in a Python program.
Write a statement to assign the value of newNumber to next.

2. What is the value of Average after the following statements are
executed?

Total = 277

Number = 5

Average = Total//Number

PRACTICE PROBLEMS

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 18

Recall that the print function type casts numerical values to strings, but in
this case the arithmetic expression is evaluated first, and then the numerical
result of that expression, 28, is converted to the string “28” for printing.

3.3 Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a
program executes instructions sequentially from first to last. The flowchart
in Figure 5 illustrates this, where S1, S2, . . . , Sk are program instructions
(program statements).

As stated in Chapter 2, no matter how complicated the task to be done,
only three types of control mechanisms are needed:

1. Sequential: Instructions are executed in order.

2. Conditional: Which instruction executes next depends on some
condition.

3. Looping: A group of instructions may be executed many times.

Sequential flow of control, the default, is what occurs if the program does not
contain any instances of the other two control structures. In the TravelPlanner
program, for instance, instructions are executed sequentially, beginning with
the input statements, next the computation, and finally the output statements.

In Chapter 2 we introduced pseudocode notation for conditional opera-
tions and looping. In Chapter 6 we learned how to write somewhat laborious

193 Statement Types

©2013 Course Technology, a part of Cengage Learning.

S1

S2

Sk

Sequential Flow of Control

FIGURE 5

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 19

assembly language code to implement conditional operations and looping.
Now we’ll see how Python provides instructions that directly carry out these
control structure mechanisms—more evidence of the power of high-level
language instructions. We can think in a pseudocode algorithm design mode,
as we did in Chapter 2, and then translate that pseudocode directly into
Python code.

Conditional flow of control begins with the evaluation of a Boolean
condition, also called a Boolean expression, that can be either true or false.
We discussed these “true/false conditions” in Chapter 2, and we also encoun-
tered Boolean expressions in Chapter 4, where they were used to design circuits.
A Boolean condition often involves comparing the values of two expressions and
determining whether they are equal, whether the first is greater than the
second, and so on. Again assuming that A, B, and C are variables with integer
values in a program, the following are legitimate Boolean conditions:

A == 0 (Does A currently have the value 0?)
B < (A + C) (Is the current value of B less than the sum of the

current values of A and C?)
A != B (Does A currently have a different value than B?)

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first
condition is false (A does not have the value zero), the second condition is
true (5 is less than 2 plus 7), and the third condition is true (A and B do not
have equal values).

Comparisons need not be numeric. They can also be made between string
values, in which the “ordering” is the usual alphabetic ordering. If the current
value of Color is “Red”, then

Color > “Blue”

is true because “Red” comes after (is greater than) “Blue”.
Figure 6 shows the comparison operators available in Python. Note the use

of the two equality signs to test whether two expressions have the same value.
The single equality sign is used in an assignment statement, the double
equality sign in a comparison.

Boolean conditions can be built up using the Boolean operators and, or, and
not. Truth tables for these operators were given in Chapter 4 (Figures 4.12–4.14).
Python uses the English language connective words for these operators, making
them very easy to understand (see Figure 7).

A conditional statement relies on the value of a Boolean condition (true
or false) to decide which programming statement to execute next. If the

20 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

Python Comparison Operators

FIGURE 6
COMPARISON SYMBOL EXAMPLE EXAMPLE RESULT

the same value as == 2 == 5 false
less than < 2 < 5 true
less than or equal to <= 5 <= 5 true
greater than > 2 > 5 false
greater than or equal to >= 2 >= 5 false
not the same value as != 2 != 5 true

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 20

condition is true, one statement is executed next, but if the condition is
false, a different statement is executed next. Control is therefore no longer in
a straight-line (sequential) flow, but may hop to one place or to another.
Figure 8 illustrates this situation. If the condition is true, the statement S1 is
executed (and statement S2 is not); if the condition is false, the statement S2
is executed (and statement S1 is not). In either case, the flow of control then
continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

The Python instruction that carries out conditional flow of control is
called an if-else statement. It has the following form (note that the words if
and else are lowercase, and that there is a colon at the end of the Boolean con-
dition and at the end of else):

if Boolean condition:
S1

else:
S2

213 Statement Types

©2013 Course Technology, a part of Cengage Learning.

Python Boolean Operators

FIGURE 7
OPERATOR SYMBOL EXAMPLE EXAMPLE RESULT

AND and (2 < 5) and (2 > 7) false
OR or (2 < 5) or (2 > 7) true
NOT not not (2 == 5) true

S1 S2

S3

Condition
T F

Conditional Flow of Control
(if-else)

FIGURE 8

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 21

Below is a simple if-else statement, where we assume that A, B, and C have
integer values:

if B < (A + C):

A = 2*A

else:

A = 3*A

Suppose that when this statement is reached, the values of A, B, and C are 2,
5, and 7, respectively. As we noted before, the condition B � (A � C) is then
true, so the statement

A = 2*A

is executed, and the value of A is changed to 4. However, suppose that when
this statement is reached, the values of A, B, and C are 2, 10, and 7, respec-
tively. Then the condition B � (A � C) is false, the statement

A = 3*A

is executed, and the value of A is changed to 6.
A variation on the if-else statement is to allow an “empty else” case.

Here we want to do something if the condition is true, but if the condition is
false, we want to do nothing. Figure 9 illustrates the empty else case. If the
condition is true, statement S1 is executed and after that the flow of control
continues on to statement S3, but if the condition is false, nothing happens
except that the flow of control moves directly on to statement S3.

22 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

S1

S3

Condition
T F

If-Else with Empty Else

FIGURE 9

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 22

This if variation of the if-else statement can be accomplished by omitting
the word else. This form of the instruction therefore looks like

if Boolean condition:
S1

We could write

if B < (A + C):

A = 2*A

This has the effect of doubling the value of A if the condition is true and of
doing nothing if the condition is false.

Multiple statements can be combined into a block. The block is then
treated as a single statement, called a compound statement. A compound
statement can be used anywhere a single statement is allowed. The implica-
tion is that in Figure 8, S1 or S2 might be a compound statement. This makes
the if-else statement potentially much more powerful, and similar to the
pseudocode conditional statement in Figure 2.9. Python recognizes a block by
two clues. First, the colon after the Boolean condition or after the else
indicates that a block is coming next. The extent of the block is given by
indentation. For example,

if snack == “pb & j”:

print(“yummy”)

print(“sticky”)

print(“gooey”)

else:

print(“Must be pizza”)

print(“That‘s All, Folks”)

If the variable snack does have the string value “pb & j” at this point, then the
block of three print statements is executed, and the output is

yummy

sticky

gooey

That’s All, Folks

If snack has some different value, the one-statement else block is executed,
and the output is

Must be pizza

That‘s All, Folks

Indenting in Python not only makes a program easier for human beings to
read, it’s also used by the Python interpreter to determine the extent of a
block of code. Use the Tab key to get the proper levels of indenting.

Let’s expand on our TravelPlanner program and give the user of the pro-
gram a choice of computing the time either as a decimal number (3.75 hours)
or as hours and minutes (3 hours, 45 minutes). This situation is ideal for a
conditional statement. Depending on what the user wants to do, the program
does one of two tasks. For either task, the program still needs information

233 Statement Types

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 23

about the speed and distance. The program must also collect information to
indicate which task the user wishes to perform. We need an additional variable
in the program to store this information. Let’s use a variable called choice to
store the user’s choice of which task to perform. We also need two new
variables to store the (integer) values of hours and minutes.

Figure 10 shows the new program, with the three additional variables. The
condition evaluated at the beginning of the if-else statement tests whether
choice has the value “D” or “d”. (Although the program asks the user to enter
“D”, it’s easy to imagine someone typing lowercase “d” instead, and this com-
pound condition works with either value.) If so, then the condition is true,
and the first block of statements is executed—that is, the time is output in
decimal format as we have been doing all along. If the condition is false, then
the second block of statements is executed. In either case, the program then
exits normally with the final input statement. Note that because of the way
the condition is written, if choice does not have the value “D” or the value
“d”, it is assumed that the user wants to compute the time in hours and min-
utes, even though choice may have any other value that the user may have
typed in response to the prompt.

To compute hours and minutes (the else clause of the if-else statement),
time is computed in the usual way, which results in a decimal value. The
whole-number part of that decimal is the number of hours needed for the trip.
We can get this number by type casting the decimal number to an integer.
This is accomplished by

hours = int(time)

which drops all digits behind the decimal point and stores the resulting
integer value in hours. To find the fractional part of the hour that we dropped,

24 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#Computes and outputs travel time

#for a given speed and distance

#Written by J. Q. Programmer, 6/28/13

speed = int(input(“Enter your speed in mph: ”))

distance = float(input(“Enter your distance in miles: ”))

print(“Enter your choice of format for time”)

choice = input(“decimal hours (D) or hours and minutes (M): ”)

print()

if choice == “D” or choice == “d”:

time = distance/speed

print(“At”, speed, “mph, it will take”)

print(time, “hours to travel”, distance, “miles.”)

else:

time = distance/speed

hours = int(time)

minutes = int((time - hours)*60)

print(“At”, speed, “mph, it will take”)

print(hours, “hours and”, minutes, “minutes to travel”,\

distance, “miles.”)

input(“\n\nPress the Enter key to exit”)

The TravelPlanner Program with
a Conditional Statement

FIGURE 10

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 24

we subtract hours from time. We multiply this by 60 to turn it into some num-
ber of minutes, but this is still a decimal number. We do another type cast to
truncate this to an integer value for minutes:

minutes = int((time - hours)*60)

For example, if the user enters data of 50 mph and 475 miles and requests
output in hours and minutes, the following table shows the computed
values.

253 Statement Types

©2013 Course Technology, a part of Cengage Learning.

Quantity Value

speed 50

distance 475.0

time � distance/speed 9.5

hours � int(time) 9

time – hours 0.5

(time – hours) *60 30.0

minutes � int((time – hours)*60) 30

Here is the actual program output for this case:

Enter your speed in mph: 50
Enter your distance in miles: 475
Enter your choice of format for time

decimal hours (D) or hours and minutes (M): M

At 50 mph, it will take

9 hours and 30 minutes to travel 475.0 miles.

Now let’s look at the third variation on flow of control, namely looping (itera-
tion). We want to execute the same group of statements (called the loop
body) repeatedly, depending on the result of a Boolean condition. As long as
(while) the condition remains true, the loop body is executed. The condition
is tested before each execution of the loop body. When the condition becomes
false, the loop body is not executed again, which is usually expressed by say-
ing that the algorithm exits the loop. To ensure that the algorithm ultimately
exits the loop, the condition must be such that its truth value can be affected
by what happens when the loop body is executed. Figure 11 illustrates the
while loop. The loop body is statement S1 (which can be a compound state-
ment), and S1 is executed while the condition is true. Once the condition is
false, the flow of control moves on to statement S2. If the condition is false
when it is first evaluated, then the body of the loop is never executed at all.
We saw this same scenario when we discussed pseudocode looping statements
in Chapter 2 (Figure 2.6).

Python uses a while statement to implement this type of looping. The
form of the statement is:

while Boolean condition:
S1

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 25

The colon after the Boolean condition indicates that a block of code is com-
ing, and the extent of the block is determined by indentation.

For example, suppose we want to write a program to add a sequence of
nonnegative integers that the user supplies and write out the total. We need
a variable to hold the total; we’ll call this variable sum. To handle the numbers
to be added, we could use a bunch of variables such as n1, n2, n3, . . . , and
do a series of input-and-add statements of the form

n1 = int(input(“next number: ”))

sum = sum + n1

n2 = int(input(“next number: ”))

sum = sum + n2

and so on. The problem is that this approach requires too much effort. Sup-
pose we know that the user wants to add 2000 numbers. We could write the
above input-and-add statements 2000 times, but it wouldn’t be fun. Nor is it
necessary—we are doing a very repetitive task here, and we should be able to
use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was
also to use iteration.)

