
Computer Science 1000: Part #8

Models of Computation

MODELS OF COMPUTATION: AN OVERVIEW

TURING MACHINES

PROVING UNSOLVABILITY

Models of Computation: An Overview

Alan Turing
(1912-1954)

Turing A. M.. “On computable
numbers, with an application
to the Entscheidungsproblem.”
Proceedings of the London
Mathematical Society, 2 s. vol.
42 (1936–1937), pp. 230–265.

Why is the above crucial to modern computation?

Models of Computation: An Overview (Cont’d)

IS EVERY PROBLEM SOLVABLE?

• To investigate this question, need basic model of
computation (cf. computational time complexity as basic
model for investigating algorithm runtime).

• Typical properties of a model compared to the real thing
being modeled:

1. Captures important properties of real thing.
2. Probably differs in scale from real thing.
3. Omits some details of real thing.
4. Lacks full functionality of real thing.

Models of Computation: An Overview (Cont’d)

• Every model based on assumptions, and information
derived with a model is only as good as those
assumptions.

• Necessary properties of a model of a computing agent:

1. Accepts input.
2. Can store and retrieve information wrt memory.
3. Acts on stored algorithm instructions based on the

current state of and the data item currently being
processed by the agent.

4. Produces output.

• Many models of computation proposed in early 20th
century in response to Hilbert’s Program.

Models of Computation: An Overview (Cont’d)

David Hilbert
(1862–1943)

Kurt Gödel
(1906–1978)

• Hilbert (1920): Formalize mathematical proof to eliminate
ambiguities and allow automation of proof.

• Gödel (1931): Every reasonable arithmetic system has
true statements that are unprovable in that system.

Turing Machines: Overview

b b b b1 10

1. ((S1,0),(1,S2,R))

2. ((S1,1),(1,S2,R))

3. ((S2,0),(1,S2,R))

4. ((S2,1),(0,S2,R))

5. ((S2,b),(b,S3,L))

state

tape

instructions

(S1,0) configuration

read/write head

S1

......

Turing Machines: Overview (Cont’d)

• A Turing Machine consists of (1) a two-way infinite tape,
(2) a tape-square alphabet, (3) a read/write head that can
be positioned on any tape square, (4) a set of states { S1,
S2, . . . , Sn }, and (5) a set of instructions.

• The tape functions as input, memory, and output at TM
start, execution, and termination.

• The alphabet can be any number of symbols plus a special
blank (b) symbol; focus here on the alphabet { b, 0, 1 }.

• At any given time, a TM is in a particular state Si and the
read/write head is reading symbol x; this pair (Si, x) is
called the TM’s configuration.

Turing Machines: Overview (Cont’d)

• A TM instruction specifies what the TM does next when it
is in a specified configuration.

• There are several ways of writing TM instructions, e.g.

if state is S1 and symbol is 0 then
write 1 in current tape square
set state to S2
move r/w head one square right

m
((S1,0),(1,S2,R))

m
(1,0,1,2,R)

Turing Machines: Overview (Cont’d)

There are several ways of writing TM instruction-sets, e.g.,

1. ((S1,0),(1,S2,R))

2. ((S1,1),(1,S2,R))

3. ((S2,0),(1,S2,R))

4. ((S2,1),(0,S2,R))

5. ((S2,b),(b,S3,L))

instructions

1. 0/1/R

2. 1/1/R

3. 0/1/R

4. 1/0/R
5. b/b/L

S2S1

state diagram

S3

Turing Machines: Overview (Cont’d)

• Starting from an initial configuration, a TM executes
instructions until it halts.

• TM operation conventions:

1. The input is placed on the TM tape.
2. The initial position of the TM read/write head is the leftmost

non-blank tape square, i.e., the leftmost square of the input.
3. The initial TM state is S1.
4. At each point, there is at most one instruction that matches

the current TM configuration, i.e., the TM is deterministic.
5. The TM halts when there is no instruction that matches the

current TM configuration.
6. On halting, the output is the contents of the TM tape.

• Note that TM instructions execute in TM-configuration
order, not instruction-order, cf. Python programs.

