
Computer Science 1000: Part #5

Computer Organization

COMPUTER ORGANIZATION: AN OVERVIEW

COMPUTER MEMORY

COMPUTER PROCESSOR

IMPLEMENTING COMPUTERS

The Von Neumann Architecture:
An Abstract View

computer

processor

data
instructions

results

memory

I/O interface

person

Also known as the stored-program architecture

The Von Neumann Architecture:
A More Detailed View

The Von Neumann Architecture:
A Really Detailed View

The Von Neumann Architecture:
An Operational View

The Von Neumann Execution Cycle:

repeat
Fetch next instruction
Decode instruction
Execute instruction

Computer Memory :
Overview

• Focus here on (volatile) Random-Access Memory (RAM),
cf. (non-volatile) Read-Only Memory (ROM).

• Three characteristics of RAM:

1. Divided into fixed-width cells, each of which has a
unique unsigned-integer address 0, 1, 2, . . . ,MAX
(address space).

2. The cell is the minimal unit of fetch / store access.
3. All cells have the same access time.

• Crucial to distinguish a memory address and the contents
of memory at a particular address, e.g.,

address =⇒ 574310: −2910 ⇐= contents

Computer Memory :
Overview (Cont’d)

• Standard cell-width W = 8 bits (byte); standard address =
32 or 64 bits; standard access time ≈ 5-10 nanoseconds.

• Memory size stated in terms of number of bytes:

Kilobyte (KB) = 103 (thousand) bytes
Megabyte (MB) = 106 (million) bytes
Gigabyte (GB) = 109 (billion) bytes
Terabyte (TB) = 1012 (trillion) bytes
Petabyte (PB) = 1015 (quadrillion) bytes
Exabyte (EB) = 1018 (quintillion) bytes

...

Computer Memory :
Overview (Cont’d)

• All communication done via the Memory Address
Register (MAR) and the Memory Data Register (MDR).

• Two basic operations:

• Fetch(address):

1. Load address into MAR
2. Decode address in MAR
3. Copy cell contents at address into MDR

• Store(address, value):

1. Load address into MAR
2. Load value into MDR
3. Decode address in MAR
4. Copy MDR value into addressed cell

Computer Memory :
Internal Structure (1D Abstract)

Computer Memory:
Internal Structure (1D)

Computer Memory:
Internal Structure (2D Abstract)

Computer Memory:
Internal Structure (2D)

Computer Memory:
The Memory Hierarchy

Computer Memory:
The Memory Hierarchy (Cont’d)

Deal with processor / memory speed differences as follows:

1. Registers: Communicate with(in) processor; contain
currently-executed instruction and data and associated
information.

2. Cache: Communicates with registers and primary; uses
principle of locality to pre-load anticipated instructions
and data from primary.

3. Primary: Communicates with cache and secondary;
contains programs being executed and their data.

4. Secondary: Communicates with primary; contains all
programs and data of interest.

I/O interface devices, e.g., keyboards, screens, are treated as
secondary memory devices.

Computer Memory:
The Memory Hierarchy (Cont’d)

Computer Memory:
The Memory Hierarchy (Cont’d)

• Deal with very large access-time difference between
primary and secondary memory using an I/O controller, a
special-purpose computer consisting of one or more I/O
buffers and associated control logic.

• When fetching from secondary, the I/O controller loads
data from the appropriate device into the buffer and, when
full, sends the buffer’s contents to the processor.

• When storing to secondary, the I/O controller loads data
from the processor into the buffer and sends the buffer’s
contents to the appropriate device.

• Special interrupt signals used to let the processor know
when I/O operations are done.

Computer Memory:
The Memory Hierarchy (Cont’d)

Computer Processor:
Overview

• Two main parts:

1. Arithmetic Logic Unit (ALU): Performs arithmetic
and logical operations.

2. Control Unit: Handles interpretation and execution of
program instructions. This involves directing the
operations of the ALU and memory as well as
interacting with the I/O controller.

• Both the ALU and the Control Unit have their own
associated groups of special-purpose registers associated
with their internal operations.

Computer Processor:
The Arithmetic Logic Unit (ALU)

• Two types of ALU registers:

1. Value Registers (R0, R1, R2, . . .): A set of 16–128
registers which contain data for current and upcoming
operations as well as intermediate results.