Even if we use a loop mechanism, we are still adding a succession of val-
ues to sum. Unless we are sure that the value of sum is zero to begin with, we
cannot be sure that the answer isn’t nonsense. We should set the value of sum
to 0 before we add anything to it.

26 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

S2

F

T

S1

Condition

While Loop

FIGURE 11

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 26

Now on to the loop mechanism. First, let’s note that once a number has
been read in and added to sum, the program doesn’t need to know the value of
the number any longer. We can have just one variable called number and use it
repeatedly to hold the first numerical value, then the second, and so on.

The general idea is then

sum = 0

while there are more numbers to add:
number = int(input(“Next number: ”))

sum = sum + number

print(“The total is”, sum)

Now we have to figure out what the condition “there are more numbers to
add” really means. Because we are adding nonnegative integers, we could ask
the user to enter one extra integer that is not part of the legitimate data, but
is instead a signal that there are no more data. Such a value is called a
sentinel value. For this problem, any negative number would be a good
sentinel value. Because the numbers to be added are all nonnegative, the
appearance of a negative number signals the end of the legitimate data. We
don’t want to process the sentinel value (because it is not a legitimate data
item); we only want to use it to terminate the looping process. This might
suggest the following code:

sum = 0

while number >= 0: #but there is a problem here

#see following discussion

number = int(input(“Next number: ”))

sum = sum + number

print(“The total is”, sum)

Here’s the problem. How can we test whether number is greater than or equal
to 0 if we haven’t read the value of number yet? We need to do a preliminary
input for the first value of number outside of the loop, then test that value in
the loop condition. If it is nonnegative, we want to add it to sum and then
read the next value and test it. Whenever the value of number is negative
(including the first value), we want to do nothing with it—that is, we want to
avoid executing the loop body. The following statements do this; we’ve also
added instructions to the user.

sum = 0

print(“Enter numbers to add, terminate”\

“ with a negative number.”)

number = int(input(“Next number: ”))

while number >= 0:

sum = sum + number

number = int(input(“Next number: ”))

print(“The total is”, sum)

273 Statement Types

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 27

The value of number gets changed within the loop body by reading in a new
value. The new value is tested, and if it is nonnegative, the loop body
executes again, adding the data value to sum and reading in a new value for
number. The loop terminates when a negative value is read in. Remember
the requirement that something within the loop body must be able to affect
the truth value of the condition. In this case, it is reading in a new value
for number that has the potential to change the value of the condition from
true to false. Without this requirement, the condition, once true, would
remain true forever, and the loop body would be endlessly executed. This
results in what is called an infinite loop. A program that contains an
infinite loop will execute forever (or until the programmer gets tired of
waiting and interrupts the program, or until the program exceeds some
preset time limit).

Here is a sample of the program output:

Enter numbers to add; terminate with a negative number.

Next number: 6
Next number: 8
Next number: 23
Next number: -4
The total is 37

The problem we’ve solved here, adding nonnegative integers until a negative
sentinel value occurs, is the same one solved using assembly language in
Chapter 6. The Python code above is almost identical to the pseudocode
version of the algorithm shown in Figure 6.7. Thanks to the power of the
language, the Python code embodies the algorithm directly, at a high level of
thinking, whereas in assembly language this same algorithm had to be trans-
lated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner
program, we could use a while loop. During each pass through the loop, the
program computes the time for a given speed and distance. The body of
the loop is therefore exactly like our previous code. All we are adding here is
the framework that provides looping. To terminate the loop, we could use a
sentinel value, as we did for the program above. A negative value for speed,
for example, is not a valid value and could serve as a sentinel value. Instead of
that, let’s allow the user to control loop termination by having the program
ask the user whether he or she wishes to continue. We’ll need a variable to
hold the user’s response to this question. Of course, the user could answer “N”
at the first query, the loop body would never be executed at all, and the
program would terminate.

Figure 12 shows the complete program. Following the indentation, one
can see that the overall structure of the program is

• opening query to the user

• a while loop that contains an if-else statement

• the usual closing statement

28 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 28

293 Statement Types

©2013 Course Technology, a part of Cengage Learning.

1. What is the output from the following section of code?

number1 = 15

number2 = 7

if number1 >= number2:

print(2*number1)

else:

print(2*number2)

2. What is the output from the following section of code?

scores = 1

while scores < 20:

scores = scores + 2

print(scores)

3. What is the output from the following section of code?

quotaThisMonth = 7

quotaLastMonth = quotaThisMonth + 1

if (quotaThisMonth > quotaLastMonth) or \

(quotaLastMonth >= 8):

PRACTICE PROBLEMS

#Computes and outputs travel time

#for a given speed and distance

#Written by J. Q. Programmer, 7/05/13

more = input(“Do you want to plan a trip? (Y or N): ”)

while more == “Y” or more == “y”:

speed = int(input(“Enter your speed in mph: ”))

distance = float(input(“Enter your distance in miles: ”))

print(“Enter your choice of format for time”)

choice = input(“decimal hours (D) or hours “\

"and minutes (M): ”)

print()

if choice == “D” or choice == “d”:

time = distance/speed

print(“At”, speed, “mph, it will take”)

print(time, “hours to travel”, distance, “miles.”)

else:

time = distance/speed

hours = int(time)

minutes = int((time - hours)*60)

print(“At”, speed, “mph, it will take”)

print(hours, “hours and”, minutes, “minutes to travel”,\

distance, “miles.”)

more = input(“\nDo you want to plan another trip? "\

“(Y or N): ”)

input(“\n\nPress the Enter key to exit”)

The TravelPlanner Program
with Looping

FIGURE 12

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 29

4 Another Example

Let’s briefly review the types of Python programming statements we’ve
learned. We can do input and output—reading values from the user into
memory, writing values out of memory for the user to see, being sure to use
meaningful variable identifiers to reference memory locations. We can assign
values to variables within the program. And we can direct the flow of control
by using conditional statements or looping. Although there are many other
statement types available in Python, you can do almost everything using only
the modest collection of statements we’ve described. The power lies in how
these statements are combined and nested within groups to produce ever
more complex courses of action.

For example, suppose we write a program to assist SportsWorld, a com-
pany that installs circular swimming pools. In order to estimate their costs for
swimming pool covers or for fencing to surround the pool, SportsWorld needs
to know the area or circumference of a pool, given its radius. A pseudocode
version of the program is shown in Figure 13.

We can translate this pseudocode fairly directly into Python code. We will
also add a prologue comment to explain what the program does (optional but
always recommended for program documentation). Also, the computations for
circumference and area both involve the constant pi (p). We could use some
numerical approximation for pi each time it occurs in the program. Instead
we’ll make use of a built-in Python module. A module is a collection of useful
code that you can make available to your Python program by using the import

30 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

print(“Yes”)

quotaLastMonth = quotaLastMonth + 1

else:

print(“No”)

quotaThisMonth = quotaThisMonth + 1

4. How many times is the output statement executed in the following
section of code?

left = 10

right = 20

while left <= right:

print(left)

left = left + 2

5. Write a Python statement that outputs “Equal” if the integer values
of night and day are the same, but otherwise does nothing.

PRACTICE PROBLEMS

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 30

statement. In this case, the value of pi is defined in the math module, so we
would put

import math

at the top of our program. Then the expression

math.pi

has the value assigned to pi in the math module, and

print(math.pi)

would produce

3.14159265359

As with all Python “constants,” however, the value of math.pi can be changed
in your program. Thus

math.pi = 7

print(math.pi)

would produce the value 7 as output. Again, it’s up to the programmer to treat
a value as a constant (unchangeable) if that’s what it’s supposed to be. Thank-
fully, the above assignment statement doesn’t change the value of pi stored in
the Python math module, it just changes it within the program in which it
appears.

Figure 14 gives the complete program; the prologue comment notes the
use of the math module. Figure 15 shows what actually appears on the screen
when this program is executed with some sample data.

It is inappropriate (and messy) to output the value of the area to 10 or
11 decimal places based on a value of the radius given to one or two decimal
places of accuracy. See Exercise 11 at the end of this module for decimal
number formatting tips.

314 Another Example

©2013 Course Technology, a part of Cengage Learning.

Get value for user’s choice about continuing
While user wants to continue, do the following steps

Get value for pool radius
Get value for choice of task
If task choice is circumference

Compute pool circumference
Print output

Else (task choice is area)
Compute pool area
Print output

Get value for user’s choice about continuing
Stop

A Pseudocode Version of the
SportsWorld Program

FIGURE 13

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 31

32 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#This program helps SportsWorld estimate costs

#for pool covers and pool fencing by computing

#the area or circumference of a circle

#with a given radius.

#Any number of circles can be processed.

#Uses module math for pi

#Written by M. Phelps, 10/05/13

import math

print(“Do you want to process a pool?”)

more = input(“Enter Y or N: ”)

while (more == “Y”) or (more == “y”): #more circles to process

radius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

taskToDo = input(“C to compute circumference, ”\

“A to compute area: ”)

if taskToDo == “C”: #compute circumference

circumference = 2*math.pi*radius

print(“\nThe circumference for a pool of radius”,\

radius, “is”, circumference)

else: #compute area

area = math.pi * radius * radius

print(“\nThe area for a pool of radius”,\

radius, “is”, area)

print(“\nDo you want to process more pools?”)

more = input(“Enter Y or N: ”)

#finish up

input(“\n\nPress the Enter key to exit”)

The SportsWorld Program

FIGURE 14

Do you want to process a pool?

Enter Y or N: Y
Enter the value of the radius of the pool: 2.7

Enter your choice of task.

C to compute circumference, A to compute area: C

The circumference for a pool of radius 2.7 is 16.9646003294

Do you want to process more pools?

Enter Y or N: Y
Enter the value of the radius of the pool: 2.7

Enter your choice of task.

C to compute circumference, A to compute area: A

The area for a pool of radius 2.7 is 22.9022104447

A Sample Session Using the
Program of Figure 14

FIGURE 15

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 32

5 Managing Complexity

The programs we have written have been relatively simple. More complex
problems require more complex programs to solve them. Although it is fairly
easy to understand what is happening in the 30 or so lines of the SportsWorld
program, imagine trying to understand a program that is 50,000 lines long.
Imagine trying to write such a program! It is not possible to understand—all
at once—everything that goes on in a 50,000-line program.

5.1 Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is a
problem-solving approach called divide and conquer. Suppose a program is to
be written to do a certain task; let’s call it task T. Suppose further that we can
divide this task into smaller tasks, say A, B, C, and D, such that, if we can do
those four tasks in the right order, we can do task T. Then our high-level under-
standing of the problem need only be concerned with what A, B, C, and D do
and how they must work together to accomplish T. We do not, at this stage,
need to understand how tasks A, B, C, and D can be done. Figure 16(a), an

335 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

Do you want to process more pools?

Enter Y or N: Y
Enter the value of the radius of the pool: 14.53

Enter your choice of task.

C to compute circumference, A to compute area: C

The circumference for a pool of radius 14.53 is 91.2946825133

Do you want to process more pools?

Enter Y or N: N

Press the Enter key to exit

A Sample Session Using
the Program of Figure 14
(continued)

FIGURE 15

1. Write a complete Python program to read in the user’s first and last
initials and write them out.

2. Write a complete Python program that asks for the price of an item
and the quantity purchased, and writes out the total cost.

3. Write a complete Python program that asks for a number. If the
number is less than 5, it is written out, but if it is greater than or
equal to 5, twice that number is written out.

4. Write a complete Python program that asks the user for a positive
integer n, and then writes out all the numbers from 1 up to and
including n.