Turing Machines: Overview (Cont’d)

b b b b1 10
S1

b b b b1 1

b b b b

b b b b

b b b b

1

S2

S2

1 0

S2

1

1 0 0

1 0 0

S3

5. ((S2,b),(b,S3,L))

4. ((S2,1),(0,S2,R))

initial

halt

1. ((S1,0),(1,S2,R))

4. ((S2,1),(0,S2,R))

Turing Machines: Overview (Cont’d)

b b b b1
S1

b b b b1

b b b b

b b b b

b b b b

1

S2

S2

1 0

S2

1 0

1 0

S3

5. ((S2,b),(b,S3,L))

initial

halt

4. ((S2,1),(0,S2,R))

1 0

2. ((S1,1),(1,S2,R))

0

0

3. ((S2,0),(1,S2,R))

1

1

Turing Machines: Overview (Cont’d)
• A TM is an adequate model of computing agent:

1. Accepts input: TM encodes input on and reads
symbols from tape.

2. Can store and retrieve information wrt memory:
During execution, TM writes symbols on and later can
read these symbols from tape.

3. Acts on stored algorithm instructions based on
the current state of and the data item currently
being processed by the agent: TM configuration
dictates executed instruction.

4. Produces output: If TM halts, tape is output.

• TM are more capable from real computers because TM
tape (memory) is unlimited; hence, a task that is
TM-solvable might not be real-computer-solvable.

Turing Machines: Overview (Cont’d)

• A TM instruction-set is an algorithm:

1. Is well-ordered: As our TM are deterministic, at most
one instruction executable for any TM configuration.

2. Consists of unambiguous and effectively
computable operations: TM instructions are
unambiguous to TMs.

3. Halts in finite time: Relative to TM-appropriate
inputs, a TM always halts (appropriate inputs also key
to algorithms halting).

4. Produces output: Output is tape contents after
execution and halting on TM-appropriate input.

• When we write a TM for a task, we write a set of TM
instructions to do that task.

Turing Machines: Example Tasks

1. Invert the bits in a given binary string, e.g., 1101→ 0010.
2. Add a parity bit to the end of a binary string such that the

total number of 1-bits in the resulting string is odd, e.g.,
101→ 1011, 001→ 0010.

3. Increment a unary number by 1, e.g., 111→ 1111, where

0 is represented as 1 in unary
1 is represented as 11 in unary
2 is represented as 111 in unary
3 is represented as 1111 in unary

and so on.
4. Add two unary numbers of value > 0 separated by a blank

symbol, e.g., 11b11→ 111.

Turing Machines:
A Bit Inverter

Turing Machines:
A Bit Inverter (Cont’d)

b b b1
S1

b b b1

b b b

b b b

b b b

0

0

0

initial

1

S1 ((S1,1),(0,S1,R))

1

1

1

S1

S1 ((S1,1),(0,S1,R))

1

0

S1 halt

0 1

1 1

1

1 0

1 0

((S1,0),(1,S1,R))

((S1,1),(0,S1,R))

Turing Machines:
A Bit Inverter (Cont’d)

b b b1
S1

b b b1

b b b

b b b

b b b

0

0

0

initial

1 0 1

((S1,1),(0,S1,R))

S1

0

((S1,1),(0,S1,R))

0

10

0 1

S1
((S1,0),(1,S1,R))

0 1

S1 ((S1,1),(0,S1,R))

1

0 1 0

S1 halt

Turing Machines:
A Parity Bit Machine

Turing Machines:
A Parity Bit Machine (Cont’d)

b b b b1
S1

b b b b1

b b b b

b b b b

b b b

1

S2

S2

1 0 1

1 0

1 0

initial

1 0

0

1

1 1

S1

halt

((S1,1),(1,S2,R))

((S2,0),(0,S2,R))

((S2,1),(1,S1,R))

((S1,b),(1,S3,R))

S3

Turing Machines:
A Parity Bit Machine (Cont’d)

b b b b1
S1

b b b b1

b b b b

b b b b

b b b

0 1

0

0

initial

0

0

1

1

haltS3

0

0

0

0

0 0

S1

S1

S2

((S1,0),(0,S1,R))

((S1,0),(0,S1,R))

((S1,1),(1,S2,R))

((S2,b),(0,S3,R))

Turing Machines:
A Unary Incrementer (Take I)