2. Condition Code Register (CCR): A collection of bits
specifying the results (1 if true, 0 if false) of the most
recently executed value comparison, e.g., LT
(less-than), EQ (equal-to), GT (greater-than).

• Value registers communicate with memory and the ALU
and can specified as either the left or right operand.

• The CCR communicates with the ALU, which passes the
value of any condition-bit as requested to the control unit.

Computer Processor:
The Arithmetic Logic Unit (ALU) (Cont’d)

Computer Processor:
The Arithmetic Logic Unit (ALU) (Cont’d)

Computer Processor:
The Control Unit

• Two Control Unit registers:

1. Program Counter (PC): Holds address in memory of
next instruction to be executed.

2. Instruction Register (IR): Holds the current
instruction being executed. This includes not only the
op-code (IRop) but the addresses of the instruction
operands (IRadd, e.g., memory / ALU value registers).

• Instruction decoder circuitry uses the the k-bit opcode in
the instruction in the IR to specify the appropriate one of
the 2k signals to that instruction’s execution circuitry and/or
other computer components.

Computer Processor:
The Control Unit (Cont’d)

Computer Processor:
Machine Language

• An instruction = op-code + 0–3 address fields, e.g.,

op-code address-1 address-2

000101 000000110011 000010001100

COMPARE Addr1 Addr2

• Is part of either Reduced or Complex Instruction Set
Computer (RISC / CISC) machine language; differ in
tradeoff of required hardware vs. resulting program size.

Computer Processor:
Machine Language (Cont’d)

Four types of machine language instructions:

1. Data Transfer: Move values between memory cells and/or
ALU registers, e.g., LOAD Addr1, LOAD Addr2,
MOVE Addr1 Addr2.

2. Arithmetic: Perform arithmetic / logical operations on
values in memory cells and/or ALU registers, e.g.,
ADD Addr1 Addr2 Addr3, ADD Addr1 Addr2.

3. Comparison: Compare two values and set CCR bits, e.g.,
COMPARE Addr1 Addr2.

4. Branch: Alter next instruction to be executed (often on
basis of preceding comparison), e.g., JUMP Addr1,
JUMPGT Addr1, HALT.

Computer Processor:
Machine Language (Cont’d)

100 value of a
101 value of b
102 value of c
· · ·

set a to value of b + c 50 LOAD 101
51 ADD 102
52 STORE 100
· · ·

if a > b then 60 COMPARE 100 101
set c to value of a 61 JUMPGT 64

else 62 MOVE 101 102
set c to value of b 63 JUMP 65

64 MOVE 100 102
65 · · ·

The Von Neumann Architecture:
A Detailed View Redux

The Von Neumann Architecture:
An Operational View Redux

The Von Neumann Execution Cycle:

while no HALT or fatal error do
Fetch next instruction
Decode instruction
Execute instruction

• Let us consider the details of this cycle in the context of a
16-instruction RISC machine language for a computer with
a single-register ALU.

The Von Neumann Architecture:
An Operational View Redux (Cont’d)

OC Instruction Meaning
0 LOAD Addr CON(Addr) −→ R
1 STORE Addr R −→ CON(Addr)
2 CLEAR Addr 0 −→ CON(Addr)
3 ADD Addr R + CON(Addr) −→ R
4 INCREMENT Addr CON(Addr) + 1 −→ CON(Addr)
5 SUBTRACT Addr R− CON(Addr) −→ R
6 DECREMENT Addr CON(Addr)− 1 −→ CON(Addr)
7 COMPARE Addr if CON(Addr) > R then GT = 1 else 0

if CON(Addr) = R then EQ = 1 else 0
if CON(Addr) < R then LT = 1 else 0

The Von Neumann Architecture:
An Operational View Redux (Cont’d)

OC Instruction Meaning
8 JUMP Addr Addr −→ PC
9 JUMPGT Addr if GT = 1 then Addr −→ PC

10 JUMPEQ Addr if EQ = 1 then Addr −→ PC
11 JUMPLT Addr if LT = 1 then Addr −→ PC
12 JUMPNEQ Addr if EQ = 0 then Addr −→ PC
13 IN Addr Store input value at Addr
14 OUT Addr Output CON(Addr)
15 HALT Stop program execution

See page 261 of textbook for notations in “Meaning” column.