PRACTICE PROBLEMS

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 33

example of a structure chart or structure diagram, illustrates this situation.
Task T is composed in some way of subtasks A, B, C, and D. Later we can turn
our attention to, say, subtask A, and see if it too can be decomposed into
smaller subtasks, as in Figure 16(b). In this way, we continue to break the task
down into smaller and smaller pieces, finally arriving at subtasks that are
simple enough that it is easy to write the code to carry them out. By dividing
the problem into small pieces, we can conquer the complexity that is over-
whelming if we look at the problem as a whole.

Divide and conquer is a problem-solving approach, and not just a
computer programming technique. Outlining a term paper into major and
minor topics is a divide-and-conquer approach to writing the paper. Doing a
Form 1040 Individual Tax Return for the Internal Revenue Service can involve
subtasks of completing Schedules A, B, C, D, and so on, and then reassembling
the results. Designing a house can be broken down into subtasks of designing
floor plans, wiring, plumbing, and the like. Large companies organize their
management responsibilities using a divide-and-conquer approach; what we
have called structure charts become, in the business world, organization
charts.

How is the divide-and-conquer problem-solving approach reflected in the
resulting computer program? If we think about the problem in terms of
subtasks, then the program should show that same structure; that is, part of
the code should do subtask A, part should do subtask B, and so on. We divide
the code into subprograms, each of which does some part of the overall task.
Then we empower these subprograms to work together to solve the original
problem.

5.2 Using and Writing Functions

In Python, subprograms are called functions. Each function in a program
should do one and only one subtask. Data get passed back and forth
between the “main” section of the program and various functions. The main
part may pass data to a function, receive new data from a function, or
both. Data received from a function could in turn be passed on to another
function. You can imagine data flowing along the connecting lines in the
structure chart. That’s how we “empower these subprograms to work
together.”

34 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

Task T Task T

BA C D A C D

A2A1 A3

B

(b) More detailed decomposition(a) Basic decomposition

Structure Charts

FIGURE 16

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 34

We’ve already used some built-in Python functions. The statement

print(“Hello World”)

passes a literal string to the print function, which then writes it out. The
statement

speed = input(“Enter your speed in mph: ”)

uses the input function. A literal string is passed into this function. The func-
tion’s job is to print this literal string, pick up the string the user types in
response, and return that new string, which then gets assigned to the variable
speed. We also used the int function:

speed = int(speed)

This statement passes the string value speed to the int function; the function
type casts this string to an integer value and returns that value, which is then
assigned to speed. Then we got a little fancier:

speed = int(input(“Enter your speed in mph: ”))

Here the literal string gets passed to the input function, and the string value
returned by the input function is passed directly into the int function, whose
returned value is then assigned to speed.

Let’s review the SportsWorld program with an eye to further subdividing
the task. There is a loop that does some operations as long as the user wants.
What gets done? Input is obtained from the user about the radius of the circle
and the choice of task to be done (compute circumference or compute area).
Then the circumference or the area gets computed and written out.

We’ve identified three subtasks, as shown in the structure chart of Figure 17.
We can visualize the main section of the program at a pseudocode level, as shown
in Figure 18. This divide-and-conquer approach to solving the problem can
(and should) be planned first in pseudocode, without regard to the details of the

355 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

Filmmaker George Lucas started Industrial Light and Magic
in 1975 to create the special effects he wanted for the
original Star Wars movie. Since then, ILM has contributed
to the entire Star Wars series, Jurassic Park, Raiders of the
Lost Ark, and many other hit films full of amazing special
effects. Many of the original special effects were done with
miniature models, but by the 1980s computer graphics was
taking over the special effects world.

A single frame of computer-generated film can require
coordination of perhaps hundreds of software components.

ILM turned to Python to create software to manage the
flow of the various pieces—including thousands of
images—needed for a complex and rapid production
process. Over time, Python has assumed an ever-larger role
in production process management. It has also been used
to create a user interface for computer graphic artists to
access various elements at their disposal. And, it supports
a network-wide whiteboard and instant messaging system
for discussions in daily shot reviews. Python is also
integrated with custom-built C and C++ code that supports
the in-house lighting tool used to place light sources into
a 3-D scene and preview shadings and surfaces.

The Force Is
with Them

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 35

programming language to be used. If the three subtasks (input, circumference,
area) can all be done, then arranging them within the structure of Figure 18
solves the problem. We can write a function for each of the subtasks. Although
we now know what form the main section will take, we have pushed the details
of how to do each of the subtasks off into the other functions. Execution of the
program begins with the main section. Every time the flow of control reaches the
equivalent of a “do subtask” instruction, it transfers execution to the appropriate
function code. When execution of the function code is complete, flow of control
returns to the main section and picks up where it left off.

We’ll start with functions for the circumference and area subtasks.
Functions are named using ordinary Python identifiers, so we’ll name these
functions doCircumference and doArea. Because we’re using meaningful identi-
fiers, it is obvious which subtask is carried out by which function.

A simple function in Python has the following form:

def function identifier():
body of the function

The notation “def” says that a function is about to be defined. As we saw with
the if statement and the while statement, the colon and the indentation
identify the block of code that is the function body. The doCircumference
function can be written as

def doCircumference():

circumference = 2*math.pi*radius

print(“\nThe circumference for a pool of radius”,\

radius, “is”, circumference)

36 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

SportsWorld

Get input Do
circumference

Do
area

Structure Chart for the
SportsWorld Task

FIGURE 17

Get value for user’s choice about continuing
While the user wants to continue

Do the input subtask
If (Task = ‘C’) then

do the circumference subtask
else

do the area subtask
Get value for user’s choice about continuing

A High-Level Modular View of
the SportsWorld Program

FIGURE 18

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 36

and the doArea function is similar. Figure 19 shows the complete program at this
point. The two function bodies are the same statements that previously appeared
in the main section of the program. Where these statements used to be, there are
now function invocations that transfer control to the function code:

doCircumference()

and

doArea()

375 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

#This program helps SportsWorld estimate costs

#for pool covers and pool fencing by computing

#the area or circumference of a circle

#with a given radius.

#Any number of circles can be processed.

#Uses module math for pi

#Uses simple functions and global variables

#Written by M. Phelps, 10/15/13

import math

def doCircumference():

circumference = 2*math.pi*radius

print(“\nThe circumference for a pool of radius”,\

radius, “is”, circumference)

def doArea():

area = math.pi * radius * radius

print(“\nThe area for a pool of radius”,\

radius, “is”, area)

#main section

print(“Do you want to process a pool?”)

more = input(“Enter Y or N: ”)

while(more == “Y”) or (more == “y”): #more circles to process

radius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

taskToDo = input(“C to compute circumference, ”\

“A to compute area: ”)

if taskToDo == “C”: #compute circumference

doCircumference()

else: #compute area

doArea()

print(“\nDo you want to process more pools?”)

more = input(“Enter Y or N: ”)

#finish up

input(“\n\nPress the Enter key to exit”)

A Modularized SportsWorld
Program, Version 1

FIGURE 19

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 37

The doCircumference and doArea functions obviously need to make use of
the radius variable. These functions know the value of radius because radius
was a variable in the main section of the program, which makes it a global
variable, known throughout the program, even inside a function body. In
general, a function should only have access to the information it needs to
do its particular subtask, lest it inadvertently change the value of some
variable about which it has no business even knowing. Python solves this
problem because the value of a global variable can be used, but it can’t eas-
ily be changed within a function by a simple assignment statement, as we
will see next.

Let’s try a function for the third subtask, getting input. We might try

#DOES NOT WORK

def getInput():

radius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

taskToDo = input(“C to compute circumference, ”\

“A to compute area: ”)

In the main section, before invoking this function, we would have to create the
global variables radius and taskToDo. We can give them dummy values because
they should get their real values within the getInput function. Figure 20 shows
this version, which DOES NOT WORK. The result of running this program will
give 0 for the circumference and the area, no matter what is entered for the
radius. Here’s why. The statement

radius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

creates a new variable called radius (and assigns it the value supplied by
the user). A variable created within a function is a local variable and is not
known anywhere else in the program. In other words, this particular radius
variable has nothing to do with the original radius variable, and it’s this
local variable whose value is being set. After execution of the function is
complete, this local variable disappears. The original radius variable (whose
value has remained 0 all this time) is what the doCircumference and doArea
functions use. In fact, the program doesn’t even use the doCircumference
function because, like the global radius variable, taskToDo still has its
original value (’A‘) once the getInput function exits, so it’s always the area
that is computed.

We need to find some way to allow the getInput function the ability to
change the original radius and taskToDo values. To do this, we make use of the
return statement, whose syntax is

return expression list

38 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 38

395 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

#This program helps SportsWorld estimate costs

#for pool covers and pool fencing by computing

#the area or circumference of a circle

#with a given radius.

#Any number of circles can be processed.

#Uses module math for pi

#Uses simple functions and global variables

#Written by M. Phelps, 10/15/13

#THIS VERSION DOES NOT WORK

import math

def getInput():

radius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

taskToDo = input(“C to compute circumference, ”\

“A to compute area: ”)

#return radius, taskToDo

def doCircumference():

circumference = 2*math.pi*radius

print(“\nThe circumference for a pool of radius”,\

radius, “is”, circumference)

def doArea():

area = math.pi * radius * radius

print(“\nThe area for a pool of radius”,\

radius, “is”, area)

#main section

print(“Do you want to process a pool?”)

more = input(“Enter Y or N: ”)

while(more == “Y”) or (more == “y”): #more circles to process

radius = 0

taskToDo = “A”

getInput()

if taskToDo == “C”: #compute circumference

doCircumference()

else: #compute area

doArea()

print(“\nDo you want to process more pools?”)

more = input(“Enter Y or N: ”)

#finish up

input(“\n\nPress the Enter key to exit”)

A Modularized SportsWorld
Program, Version 2
THIS DOES NOT WORK

FIGURE 20

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 39

The expression list is a list, separated by commas, of expressions for values to
be “returned” to the statement that invoked the function. This statement
should be an assignment statement, with the function invocation on the right
side and a list of variables on the left side that will receive, in order, the
values returned. Figure 21 shows a new version of the SportsWorld program
where the getInput function returns values for the radius and taskToDo
variables. We’ve used new names within the getInput function to emphasize
that the values computed there (in this case, the values are simply obtained
from the user) are values for local variables. Within the main section, the key
statement is

radius, taskToDo = getInput()

Here the getInput function is invoked on the right side of the assignment
statement, and the values returned by getInput are assigned, in order, to the
radius and taskToDo variables:

radius, taskToDo = getInput()

return nextRadius, nextTask

40 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#This program helps SportsWorld estimate costs

#for pool covers and pool fencing by computing

#the area or circumference of a circle

#with a given radius.

#Any number of circles can be processed.

#Uses module math for pi

#Uses return statement

#Written by M. Phelps, 10/15/13

import math

def getInput():

nextRadius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

nextTask = input(“C to compute circumference, ”\

“A to compute area: ”)

return nextRadius, nextTask

def doCircumference():

circumference = 2*math.pi*radius

print(“\nThe circumference for a pool of radius”,\

radius, “is”, circumference)

A Modularized SportsWorld
Program, Version 3

FIGURE 21

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 40

A return statement with an empty expression list would simply cause an exit
from the function in which it appears.

Believe it or not, we are still not quite happy with the modularized
version of the SportsWorld program. It’s this use of global variables that is
troublesome. Within the doCircumference and doArea functions, the radius
variable just seems to pop up “unannounced” by the somewhat back-door
route of being a global variable. Even though these functions can’t change the
value of radius by just assigning it a new value (which would be an undesir-
able side effect), it seems that if a function needs to know (that is, use) the
value of a variable, it should explicitly “receive” that value. In fact, it would
be good practice to get rid of global variables altogether.