Turing Machines:
A Unary Incrementer (Take I) (Cont’d)

b b b b1
S1

b b b b1

b b b b

b b b b

b b b

1

1 1

1

1

initial

1

1

1 1

S1

halt

1

1

1

1

S2

S1

S1

((S1,1),(1,S1,R))

((S1,b),(1,S2,R))

((S1,1),(1,S1,R))

((S1,1),(1,S1,R))

1

Turing Machines:
A Unary Incrementer (Take II)

S2

1/1/L
b/1/L

S1

Turing Machines:
A Unary Incrementer (Take II) (Cont’d)

b b b b1
S1

b b b b1

b b b

1

1 1

initial

1 1

1

1

S1

1

S2

((S1,1),(1,S1,L))

((S1,b),(1,S2,L))

halt

Turing Machines:
A Unary Adder

Turing Machines:
A Unary Adder (Cont’d)

b b1

b b b1

b b b

b b b

1

1

initial

11

1 11 b

b 1

b 1b

S1

S2

S3

b

S4

1

halt

((S1,1),(b,S2,R))

((S2,1),(b,S3,R))

((S3,b),(1,S4,R))

Turing Machines:
Mystery Machine #1

S1

1/b/R

0/b/R

Turing Machines:
Mystery Machine #2

S2S1

1/1/R

0/0/R

b/b/L

1/b/L

0/b/L

Turing Machines:
Mystery Machine #3

S2S1

1/0/R

b/0/L b/1/L

S3

0/0/R

0/1/R, 1/1/R

Proving Unsolvability:
The Church-Turing Thesis

• We know that every TM is an algorithm — does every
algorithm have a corresponding TM?

The Church-Turing Thesis: For every symbol-
manipulation algorithm there is a TM.

• Not provable, but two lines of evidence:

1. Every proposed s-m algorithm has a TM.
2. TM can simulate and is thus equivalent to other

proposed models of computation.

• C-T Thesis⇒ TM defines limits of solvability!

Proving Unsolvability:
The Church-Turing Thesis (Cont’d)

Proving Unsolvability:
The Halting Problem

• Easy to prove if a given TM halts on a given configuration;
what about if a given TM halts on a given input (Halting
Problem), e.g., does the TM with instruction-set

((S1,b),(b,S1,R))
((S1,0),(0,S1,R))
((S1,1),(1,S1,R))

halt on input tape . . . b000b . . . ?
• Prove that HP is unsolvable by contradiction — that is,

start by assuming that HP is solvable and then derive
something that is impossible, which is a contradiction and
would hence imply that HP is not solvable.

Proving Unsolvability:
The Halting Problem (Cont’d)

Suppose you have a TM P that solves HP:

T*bt

Halts with 1

if T halts on t

Halts with 0

if T does not

halt on t

TM P

Proving Unsolvability:
The Halting Problem (Cont’d)

Modify TM P to create TM Q:

T*bt

if T halts on t

Halts with 0

if T does not

halt on t

Does not halt

TM Q

Proving Unsolvability:
The Halting Problem (Cont’d)

Modify TM Q to create TM S:

Halts with 0Does not halt

TM Q

S*bS*

if S halts on S* if S does not

halt on S*

S*

TM S

. . . which is impossible — hence, HP is not solvable!

Proving Unsolvability:
The Halting Problem (Cont’d)

• The unsolvability of HP has practical consequences:

• No program can decide if a given program halts on all
possible inputs.

• No program can decide if two given programs produce
the same output for all possible inputs.

• No program can decide if a given program run on a
given input will produce a given output.

• The Fine Print: All of this unsolvability holds in general,
i.e., relative to all possible programs and inputs — there
may yet be programs that work relative to specific classes
of given programs, e.g., programs that halt in ≤ 109 steps.

Proving Unsolvability:
The Next Generation

Juris Hartmanis
(1928–)

Jack Edmonds
(1934–)

Stephen Cook
(1939–)

Developed theory of polynomial-time unsolvability . . .

. . . but that is a story for another day . . .

. . . And If You Liked This . . .

• MUN Computer Science courses on this area:

• COMP 4741: Formal Languages and Computability
• COMP 4742: Computational Complexity

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Miklos Bartha
• Antonina Kolokolova
• Manrique Mata-Montero
• Todd Wareham