The Von Neumann Architecture:
An Operational View Redux (Cont’d)

100 value of a
101 value of b
102 value of c
· · ·

set a to value of b + c 50 LOAD 101
51 ADD 102
52 STORE 100
· · ·

The Von Neumann Architecture:
An Operational View Redux (Cont’d)

100 value of a
101 value of b
102 value of c
· · ·

if a > b then 60 LOAD 101
set c to value of a 61 COMPARE 100

else 62 JUMPGT 66
set c to value of b 63 LOAD 101

64 STORE 102
65 JUMP 68
66 LOAD 100
67 STORE 102
68 · · ·

The Von Neumann Architecture:
An Operational View Redux (Cont’d)

100 value of IND
101 value of MAXIND
· · ·

set IND to 0 60 CLEAR 100
while IND ≤MAXIND do 61 LOAD 101

<LOOPBODY> 62 COMPARE 100
set IND to IND + 1 63 JUMPGT 77

· · · <LOOPBODY>
75 INCREMENT 100
76 JUMP 61
77 · · ·

The Von Neumann Architecture:
An Operational View Redux

Details of the three phases of the Von Neumann cycle:

1. Fetch next instruction: Load next instruction into IR and
update PC, i.e.,

1. PC −→MAR
2. FETCH
3. MDR −→ IR
4. PC + 1 −→ PC

2. Decode instruction: Determine which circuitry must be
activated to execute the instruction, i.e.,

1. IRop −→ instruction decoder

The Von Neumann Architecture:
An Operational View Redux

3. Execute instruction: Trigger the unique circuitry required
to execute the instruction, e.g.,

LOAD Addr 1. IRaddr −→MAR
2. FETCH
3. MDR −→ R

STORE Addr 1. IRaddr −→MAR
2. R −→MDR
3. STORE

ADD Addr 1. IRaddr −→MAR
2. FETCH
3. MDR −→ ALU
4. R −→ ALU
5. ADD
6. ALU −→ R

Implementing Computers: Beginnings

SSEM ("Baby")
(1948, U. Manchester)

EDSAC
(1949, U. Cambridge)

SSEM and EDSAC were world’s first operational electronic
stored-program computers.

Implementing Computers: Mainframes

IBM System/360 (1967)

Implementing Computers: Minicomputers

PDP I (1960) PDP 8 (1965)

Implementing Computers: Memory

Magnetic
tape
(1951)

Magnetic disk
(1956)

Magnetic core
(1953)

Massive cheap transistor-based storage possible in 1990s.

Implementing Computers: I/O Interfaces

Punch card / tape
(1940s)

Teletype
(1940s)

CRT Display
(1940s)

Implementing Computers: Microprocessors

Instead of being a little mainframe, the PC is, in fact,
more like an incredibly big chip. – Robert X. Cringely

The microprocessor was invented by Ted Hoff in 1971.

Implementing Computers: Microcomputers

IBM PC (1981) Apple Macintosh (1984)

Implementing Computers: Microcomputers (Cont’d)

• First true “laptop” PCs (GRiD Compass 1101 (1982) [$8K];
see above left) appear in 1980s, cf., portable “desktop”
PCs like the Osborne I; expense of display and memory
technologies limits market severely.

• Laptops finally surpass desktops in sales in 2008.

Implementing Computers: Microcomputers (Cont’d)

• Hand-held personal computing
appears first as Personal Digital
Assistants (PDAs) in early 1990s.

• Early PDAs (Palm Pilot, Newton)
were typically too too expensive
and based on technologies of
limited user interest, e.g.,
handwriting recognition.

• Second-generation PDAs achieve success among
business and government users when combined with basic
secure messaging abilities, e.g., Blackberry (1999).

Implementing Computers: Microcomputers (Cont’d)

• The convergence of hand-held multimedia-enabled
computing and communication technology has resulted in
tablet computers and smartphones; the former is
preferable for screen size and the latter for device size.

Implementing Computers:
Non-Von Neumann Architectures

CM-2 (1987) DWAVE 2000Q (2017)

Based on massively parallel instruction execution by multiple
processors (CM-2) or quantum entanglement (DWAVE 2000Q).

. . . And If You Liked This . . .

• MUN Computer Science courses on this area:

• COMP 2003: Computer Architecture
• COMP 4723: Introduction to Microprocessors

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Rod Byrne