To explicitly pass values to a function, we need to use the more general
definition of a Python function, which has the form

def function identifier(parameter list):

body of the function

The invocation of a function with parameters requires giving the name of the
function followed by an argument list that will pass values to the function
that are pertinent to that function’s task. An argument list can contain either
variables that have already been assigned a value or literal expressions such as
2 � 3. The parameter list is a list of variables local to the function that will
receive their values from the corresponding argument list when the function
is invoked. The parameters in the parameter list correspond by position to the
arguments in the statement that invokes this function; that is, the first
parameter in the list matches the first argument given in the statement that

415 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

def doArea():

area = math.pi * radius * radius

print(”\nThe area for a pool of radius”,\

radius, “is”, area)

#main section

print(“Do you want to process a pool?”)

more = input(“Enter Y or N: ”)

while (more == “Y”) or (more == “y”): #more circles to process

radius, taskToDo = getInput()

if taskToDo == “C”: #compute circumference

doCircumference()

else: #compute area

doArea()

print(“\nDo you want to process more pools?”)

more = input(“Enter Y or N: ”)

#finish up

input(“\n\nPress the Enter key to exit”)

A Modularized SportsWorld
Program, Version 3 (continued)

FIGURE 21

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 41

invokes the function, the second parameter matches the second argument,
and so on. It is through this correspondence between arguments and parame-
ters that information (data) flows into a function. Parameter names and argu-
ment names need not be the same; the name of the parameter is what is used
inside the function, but it is the correspondence with the argument list that
matters, not the parameter identifier used.

The doCircumference function, as noted earlier, needs to know the value
of the radius. We’ll give the doCircumference function a single parameter, and
when we invoke this function we’ll pass radius as the single argument. Of
course this is pointless if radius remains a global variable. We’ll eliminate
global variables by making a main function in which we’ll put, more or less,
the code that has been in the main section. Then the new main section will
just invoke the main function. Figure 22 shows the final modularized version
of SportsWorld. The change in the main function is to invoke the doCircumfer-
ence and doArea functions by passing the single argument radius to each func-
tion. In addition, the parameter name for doArea has been set to something
different from “radius”, just to demonstrate that parameter names and argu-
ment names need not agree.

We now see that the statement

speed = input(“Enter your speed in mph: ”)

passes a literal string argument to the input function. Although we haven’t
seen the code for the built-in input function, we can tell that it uses one
parameter.

42 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#This program helps SportsWorld estimate costs

#for pool covers and pool fencing by computing

#the area or circumference of a circle

#with a given radius.

#Any number of circles can be processed.

#Uses module math for pi

#Uses parameters and return statements

#Written by M. Phelps, 10/16/13

import math

def getInput():

nextRadius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

nextTask = input(“C to compute circumference, ”\

“A to compute area: ”)

return nextRadius, nextTask

def doCircumference(radius):

circumference = 2*math.pi*radius

print(“\nThe circumference for a pool of radius”,\

radius, “is”, circumference)

A Modularized SportsWorld
Program, Version 4

FIGURE 22

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 42

We’ve now seen several variations of how a function might use data.
Assuming that we have isolated a main function to avoid any global variables, we
can identify four different situations. Figure 23 describes these, and Figure 24
shows a small Python program that illustrates each case. Figure 25 shows the
resulting output. A given function could mix and match these cases; for example,

435 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

def doArea(theRadius):

area = math.pi * theRadius * theRadius

print(”\nThe area for a pool of radius”,\

theRadius, “is”, area)

def main():

print(“Do you want to process a pool?”)

more = input(“Enter Y or N: ”)

while(more == “Y”) or (more == “y”):

#more circles to process

radius, taskToDo = getInput()

if taskToDo == “C”: #compute circumference

doCircumference(radius)

else: #compute area

doArea(radius)

print(“\nDo you want to process more pools?”)

more = input(“Enter Y or N: ”)

#program starts here

main()

#finish up

input(“\n\nPress the Enter key to exit”)

A Modularized SportsWorld
Program, Version 4
(continued)

FIGURE 22

Data Flow in and out of Python
Functions

FIGURE 23

DIRECTION OF DATA FLOW WHAT IT MEANS HOW IT‘S ACCOMPLISHED

None Function is a “constant”
function that does the same
thing every time, and needs
no data nor does it create
new data.

No parameter, no return
statement

In only Function needs to use,
but not change, this value.

Pass the value as an
argument to a parameter

Out only Function constructs a
new value that the invok-
ing function needs to
know.

No parameter; use a local
variable to construct the
value and send it back
via a return statement

In-Out Function needs to use
and also change this
value.

Pass the value as an
argument to a parameter;
send the changed value
back via a return statement

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 43

44 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#illustrates data flow

def message():

#message is a “constant” function

#it always does the same thing

#it needs no data and returns no data

print(“This program demonstrates data flow ”\

“ into and out of functions.”)

def inOnly(x):

#inOnly receives a value through its

#single parameter and prints that value

print(“the value of x is ”, x)

def outOnly():

#outOnly creates a new value

#and sends it back via the return statement

#where it then gets assigned to a variable

#and printed out

newValue = 17

return newValue

def inOut(x):

#inOut receives a value through its

#single parameter, changes that value

#and sends it back via the return statement

#where it gets used directly as part of an

#output statement

x = 2*x;

return x

def main():

message()

inOnly(5)

y = outOnly()

print(“the value of y is”, y)

y = inOut(y)

print(“the value of y is”, y)

#program starts here

main()

input(“\n\nPress the Enter key to exit”)

Parameter Passing and Return
Statements

FIGURE 24

Output from the Program of
Figure 24

FIGURE 25
This program demonstrates data flow into and out of functions.

the value of x is 5

the value of y is 17

the value of y is 34

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 44

it might need to use a value (which would be an “in-only” case requiring a
parameter) and also return some new value (which would be an “out-only” case
requiring a return statement). It is helpful to plan ahead of time how data should
flow in and out of each function.

Because it seems to have been a lot of effort to arrive at the complete,
modularized version of our SportsWorld program, shown in Figure 22 (which,
after all, does the same thing as the program in Figure 14), let’s review why
this effort is worthwhile.

The modularized version of the program is compartmentalized in two
ways. First, it is compartmentalized with respect to task. The major task is
accomplished by a series of subtasks, and the work for each subtask takes
place within a separate function. This leaves the main function free of
details and consisting primarily of invoking the appropriate function at the
appropriate point. As an analogy, think of the president of a company call-
ing on various assistants to carry out tasks as needed. The president does
not need to know how a task is done, only the name of the person responsi-
ble for carrying it out. Second, the program is compartmentalized with
respect to data, in the sense that the data values known to the various func-
tions are controlled by parameter lists. In our analogy, the president gives
each assistant the information he or she needs to do the assigned task, and
expects relevant information to be returned—but not all assistants know all
information.

This compartmentalization is useful in many ways. It is useful when
we plan the solution to a problem, because it allows us to use a divide-
and-conquer approach. We can think about the problem in terms of sub-
tasks. This makes it easier for us to understand how to achieve a solution to
a large and complex problem. It is also useful when we code the solution to
a problem, because it allows us to concentrate on writing one section of the
code at a time. We can write a function and then fit it into the program, so
that the program gradually expands rather than having to be written all at
once. Developing a large software project is a team effort, and different
parts of the team can be writing different functions at the same time. It is
useful when we test the program, because we can test one new function at
a time as the program grows, and any errors are localized to the function
being added. (The main function can be tested early by writing appropriate
headers but empty or dummy bodies for the remaining functions.) Com-
partmentalization is useful when we modify the program, because changes
tend to be within certain subtasks and hence within certain functions in
the code. And finally it is useful for anyone (including the programmer)
who wants to read the resulting program. The overall idea of how the pro-
gram works, without the details, can be gleaned from reading the main
function; if and when the details become important, the appropriate code
for the other functions can be consulted. In other words, modularizing a
program is useful for its

• Planning

• Coding

• Testing

• Modifying

• Reading

455 Managing Complexity

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 45

Finally, once a function has been developed and tested, it is then available for
any application program to use. An application program that does quite
different things than SportsWorld, but that needs the value of the area or cir-
cumference of a circle computed from the radius, can use our doCircumference
and doArea functions.

46 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

1. What is the output of the following Python program?

def Helper():

number = 15

number = 10

Helper()

print(“number has the value” , number)

2. What is the output of the following Python program?

def Helper():

newNumber = 15

return newNumber

def main():

number = 10

print(“number has the value” , number)

number = Helper()

print(“number has the value” , number)

#program starts here

main()

3. What is the output of the following Python program?

def Helper(number):

number = number + 15

return number

def main():

number = 10

print(“number has the value” , number)

number = Helper(number)

print(“number has the value” , number)

#program starts here

main()

4. a. Change the doCircumference function from Figure 22 so that
instead of computing and printing out the value of the circumfer-
ence, it computes the value and returns it to the main function.

b. Change the main function in Figure 22 so that it prints out the
value of the circumference returned by the function of part (a).

PRACTICE PROBLEMS

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 46

6 Object-Oriented Programming

6.1 What Is It?

The divide-and-conquer approach to programming is a “traditional” approach.
The focus is on the overall task to be done: how to break it down into sub-
tasks, and how to write algorithms for the various subtasks that are carried
out by communicating subprograms (in the case of Python, by functions). The
program can be thought of as a giant statement executor designed to carry
out the major task, even though the main function may simply call on, in
turn, the various other functions that do the subtask work.

Object-oriented programming (OOP) takes a somewhat different
approach. A program is considered a simulation of some part of the world that
is the domain of interest. “Objects” populate this domain. Objects in a bank-
ing system, for example, might be savings accounts, checking accounts, and
loans. Objects in a company personnel system might be employees. Objects in
a medical office might be patients and doctors. Each object is an example
drawn from a class of similar objects. The savings account “class” in a bank
has certain properties associated with it, such as name, Social Security num-
ber, account type, and account balance. Each individual savings account at the
bank is an example of (an object of) the savings account class, and each has
specific values for these common properties; that is, each savings account has
a specific value for the name of the account holder, a specific value for the
account balance, and so forth. Each object of a class therefore has its own data
values.

A class also has one or more subtasks associated with it, and all objects
from that class can perform those subtasks. In carrying out a subtask, each
object can be thought of as providing some service. A savings account, for
example, can compute compound interest due on the balance. When an
object-oriented program is executed, the program generates requests for ser-
vices that go to the various objects. The objects respond by performing the
requested service—that is, carrying out the subtask. Thus, a program that is
using the savings account class might request a particular savings account
object to perform the service of computing interest due on the account
balance. An object always knows its own data values and may use them in
performing the requested service.

There are three terms often associated with object-oriented programming,
as illustrated in Figure 26. The first term is encapsulation. Each class has its
own subprogram to perform each of its subtasks. Any user of the class (which
might be some other program) can ask an object of that class to invoke the
appropriate subprogram and thereby perform the subtask service. The class
user needs to know what services objects of the class can provide and how to
request an object to perform any such service. The details of the subprogram
code belong to the class itself, and this code may be modified in any manner,
as long as the way the user interacts with the class remains unchanged. (In
the savings account example, the details of the algorithm used to compute
interest due belong only to the class, and need not be known by any user of
the class. If the bank wants to change how it computes interest, only the code
for the interest method in the savings account class needs to be modified; any
programs that use the services of the savings account class can remain

476 Object-Oriented Programming

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 47

unchanged.) Furthermore, the class properties represent data values that will
exist as part of each object of the class. A class therefore consists of two
components, its properties and its subprograms, and both components are
“encapsulated”—bundled—with the class.

A second term associated with object-oriented programming is inheri-
tance. Once a class A of objects is defined, a class B of objects can be defined
as a “subclass” of A. Every object of class B is also an object of class A; this is
sometimes called an “is a” relationship. Objects in the B class “inherit” all of
the properties of objects in class A and are able to perform all the services of
objects in A, but they may also be given some special property or ability. The
benefit is that class B does not have to be built from the ground up, but rather
can take advantage of the fact that class A already exists. In the banking
example, a senior citizens savings account would be a subclass of the savings
account class. Any senior citizens savings account object is also a savings
account object, but may have special properties or be able to provide special
services.

The third term is polymorphism. Poly means “many.” Objects may
provide services that should logically have the same name because they do
roughly the same thing, but the details differ. In the banking example, both
savings account objects and checking account objects should provide a “com-
pute interest” service, but the details of how interest is computed differ in
these two cases. Thus, one name, the name of the service to be performed, has
several meanings, depending on the class of the object providing the service.
It may even be the case that more than one service with the same name exists
for the same class, although there must be some way to tell which service is
meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful,
and consider a football team. Every member of the team’s backfield is an
“object” of the “backfield” class. The quarterback is the only “object” of the
“quarterback” class. Each backfield object can perform the service of carrying
the ball if he (or she) receives the ball from the quarterback; ball carrying is a
subtask of the backfield class. The quarterback who hands the ball off to a
backfield object is requesting that the backfield object perform that subtask
because it is “public knowledge” that the backfield class carries the ball and
that this service is invoked by handing off the ball to a backfield object. The
“program” to carry out this subtask is encapsulated within the backfield class,
in the sense that it may have evolved over the week’s practice and may depend
on specific knowledge of the opposing team, but at any rate, its details need

48 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

Inheritance

Polymorphism Encapsulation

Three Key Elements of OOP

FIGURE 26

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 48

not be known to other players. Inheritance can be illustrated by the halfback
subclass within the backfield class. A halfback object can do everything a back-
field object can but may also be a pass receiver. And polymorphism can be illus-
trated by the fact that the backfield may invoke a different “program”
depending on where on the field the ball is handed off. Of course our analogy
is imperfect, because not all human “objects” from the same class behave in
precisely the same way—fullbacks sometimes receive passes and so on.

6.2 Python and OOP

How do these ideas get translated into real programs? The details, of course, vary
with the programming language used, and not every language supports object-
oriented programming. Python, however, does support object-oriented program-
ming. When we write a class, we specify the properties (called attributes or
data attributes in Python) common to any object of that class. We also specify
the services that any object of that class can perform. Services (subtasks) are
implemented as subprograms and, as we know, subprograms in Python are func-
tions. Functions associated with a class are called methods to distinguish them
from the “regular” functions we talked about in the previous section.

Let’s rewrite the SportsWorld program one more time, this time as an
object-oriented program. What are the objects of interest within the scope of
this problem? SportsWorld deals with circular swimming pools, but they are
basically just circles. So let’s create a Circle class, and have the SportsWorld
program create objects of (instances of) that class. The objects are individual
circles. A Circle object has a radius. A Circle object, which knows the value of
its own radius, should be able to perform the services of computing its own
circumference and its own area. At this point, we are well on the way to
answering the two major questions about the Circle class:

• What are the attributes common to any object of this class? (In this
case, there is a single attribute—the radius.)

• What are the services that any object of the class should be able to
perform? (In this case, it should be able to compute its circumference
and compute its area, although as we will see shortly, we will need
other services as well.)

Figure 27 shows the complete object-oriented version of SportsWorld. There
are three major sections to this program. At the top is the class definition for
the Circle class; below that is the getInput function (identical to what it
looked like in the previous version) and then the main function.

A class definition in Python has the following form:

class class_identifier:

body of the class

As usual, the opening : and the indentation define the scope of the class
definition. The class identifier can be any Python identifier. The body of the
class consists of the definitions of all the class methods—that is, code for the
services that any object of this class can perform. This is part of what we
expect to see for a class, but what about the attributes? Just like other

496 Object-Oriented Programming

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 49

50 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

#This program helps SportsWorld estimate costs

#for pool covers and pool fencing by computing

#the area or circumference of a circle

#with a given radius.

#Any number of circles can be processed.

#Uses module math for pi

#Uses class Circle

#Written by I. M. Euclid, 10/23/13

import math

class Circle:

def __init__(self, value = 0):

#initializes the one attribute of radius to have value 0

self.__radius = value

def setRadius(self, value):

#set the value of radius attribute

self.__radius = value

def getRadius(self):

#return the value of radius attribute

return self.__radius

def doCircumference(self):

#compute and return circumference

return 2 * math.pi*self.__radius

def doArea(self):

#compute and return area

return math.pi * self.__radius * self.__radius

#end of class definition

def getInput():

nextRadius = float(input(“Enter the value of the ”\

“radius of the pool: ”))

#See what user wants to compute

print(“\nEnter your choice of task.”)

nextTask = input(“C to compute circumference, ”\

“A to compute area: ”)

return nextRadius, nextTask

def main():

print(“Do you want to process a pool?”)

more = input(“Enter Y or N: ”)

swimmingPool = Circle() #create a Circle object

while(more == “Y”) or (more == “y”): #more circles to

#process

radius, taskToDo = getInput()

swimmingPool.setRadius(radius)

An Object-Oriented SportsWorld
Program

FIGURE 27

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 50

Python variables, data attributes spring into being simply by having a value
assigned to them. However, it is customary to initialize attributes all at once
in an “initialization” method. This does two things: it creates all the attribute
variables in one place so the reader of the code can see what they are, and it
assigns initial values to these variables. Fortunately, Python provides an ini-
tialization method called __init__ that is automatically invoked whenever an
object of the class is created. We’ll discuss its details shortly. Our Circle class
has five methods, counting the initialization method.

An object of a class is created by a statement of the form

object_identifier = class_identifier()

so in the main function of our SportsWorld program we create a Circle object
called swimmingPool by the statement

swimmingPool = Circle()

Methods of the Circle class can only be invoked by an object of that class,
using the syntax

object_identifier.method_identifier(argument list)

For example, we see in the main function that the swimmingPool object
invokes the doCircumference function by

swimmingPool.doCircumference()

From this invocation, it appears that the doCircumference method has no para-
meters because no arguments are passed. Yes and no—we’ve lost one parame-
ter that we had in the previous version, but we’ve gained a “hidden”
parameter. What have we lost? We don’t have to pass the radius value to the
doCircumference function because, as a method of the class, that function is
invoked by an object, and the object carries its data values with it. The only

516 Object-Oriented Programming

©2013 Course Technology, a part of Cengage Learning.

if taskToDo == “C”: #compute circumference

print(“\nThe circumference for a pool of radius”,\

swimmingPool.getRadius(), “is”,\

swimmingPool.doCircumference())

else: #compute area

print(“\nThe area for a pool of radius”,\

swimmingPool.getRadius(), “is”,\

swimmingPool.doArea())

print(“\nDo you want to process more pools?”)

more = input(“Enter Y or N: ”)

#program starts here

main()

#finish up

input(“\n\nPress the Enter key to exit”)

An Object-Oriented SportsWorld
Program (continued)

FIGURE 27

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 51

thing doCircumference has to know is what the invoking object is. As we can
see from the statement

swimmingPool.doCircumference()

the invoking object is swimmingPool. Every method of a class has a parameter
called “self” that corresponds to the invoking object. The doCircumference
function is defined in the Circle class as follows:

def doCircumference(self):

#compute and return circumference

return 2 * math.pi*self.__radius

The “self” parameter automatically picks up the calling object as its argument
value, even though the argument list of the method invocation is empty.

swimmingPool.doCircumference()

def doCircumference(self):

so that

self.__radius

is actually

swimmingPool.__radius

(We’ll say more momentarily about the double underscore in front of “radius”.)
If there were additional parameters (besides self) in the method, there would
be corresponding arguments in the method invocation.

All of the class methods are public, meaning they can be invoked from
anywhere in the program (by an object of the class, of course). In fact,
although we won’t go into the details, one could create a module (just a file
containing the Circle class definition), and then any Python program could use
this class with the appropriate import statement. Think of the Circle class as
handing out a business card that advertises these services: Hey, you want a
Circle object that can find its own area? Find its own circumference? Set the
value of its own radius? I’m your class!

Now consider the class attributes. To refer to an attribute of an object, the
syntax is

object_identifier.attribute_identifier

which would logically be

swimmingPool.radius

in our case or, if within a method,

self.radius

52 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 52

Without some further effort, attributes of a class are also public, meaning
that they can be used or changed anywhere in the program by statements
such as

swimmingPool.radius = 17 or self.radius = 17

Recall that we didn’t like global variables being available everywhere, even
when they couldn’t be changed within a function. That’s why we made a main
function. Similarly, we don’t like the idea that any function in the program
can willy-nilly decide to change the attributes of an object. Python allows us
to create attributes that are (almost) private by preceding the attribute name
with a double underscore. Thus, Circle objects in our program don’t have a
radius attribute, they have an attribute named __radius. Declaring an
attribute in this fashion means that within any method of the class, the
attribute can be referred to directly by

self.attribute_identifier

This explains the statement

return 2 * math.pi*self.__radius

in the doCircumference method. But if you try a statement such as

print(swimmingPool.__radius) #will produce error message

in the main function, you will get an error message from the interpreter that
says “ AttributeError: Circle instance has no attribute ‘__radius’ ”. Of course it
does have such an attribute, but it’s not directly available for use outside of a
Circle class method.4

The rest of the program must rely on the swimmingPool object to invoke
the getRadius and setRadius methods to reveal the current value of its radius
and change the value of its radius.

This one-and-only attribute variable __radius is created within the
__init__ method. Again, this method is automatically invoked whenever a
new object is created. The definition is

def __init__(self, value = 0):

#initializes the one attribute of radius

#to have value 0

self.__radius = value

This method has the usual self parameter, plus a second parameter called
value. If we had created the swimmingPool object within the main function by
a statement such as

swimmingPool = Circle(25)

536 Object-Oriented Programming

©2013 Course Technology, a part of Cengage Learning.

4The attribute is “almost” private because it can actually be referenced anywhere by
swimmingPool_Circle__radius. This is considered sufficiently obscure as to provide adequate
protection against unintentional misuse of the attribute variable.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 53

then the value of __radius would be initialized to 25. Because in Figure 27 we
passed no argument, the “default” value set in the parameter list is used, and
our swimmingPool object has a radius of 0 until the getInput function returns
another value for the radius from the user.

6.3 One More Example

The object-oriented version of our SportsWorld program illustrates encapsula-
tion. All data and calculations concerning circles are encapsulated in the
Circle class. Let’s look at one final example that illustrates the other two
watchwords of OOP—polymorphism and inheritance.

In Figure 28 the domain of interest is that of geometric shapes. Four
different classes are defined: Circle, Rectangle, Square, and Square2.

54 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

import math

class Circle:

#class for circles. Area can be computed

#from radius

def __init__(self, value = 0):

#initializes radius attribute to value

self.__radius = value

def setRadius(self, value):

#set the value of radius attribute

self.__radius = value

def getRadius(self):

#return the value of radius attribute

return self.__radius

def doArea(self):

#compute and return area

return math.pi * self.__radius * self.__radius

#end of Circle class definition

class Rectangle:

#class for rectangles. Area can be computed

#from height and width

def __init__(self, h, w):

#initializes height and width attributes

self.__height = h

self.__width = w

def setWidth(self, value):

#set the value of width attribute

self.__width = value

def setHeight(self, value):

#set the value of height attribute

self.__height = value

A Python Program with
Polymorphism and
Inheritance

FIGURE 28

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 54

556 Object-Oriented Programming

©2013 Course Technology, a part of Cengage Learning.

def getWidth(self):

#return the value of width attribute

return self.__width

def getHeight(self):

#return the value of height attribute

return self.__height

def doArea(self):

#compute and return area

return self.__height * self.__width

#end of Rectangle class definition

class Square:

#class for squares. Area can be computed

#from side

def __init__(self, value):

#initializes side attribute

self.__side = value

def setSide(self, value):

#set the value of side attribute

self.__side = value

def getSide(self):

#return the value of side attribute

return self.__side

def doArea(self):

#compute and return area

return self.__side * self.__side

#end of Square class definition

class Square2(Rectangle):

#Square2 is derived class of Rectangle,

#uses the inherited height and width

#attributes and the inherited doArea method

def __init__(self, value):

#initializes height and width attributes

#must explicitly invoke parent class constructor

Rectangle.__init__(self, value, value)

def setSide(self, value):

#set the value of side attribute

self.__width = value

self.__height = value

#end of Square2 class definition

def main():

joe = Circle(23.5)

print(“The area of a circle with radius”,\

A Python Program with
Polymorphism and Inheritance
(continued)

FIGURE 28

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 55

56 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

joe.getRadius(), “is”,\

joe.doArea())

luis = Rectangle(12.4, 18.1)

print(“The area of a rectangle with height”,\

luis.getHeight(), “and width”,\

luis.getWidth(), “is”,\

luis.doArea())

anastasia = Square(3)

print(“The area of a square with side”,\

anastasia.getSide(), “is”,\

anastasia.doArea())

tyler = Square2(4.2)

print(“The area of a square with side”,\

tyler.getWidth(), “is”,\

tyler.doArea())

#program starts here

main()

#finish up

input(“\n\nPress the Enter key to exit”)

A Python Program with
Polymorphism and Inheritance
(continued)

FIGURE 28

Each class includes an initialization method in which the attribute vari-
ables for objects of that class are created as private variables. A Circle
object has a radius attribute, whereas a Rectangle object has a width
attribute and a height attribute. Other methods are defined for the services
or subtasks that an object from the class can perform. Any Circle object can
set the value of its radius and can compute its area. A Square object has a
side attribute, as one might expect, but a Square2 object doesn’t seem to
have any attributes, although it has an initialization method, nor does it
seem to have any way to compute its area. We will explain the difference
between the Square class and the Square2 class shortly.

The main function uses these classes. It creates objects from the various
classes and uses the __init__ function of the appropriate class to set the
dimensions of the object. After each object is created, the main function
requests the object to compute its area as part of an output statement giving
information about the object. For example, the statement

joe = Circle(23.5)

creates a Circle object named joe and automatically invokes the Circle __init__
method that, in turn, sets the radius of the object to 23.5. Then

joe.doArea()

invokes the doArea method for the Circle class and returns the area. Figure 29
shows the output after the program in Figure 28 is run.

Here we see polymorphism at work, because there are lots of doArea
methods; when the program executes, the correct method is used, on the basis
of the class to which the object invoking the function belongs. After all,

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 56

576 Object-Oriented Programming

©2013 Course Technology, a part of Cengage Learning.

The area of a circle with radius 23.5 is 1734.94454294

The area of a rectangle with height 12.4 and width 18.1 is 224.44

The area of a square with side 3 is 9

The area of a square with side 4.2 is 17.64

Output from the Program of
Figure 28

FIGURE 29

computing the area of a circle is quite different from computing the area of a
rectangle. The algorithms themselves are straightforward; they employ assign-
ment statements to set the dimensions (if a dimension is to be changed from
its initial value, which does not happen in this program) and the usual formu-
las to compute the area of a circle, rectangle, and square. The methods can use
the attributes of the objects that invoke them without having the values of
those attributes passed as arguments.

Square is a stand-alone class with a side attribute and a doArea method.
The Square2 class, however, recognizes the fact that squares are special kinds
of rectangles. The Square2 class is a subclass of the Rectangle class, as is
indicated by the reference to Rectangle in the parentheses after the class
name Square2. It inherits the width and height properties from the “parent”
Rectangle class. But creation of a Square2 object doesn’t automatically invoke
the Rectangle initialization method. Instead, Square2 has its own __init__
method, which has a single parameter value. The Square2 __init__ method
itself invokes the Rectangle __init__ method and passes it two copies of value
to set the width and height attributes. (Note the syntax for this invocation:
Rectangle.__init__(self, value, value).) Square2 also inherits
the setWidth, setHeight, getWidth, getHeight, and doArea methods. In addi-
tion, Square2 has its own function, setSide, because setting the value of the
“side” makes sense for a square, but not for an arbitrary rectangle. What the
user of the Square2 class doesn’t know is that there really isn’t a “side” prop-
erty; the setSide function, like the initialization method, merely sets the
inherited width and height properties to the same value. To compute the area,
then, the doArea function inherited from the Rectangle class can be used, and
there’s no need to redefine it or even to copy the existing code. Here we see
inheritance at work.

Inheritance can be carried through multiple “generations.” We might
redesign the program so that there is one “superclass” that is a general Shape
class, of which Circle and Rectangle are subclasses, Square2 being a subclass of
Rectangle (see Figure 30 for a possible class hierarchy).

6.4 What Have We Gained?

Now that we have some idea of the flavor of object-oriented programming, we
should ask what we gain by this approach. There are two major reasons why
OOP is a popular way to program:

• Software reuse

• A more natural “worldview”

SOFTWARE REUSE. Manufacturing productivity took a great leap forward
when Henry Ford invented the assembly line. Automobiles could be assembled
using identical parts so that each car did not have to be treated as a unique

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 57

creation. Computer scientists are striving to make software development more
of an assembly-line operation and less of a handcrafted, start-over-each-time
process. Object-oriented programming is a step toward this goal: A useful
class that has been implemented and tested becomes a component available
for use in future software development. Anyone who wants to write an appli-
cation program involving circles, for example, can use the already written,
tried, and tested Circle class. As the “parts list” (the class library) grows, it
becomes easier and easier to find a “part” that fits, and less and less time
has to be devoted to writing original code. If the class doesn’t quite fit, per-
haps it can be modified to fit by creating a subclass; this is still less work
than starting from scratch. Software reuse implies more than just faster code
generation. It also means improvements in reliability; these classes have
already been tested, and if properly used, they will work correctly. And it
means improvements in maintainability. Thanks to the encapsulation prop-
erty of object-oriented programming, changes can be made in class imple-
mentations without affecting other code, although such change requires
retesting the classes.

A MORE NATURAL “WORLDVIEW.” The traditional view of programming
is procedure-oriented, with a focus on tasks, subtasks, and algorithms. But
wait—didn’t we talk about subtasks in OOP? Haven’t we said that computer
science is all about algorithms? Does OOP abandon these ideas? Not at all. It is
more a question of when these ideas come into play. Object-oriented program-
ming recognizes that in the “real world,” tasks are done by entities (objects).
Object-oriented program design begins by identifying those objects that are
important in the domain of the program because their actions contribute to
the mix of activities present in the banking enterprise, the medical office, or
wherever. Then it is determined what data should be associated with each
object and what subtasks the object contributes to this mix. Finally, an
algorithm to carry out each subtask must be designed. We saw in the

58 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

Shape
class

Circle
class

Triangle
class

Rectangle
class

Square2
class

A Hierarchy of Geometric Classes

FIGURE 30

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 58

modularized version of the SportsWorld program in Figure 22 how the overall
algorithm could be broken down into pieces that are isolated within func-
tions. Object-oriented programming repackages those functions by encapsu-
lating them within the appropriate class of objects.

Object-oriented programming is an approach that allows the program-
mer to come closer to modeling or simulating the world as we see it, rather
than to mimic the sequential actions of the Von Neumann machine. It pro-
vides another buffer between the real world and the machine, another level
of abstraction in which the programmer can create a virtual problem
solution that is ultimately translated into electronic signals on hardware
circuitry.

Finally, we should mention that a graphical user interface, with its win-
dows, icons, buttons, and menus, is an example of object-oriented program-
ming at work. A general button class, for example, can have properties of
height, width, location on the screen, text that may appear on the button,
and so forth. Each individual button object has specific values for those prop-
erties. The button class can perform certain services by responding to mes-
sages, which are generated by events (for example, the user clicking the
mouse on a button triggers a “mouse-click” event). Each particular button
object individualizes the code to respond to these messages in unique ways.
We will not go into details of how to develop graphical user interfaces in
Python, but in the next section you will see a bit of the programming mechan-
ics that can be used to draw the graphics items that make up a visual
interface.

597 Graphical Programming

©2013 Course Technology, a part of Cengage Learning.

1. What is the output from the following section of code if it is added
to the main function of the Python program in Figure 28?

one = Square(8)

one.setSide(10)

print(“The area of a square with side”,\

one.getSide(), “is”,\

one.doArea())

2. In the hierarchy of Figure 30, suppose that the Triangle class is
able to perform a doArea function. What two attributes should any
triangle object have?

PRACTICE PROBLEMS

7 Graphical Programming

The programs that we have looked at so far all produce text output—output
composed of the characters {A . . . Z, a . . . z, 0 . . . 9} along with a few punc-
tuation marks. For the first 30 to 35 years of software development, text was

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 59

virtually the only method of displaying results in human-readable form, and in
those early days it was quite common for programs to produce huge stacks of
alphanumeric output. These days an alternative form of output—graphics—has
become much more widely used. With graphics, we are no longer limited to 100
or so printable characters; instead, programmers are free to construct whatever
shapes and images they desire.

The intelligent and well-planned use of graphical output can produce
some phenomenal improvements in software. We discussed this issue in Chap-
ter 6, where we described the move away from the text-oriented operating
systems of the 1970s and 1980s, such as MS-DOS and VMS, to operating sys-
tems with more powerful and user-friendly graphical user interfaces (GUIs),
such as Windows 7, Windows Vista, and Mac OS X. Instead of requiring users to
learn dozens of complex text-oriented commands for such things as copying,
editing, deleting, moving, and printing files, GUIs can present users with sim-
ple and easy-to-understand visual metaphors for these operations, such as
those shown below. In (a), the operating system presents the user with icons
for printing, deleting, and copying a file; in (b), dragging a file to the printer
icon prints the file.

Not only does graphics make it easier to manage the tasks of the operat-
ing system, it can help us visualize and make sense of massive amounts of
output produced by programs that model complex physical, social, and math-
ematical systems. (We discuss modeling and visualization in Chapter 13.)
Finally, there are many applications of computers that would simply be
impossible without the ability to display output visually. Applications such as
virtual reality, computer-aided design/computer-aided manufacturing
(CAD/CAM), games and entertainment, medical imaging, and computer map-
ping would not be anywhere near as important as they are without the
enormous improvements that have occurred in the areas of graphics and
visualization.

So, we know that graphical programming is important. The question is:
What features must be added to a programming language like Python to
produce graphical output?

60 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

(a) (b)

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 60

7.1 Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which
the screen is made up of thousands of individual picture elements, or pixels,
laid out in a two-dimensional grid. These are the same pixels used in visual
images, as discussed in Chapter 4. In fact, the display is simply one large visual
image. The number of pixels on the screen varies from system to system; typical
values range from 800 � 600 up to 1560 � 1280. Terminals with a high density
of pixels are called high-resolution terminals. The higher the resolution—that
is, the more pixels available in a given amount of space—the sharper the visual
image because each individual pixel is smaller. However, if the screen size itself
is small, then a high-resolution image can be too tiny to read. A 30“ wide-screen
monitor might support a resolution of 2560 � 1600, but that would not be suit-
able for a laptop screen. In Chapter 4 you learned that a color display requires
24 bits per pixel, with 8 bits used to represent the value of each of the three
colors red, green, and blue. The memory that stores the actual screen image is
called a frame buffer. A high-resolution color display might need a frame
buffer with (1560 � 1280) pixels � 24 bits/pixel = 47,923,000 bits, or about
6 MB, of memory for a single image. (One of the problems with graphics is that
it requires many times the amount of memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional
coordinate grid system, the pixel in the upper-left corner being (0, 0). The
overall pixel-numbering system is summarized in Figure 31. The specific values
for maxX and maxY in Figure 31 are, as mentioned earlier, system-dependent.
(Note that this coordinate system is not the usual mathematical one. Here, the
origin is in the upper-left corner, and y values are measured downward.)

The terminal hardware displays on the screen the frame buffer value of
every individual pixel. For example, if the frame buffer value on a color
monitor for position (24, 47) is RGB (0, 0, 0), the hardware sets the color of

617 Graphical Programming

©2013 Course Technology, a part of Cengage Learning.

(0, maxY) (1, maxY) (2, maxY) (maxX, maxY)

(0, 0) (1, 0) (2, 0) (maxX, 0)

(0, 1) (1, 1) (2, 1) (maxX, 1)

(0, 2) (1, 2) (2, 2) (maxX, 2)

Pixel-Numbering System
in a Bitmapped Display

FIGURE 31

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 61

the pixel located at column 24, row 47 to black, as shown in Figure 32. The
operation diagrammed in Figure 32 must be repeated for all of the 500,000 to
2 million pixels on the screen. However, the setting of a pixel is not perma-
nent; on the contrary, its color and intensity fade quickly. Therefore, each
pixel must be “repainted” often enough so that our eyes do not detect any
“flicker,” or change in intensity. This requires the screen to be completely
updated, or refreshed, 30–50 times per second. By setting various sequences
of pixels to different colors, the user can have the screen display any desired
shape or image. This is the fundamental way in which graphical output is
achieved.

7.2 Graphics Software

To control the setting and clearing of pixels, programmers use a collection
of software routines that are part of a special package called a graphics
library. Typically an “industrial strength” graphics library includes dozens
or hundreds of functions for everything from drawing simple geometric
shapes like lines and circles, to creating and selecting colors, to more
complex operations such as displaying scrolling windows, pull-down menus,
and buttons. In this module we’ll be using the graphics.py library, written
by Dr. John Zelle of Wartburg College, Waverly, Iowa. (See http://mcsp.
wartburg.edu/zelle/python to download graphics.py, then put the file in the
Python Lib folder.) This easy-to-use graphics library allows you to draw
basic shapes in a graphics window and will give you a good idea of what
visual programming is like.

Because we need to use the graphics library, all graphics programs will
begin with the following form of the import statement:

from graphics import *

The graphics library contains a number of classes. To get started, we use a
class called GraphWin that creates a window where we can do our drawing.
Figure 33 shows the complete Python program that brings up the empty
window shown on the next page.

62 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

24

47

Frame buffer

(0,0,0)

24

47

Screen

HardwareDisplay of Information
on the Terminal

FIGURE 32

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 62

The first line in the main function in Figure 33 creates a GraphWin object
called win. Three arguments are passed to the GraphWin __init__ method that
represent, respectively, the literal string to appear in the title bar of the win-
dow, the width of the window, and the height of the window. If the width and
height arguments are omitted, the default dimensions are 200 � 200. The sec-
ond line has the win object invoke the getMouse method of the GraphWin
class. This method returns information about the point in the graphics win-
dow where a mouse click has occurred. In this program we are ignoring the
information returned, but the effect is that the program will wait (holding the
window on the screen) until the user clicks the mouse somewhere in the win-
dow. This causes the second line of the program to be executed, followed by
line 3, which closes the graphics window, after which the program closes as
well.

The default color of the drawing window is gray, but you can make it
white by adding the following line of code after the win object gets created:

win.setBackground(‘white’)

637 Graphical Programming

©2013 Course Technology, a part of Cengage Learning.

from graphics import *

def main():

win = GraphWin(“Python Graphics”, 500, 500)

#add drawing code here
win.getMouse() # wait for mouse click

win.close()

main()

Python Program for Graphics
Window

FIGURE 33

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 63

Now that we can get a graphics window to appear, we need the ability to draw
in it. We’ll be able to draw lines, circles, ovals, and rectangles; fill objects with
various colors; and display text. The default drawing color is black. The code
snippets shown to create these effects go in the middle of the program, shown
in Figure 33, where the boldface comment appears. (We’ve also set the back-
ground color to white in each case to make it easier to see what’s being
drawn.)

1. Lines. The following code creates two Point objects with specific coor-
dinates, then creates an object of the Line class from one point to the
other. Nothing will appear in the graphics window, however, until the
Line object invokes the ”draw“ method and passes the window on
which to draw.

start = Point(100, 100)

finish = Point(200, 200)

l = Line(start, finish)

l.draw(win)

64 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

What actually happens internally when the program executes the
l.draw(win) statement? The terminal hardware determines (using some
simple geometry and trigonometry) exactly which pixels on the screen
must be “turned on” (i.e., set to the current value of the drawing color)
to draw a straight line between the specified coordinates. For example,
if the start point is (1,1), the finish point is (4, 4), and the drawing
color is black, then the statement l.draw(win) causes four pixels in the
frame buffer to be set to the RGB value (0, 0, 0) as shown in the next
figure.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 64

657 Graphical Programming

©2013 Course Technology, a part of Cengage Learning.

(0, 0)

Now, when the hardware draws the frame buffer on the screen, these
four pixels are colored black. Because pixels are only about 1/100th of
an inch apart, our eyes do not perceive four individual black dots, but
an unbroken line segment.

2. Circles. The Circle class __init__ method takes two arguments, the center
point and the radius. The following code creates a circle with center at
(250, 250)—which is the center of our window—and with a radius of 100.

center = Point(250, 250)

c = Circle(center, 100)

c.draw(win)

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 65

If you position the drawing object in such a way that it does not fit
within the graphics window, then the image is “clipped” so that only
part of it is shown.

66 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

3. Ovals. The Oval class __init__ method takes two point arguments, the
upper-left corner and lower-right corner of the imaginary “bounding
box” enclosing the oval.

4. Rectangles. The Rectangle class __init__ method also takes two
point arguments, the upper-left corner and lower-right corner of the
rectangle.

5. Fill. Any graphics object can invoke the setFill method for its class,
which has a single argument of type color. Standard colors such as
blue, green, etc., are available—pass the argument in single quotes, as
in c.setFill(‘black’).

6. Text. The Text class __init__ method takes two arguments, a point and
a string. The point is the “center point” of the text string, which will
be drawn horizontally. The string is a literal string.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 66

677 Graphical Programming

©2013 Course Technology, a part of Cengage Learning.

from graphics import*

def main(): #smiley face

win = GraphWin(“Python Graphics”, 500, 500)

win.setBackground(‘white’)

center = Point(250, 250)

c = Circle(center, 100)

c.draw(win)

c.setFill(‘Yellow’)

upper1 = Point(210, 200)

lower1 = Point(225, 230)

upper2 = Point(275, 200)

lower2 = Point(290, 230)

o1 = Oval(upper1, lower1)

o1.draw(win)

o2 = Oval(upper2, lower2)

o2.draw(win)

o1.setFill(‘black’)

o2.setFill(‘black’)

left = Point(220, 300)

right = Point(280, 300)

mouth = Line(left, right)

mouth.draw(win)

p = Point(250, 400)

t = Text(p, “Smiley Face”)

t.draw(win)

win.getMouse() # wait for mouse click

win.close()

main()

Python Program for Smiley Face

FIGURE 34

Armed with these objects and methods, we can have a little fun. The
program in Figure 34 produces the following window:

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 67

Now that a display window and graphics are available, we seem close to
producing elements of a typical GUI. Can we draw a button that acts like a
button on a real GUI form—that is, can we write code to sense a mouse click
on that button and respond with some action? To make this work, we’ll need
to again use the getMouse method of the GraphWin class, but this time we
actually want to capture the point information this method returns. In the
program of Figure 35, we use the Rectangle class to draw a “button” in the
graphics window. Then we create a Point object p to capture the location
returned by the getMouse function. The Point class has getX and getY methods
that return the coordinates of the calling object. The if statement tests
whether these coordinates fall within the boundaries of the rectangle and,
depending on whether that is true or not, writes a “win” or “lose” message.
Figure 36 shows two versions of the result, depending on whether the mouse
click occurred on the button (a) or not (b). Of course in a true windows GUI
program, we would expect something more interesting to happen in response
to clicking on a button.

68 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

from graphics import*

def main():

win = GraphWin(“Python Graphics”, 500, 500)

win.setBackground(‘white’)

upper = Point(270, 300)

lower = Point(360, 340)

r = Rectangle(upper, lower)

r.draw(win)

rcenter = Point(315, 320)

t = Text(rcenter, “Click Me”)

t.draw(win)

p = Point(0,0)

p = win.getMouse()

if (p.getX() > 270 and p.getX() < 360)\

and (p.getY() > 300 and p.getY() < 340):

center = Point(250, 150)

t = Text(center, “You Win!”)

t.draw(win)

else:

center = Point(250, 150)

t = Text(center, “You Lose!”)

t.draw(win)

win.getMouse() # wait for mouse click

win.close()

main()

Python Program That Responds
to Button Click

FIGURE 35

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 68

This brief introduction to graphical programming allows you to produce
some interesting images and, even more important, gives you an appreciation
for how visually oriented software is developed.

697 Graphical Programming

©2013 Course Technology, a part of Cengage Learning.

(b)(a)

Results of Executing the
Program of Figure 35

FIGURE 36

Write a Python program to draw the following “house” in the graphics win-
dow. Create the house using four rectangles (for the base of the house, the
door, and the two windows), two line segments (for the roof), and one
filled circle (for the doorknob). Locate the house anywhere you want in the
graphics window.

PRACTICE PROBLEM

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 69

8 Conclusion

In this module we looked at one representative high-level programming
language, Python. Of course, there is much about this language that has been
left unsaid, but we have seen how the use of a high-level language overcomes
many of the disadvantages of assembly language programming, creating a
more comfortable and useful environment for the programmer. In a high-level
language, the programmer need not manage the storage or movement of data
values in memory. The programmer can think about the problem at a higher
level, can use program instructions that are both more powerful and more nat-
ural language–like, and can write a program that is much more portable
among various hardware platforms. We also saw how modularization, through
the use of functions and parameters, allows the program to be more cleanly
structured, and how object orientation allows a more intuitive view of the
problem solution and provides the possibility for reuse of helpful classes.

Python is not the only high-level language. You might be interested in
looking at the other online language modules for languages similar to Python
(Java, C++, C#, and Ada). Some languages have different ways to do assign-
ments, conditional statements, and looping statements. Still other languages
take quite a different approach to problem solving. In Chapter 10 of Invitation
to Computer Science, we look at some other languages and language
approaches and also address the question of why there are so many different
programming languages.

70 Programming in Python

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 70

1. Write a Python statement to create a variable called
quantity with initial value 5.0.

2. Write a Python statement to create a string variable
called greeting with initial value ”Top o‘ the Mornin’“.

3. A Python main function needs one variable called choice,
one variable called inventory, and one variable called
sales. Write Python statements to create these variables;
initialize choice to the blank character and the other
values to zero.

4. Assume that import math has been included at the top of
your program:
a. Write a Python statement to print the value of the

mathematical constant e supplied by the math module.
b. What will be the result of executing the following two

Python statements?

math.e = 10

print(math.e)

5. You want to write a Python program to compute the
average of three integer quiz grades for a single student.
Decide what variables your program needs, and create
them with appropriate initial values.

6. Given the statement

myList = [“eeny”, “meeny”, “miny”,\

“moe”]

what Python statement would output ”miny”?

7. A Python list can be thought of as representing a 1-D
table of values. A 2-D table of values can be represented
as a list of lists. For example, the following code

list1 = [1, 2, 3]

list2 = [4, 5, 6]

list3 = [7, 8, 9]

myList = [list1, list2, list3]

creates a representation of the 3 � 3 table

Given this code, what would be printed by the following
statement?

print(myList[2][0])

8. Write Python statements to prompt for and collect values
for the time in hours and minutes (two integer quantities).

9. Say a program computes two integer quantities inventory-
Number and numberOrdered. Write a single output
statement that prints these two quantities along with
appropriate text information.

10. The variables age and weight currently have the values 32
and 187, respectively. Write the exact output generated
by the following statement:

print(“Your age is” + str(age)\

+ “and your weight is”\

+ str(weight))

11. Output that is a decimal number can be formatted so
that the number is rounded to a specified number of
decimal places. For example, in the TravelPlanner pro-
gram we might decide that the travel time required
should be printed to only two decimal places. We would
change the second print statement as follows:

print(“At”, speed, “mph, it will “\

“take ”)

print(“%5.2f” % time, “hours to “\

“travel”, distance, “miles.”)

The “%5.2f” % is a formatting directive for printing the
numerical value time that follows it. The “f” part says the
next variable is to be converted (if necessary) to type
float. The 5.2 says to print the resulting decimal value
using 5 columns (including the decimal point) and
rounded to 2 decimal places. The sample result would be

Enter your speed in mph: 58

Enter your distance in miles: 657.5

At 58 mph, it will take

11.34 hours to travel 657.5 miles.

If this were done in one print statement instead of two,
the formatting directive could be included as the end of
the literal string preceding the variable time.

Write two Python print statements to generate the
following output, assuming that density is a type double
variable with the value 63.78:

The current density is 63.8 to

within one decimal place.

12. What is the output after the following sequence of
statements is executed?

a = 12

b = 20

b = b + 1

a = a + b

print(2*a)

13. Write a Python program that gets the length and width of a
rectangle from the user and computes and writes out the area.

14. In the SportsWorld program of Figure 14, the user must
respond with “C” to choose the circumference task. In
such a situation, it is preferable to accept either upper-
case or lowercase letters. Rewrite the condition in the
program to allow this.

15. Write a Python program that gets a single character from
the user and writes out a congratulatory message if the
character is a vowel (a, e, i, o, or u), but otherwise
writes out a “You lose, better luck next time” message.

£
1 2 3
4 5 6 §
7 8 9

Exercises 71

E X E R C I S E S

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 71

16. Insert the missing line of code so that the following adds
the integers from 1 to 10, inclusive.

value = 0

top = 10

score = 1

while score <= top:

value = value + score

#the missing line

17. What is the output after the following code is executed?

low = 1

high = 20

while low < high:

print(low, “ ”, high)

low = low + 1

high = high – 1

18. Write a Python program that outputs the even integers
from 2 through 30, one per line. Use a while loop.

19. In a while loop, the Boolean condition that tests for loop
continuation is done at the top of the loop, before each
iteration of the loop body. As a consequence, the loop
body might not be executed at all. Our pseudocode lan-
guage of Chapter 2 contains a do-while loop construc-
tion, in which a test for loop termination occurs at the
bottom of the loop rather than at the top, so that the
loop body always executes at least once. Python contains
a break statement that causes an exit from the loop, so a
do-while effect can be accomplished by the following

while True:
S1
if condition:

break

where, as usual, S1 can be a compound statement. Write
Python code to add up a number of nonnegative integers
that the user supplies and to write out the total. Use a
negative value as a sentinel, and assume that the first
value is nonnegative. Use an if and break statement.

20. Write a Python program that asks for a duration of time
in hours and minutes and writes out the duration only in
minutes.

21. Write a Python program that asks for the user’s age in
years; if the user is under 35, then quote an insurance
rate of $2.23 per $100 for life insurance, otherwise,
quote a rate of $4.32.

22. Write a Python program that reads integer values until a
0 value is encountered, then writes out the sum of the
positive values read and the sum of the negative values
read.

23. Write a Python program that reads in a series of positive
integers and writes out the product of all the integers
less than 25 and the sum of all the integers greater than
or equal to 25. Use 0 as a sentinel value.

24. a. Write a Python program that reads in 10 integer quiz
grades and computes the average grade.

b. Write a Python program that asks the user for the
number of quiz grades, reads them in, and computes
the average grade.

c. Redo part (b) so that only the integer part of the aver-
age is computed.

25. Write a Python function that receives two integer argu-
ments and writes out their sum and their product.
Assume no global variables.

26. Write a Python function that receives a real number argu-
ment representing the sales amount for videos rented so
far this month. The function asks the user for the number
of videos rented today and returns the updated sales fig-
ure to the main function. All videos rent for $4.25.

27. Write a Python function that receives three integer argu-
ments and returns the maximum of the three values.

28. Write a Python function that receives miles driven and
gallons of gas used and returns miles per gallon.

29. Write a Python program where the main function uses an
input function to get the miles driven (a decimal value)
and the gallons of gas used (an integer value), then
writes out the miles per gallon, using the function from
Exercise 28.

30. Write a Python program to balance a checkbook. The
main function needs to get the initial balance, the
amounts of deposits, and the amounts of checks.
Allow the user to process as many transactions as
desired; use separate functions to handle deposits and
checks. (See Exercise 11 on how to format output to
two decimal places, as is usually done with monetary
values.)

31. Write a Python program to compute the cost of carpeting
three rooms. Carpet cost is $8.95 per square yard. Use
four separate functions to collect the dimensions of a
room in feet, convert feet into yards, compute the area,
and compute the cost per room. The main function
should use a loop to process each of the three rooms,
then add the three costs, and write out the total cost.
(Hints: The function to convert feet into yards must be
used twice for each room, with two different arguments.
Hence, it does not make sense to try to give the parame-
ter the same name as the argument. See Exercise 11 on
how to format output to two decimal places, as is usually
done with monetary values.)

72 Programming in Python

E X E R C I S E S

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 72

32. a. Write a Python doPerimeter function for the Rectangle
class of Figure 28.

b. Write Python code that creates a new Rectangle object
called yuri, with dimensions 14.4 and 6.5, then writes
out information about this object and its perimeter
using the doPerimeter function from part (a).

33. Draw a class hierarchy diagram similar to Figure 30 for
the following classes: Student, Undergraduate_Student,
Graduate_Student, Sophomore, Senior, PhD_Student.

34. Imagine that you are writing a program using an object-
oriented programming language. Your program will be
used to maintain records for a real estate office. Decide
on one class in your program and a service that objects
of that class might provide.

35. Determine the resolution on the screen on your computer
(ask your instructor or the local computer center how to
do this). Using this information, determine how many
bytes of memory are required for the frame buffer to
store the following:
a. A black-and-white image (1 bit per pixel)
b. A grayscale image (8 bits per pixel)
c. A color image (24 bits per pixel)

36. Using the Point and Line classes described in Section 7.2,
draw an isosceles triangle with the following configuration:

37. Discuss what problem the display hardware might
encounter while attempting to execute the following
operations, and describe how this problem could be
solved.

start = Point(1, 1)

finish = Point(4, 5)

l = Line(start, finish)

l.draw(win)

38. Draw a square with sides 100 pixels in length. Then
inscribe a circle of radius 50 inside the square. Position
the square and the inscribed circle in the middle of the
graphics window.

39. Create the following three labeled rectangular buttons:

Have the space between the Start and Stop buttons be
the same as the space between the Stop and Pause
buttons.

40. Create the following image of a “teeter-totter”:

41. Write a program that inputs the coordinates of three
mouse clicks from the user and then draws a triangle in
the graphics window using those three points.

Exercises 73

E X E R C I S E S

©2013 Course Technology, a part of Cengage Learning.

(100, 30)

(50, 100) (150, 100)

Start Stop Pause

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 73

©2013 Course Technology, a part of Cengage Learning.

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 74

©2013 Course Technology, a part of Cengage Learning.

75Answers to Practice Problems

1. All but number four.
martinBradley (camel case)

C3P_OH (acceptable, although best not to use underscore character)

Amy3 (Pascal case)

3Right (not acceptable, begins with digit)

Print (acceptable, although this could lead to confusing code such as

Print = 5

print(Print))

2. Sixty Five
3. roster[3]

1. quantity = int(input(“Enter an integer value: ”))
2. print(“The average high temperature in San Diego ”\

“for the month of May is”, average)

3. This isgoodbye, Steve

1. next = newNumber
2. 55

1. 30
2. 3

5
7
9
11
13
15
17
19
21

3. Yes
4. 6
5. if night==day:

print(“Equal”)

1. #program to read in and write out
#user’s initials

ANSWERS TO PRACTICE PROBLEMS

Section 2

Section 3.1

Section 3.2

Section 3.3

Section 4

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 75

©2013 Course Technology, a part of Cengage Learning.

firstInitial = input(“Enter your first initial: ”)

lastInitial = input(“Enter your last initial: ”)

print(“Your initials are ” + firstInitial + lastInitial)

input(“\n\nPress the Enter key to exit”)

2.
#program to compute cost based on

#price per item and quantity purchased

price = float(input(“What is the price of the item? ”))

quantity = int(input(“How many of this item are being “\

“purchased? ”))

cost = price * quantity

print(“The total cost for this item is $”, cost)

input(“\n\nPress the Enter key to exit”)

3.
#program to test a number relative to 5

#and write out the number or its double

number = int(input(“Enter a number: ”))

if number < 5:

print(“The number is”, number)

else:

print(“Twice the number is”, 2*number)

input(“\n\nPress the Enter key to exit”)

4.
#program to collect a number, then write all

#the values from 1 to that number

counter = 1

number = int(input(“Enter a positive number: ”))

while counter <= number:

print(counter)

counter = counter + 1

input(“\n\nPress the Enter key to exit”)

1. number has the value 10
(The variable number declared in the Helper function
is local to that function.)

2. number has the value 10
number has the value 15

76 Programming in Python

Section 5.2

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 76

©2013 Course Technology, a part of Cengage Learning.

3. number has the value 10
number has the value 25

4. a. def doCircumference(radius):
circumference = 2*math.pi*radius

return circumference

b. The following is the changed code:
if taskToDo == “C”: #compute circumference

print(“\nThe circumference for a pool of radius”,\

radius, “is”, doCircumference(radius))

1. The area of a square with side 10 is 100
2. height and base

from graphics import*

def main(): #House

win = GraphWin(“Python Graphics”, 300, 300)

win.setBackground(‘white’)

upper1 = Point(50, 110)

lower1 = Point (250, 260)

house = Rectangle(upper1, lower1)

house.draw(win)

upper2 = Point(60, 120)

lower2 = Point(100, 160)

window1 = Rectangle(upper2, lower2)

window1.draw(win)

upper3 = Point(200, 120)

lower3 = Point(240, 160)

window2 = Rectangle(upper3, lower3)

window2.draw(win)

upper4 = Point(125, 180)

lower4 = Point(175, 260)

door = Rectangle(upper4, lower4)

door.draw(win)

start1 = Point(50, 110)

finish1 = Point(150, 10)

line1 = Line(start1, finish1)

line1.draw(win)

start2 = Point(250, 110)

finish2 = Point(150, 10)

line2 = Line(start2, finish2)

line2.draw(win)

77Answers to Practice Problems

Section 6.4

Section 7.2

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 77

©2013 Course Technology, a part of Cengage Learning.

center = Point(165, 215)

c = Circle(center, 5)

c.draw(win)

c.setFill(‘black’)

win.getMouse() # wait for mouse click

win.close()

main()

78 Programming in Python

C7934_chapter_python.qxd 12/20/11 12:35 PM Page 78

