Computer Science 1000: Part #5

Computer Organization

COMPUTER ORGANIZATION: AN OVERVIEW
COMPUTER MEMORY
COMPUTER PROCESSOR

IMPLEMENTING COMPUTERS




The Von Neumann Architecture:
An Abstract View
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Also known as the stored-program architecture



The Von Neumann Architecture:
A More Detailed View
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The Von Neumann Architecture:
A Really Detailed View
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The Von Neumann Architecture:
An Operational View

The Von Neumann Execution Cycle:

repeat
Fetch next instruction
Decode instruction
Execute instruction



Computer Memory :
Overview
e Focus here on (volatile) Random-Access Memory (RAM),
cf. (non-volatile) Read-Only Memory (ROM).
e Three characteristics of RAM:

1. Divided into fixed-width cells, each of which has a
unique unsigned-integer address 0,1,2,..., MAX
(address space).

2. The cell is the minimal unit of fetch / store access.

3. All cells have the same access time.

e Crucial to distinguish a memory address and the contents
of memory at a particular address, e.g.,

address = 5743;: <= contents



Computer Memory :
Overview (Cont'd)

e Standard cell-width W = 8 bits (byte); standard address =
32 or 64 bits; standard access time ~ 5-10 nanoseconds.

e Memory size stated in terms of number of bytes:

Kilobyte  (KB) = 103 (thousand) bytes
Megabyte (MB) = 10° (million) bytes
Gigabyte (GB) = 10’ (billion) bytes
Terabyte (TB) = 10'? (trillion) bytes
Petabyte (PB) = 10'° (quadrillion) bytes
Exabyte (EB)

= 10" (quintillion) bytes



Computer Memory :
Overview (Cont'd)

¢ All communication done via the Memory Address
Register (MAR) and the Memory Data Register (MDR).

e Two basic operations:
o Fetch(address):

1. Load address into MAR
2. Decode address in MAR
3. Copy cell contents at address into MDR

o Store(address, value):

1. Load address into MAR

2. Load value into MDR

3. Decode address in MAR

4. Copy MDR value into addressed cell



Computer Memory :
Internal Structure (1D Abstract)
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Computer Memory:
Internal Structure (1D)
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Computer Memory:
Internal Structure (2D Abstract)
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Computer Memory:
Internal Structure (2D)
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Performance

Computer Memory:
The Memory Hierarchy
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Computer Memory:
The Memory Hierarchy (Cont'd)
Deal with processor / memory speed differences as follows:

1. Registers: Communicate with(in) processor; contain
currently-executed instruction and data and associated
information.

2. Cache: Communicates with registers and primary; uses
principle of locality to pre-load anticipated instructions
and data from primary.

3. Primary: Communicates with cache and secondary;
contains programs being executed and their data.

4. Secondary: Communicates with primary; contains all
programs and data of interest.

I/O interface devices, e.g., keyboards, screens, are treated as
secondary memory devices.



Computer Memory:
The Memory Hierarchy (Cont’d)
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Computer Memory:
The Memory Hierarchy (Cont'd)

Deal with very large access-time difference between
primary and secondary memory using an /O controller, a
special-purpose computer consisting of one or more 1/0
buffers and associated control logic.

When fetching from secondary, the 1/O controller loads
data from the appropriate device into the buffer and, when
full, sends the buffer’s contents to the processor.

When storing to secondary, the 1/0O controller loads data
from the processor into the buffer and sends the buffer’s
contents to the appropriate device.

Special interrupt signals used to let the processor know
when /O operations are done.



Computer Memory:
The Memory Hierarchy (Cont'd)
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Computer Processor:
Overview

e Two main parts:

1. Arithmetic Logic Unit (ALU): Performs arithmetic
and logical operations.

2. Control Unit: Handles interpretation and execution of
program instructions. This involves directing the
operations of the ALU and memory as well as
interacting with the 1/0 controller.

e Both the ALU and the Control Unit have their own
associated groups of special-purpose registers associated
with their internal operations.



Computer Processor:
The Arithmetic Logic Unit (ALU)

e Two types of ALU registers:

1. Value Registers (R0, R1, R2, ...): A set of 16-128
registers which contain data for current and upcoming
operations as well as intermediate results.

2. Condition Code Register (CCR): A collection of bits
specifying the results (1 if true, 0 if false) of the most
recently executed value comparison, e.g., LT
(less-than), EQ (equal-to), GT (greater-than).

e Value registers communicate with memory and the ALU
and can specified as either the left or right operand.

e The CCR communicates with the ALU, which passes the
value of any condition-bit as requested to the control unit.



Computer Processor:
The Arithmetic Loaic Unit (ALU) (Cont'd)
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Computer Processor:
The Arithmetic Logic Unit (ALU) (Cont'd)
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Computer Processor:
The Control Unit

e Two Control Unit registers:

1. Program Counter (PC): Holds address in memory of
next instruction to be executed.

2. Instruction Register (IR): Holds the current
instruction being executed. This includes not only the
op-code (IR,y) but the addresses of the instruction
operands (IR, €.9., memory / ALU value registers).

e Instruction decoder circuitry uses the the k-bit opcode in
the instruction in the IR to specify the appropriate one of
the 2F signals to that instruction’s execution circuitry and/or
other computer components.



Computer Processor:
The Control Unit (Cont’d)
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Computer Processor:
Machine Language

e An instruction = op-code + 0-3 address fields, e.g.,

| op-code | address-1 | address-2 |

(000101 | 000000110011 [ 000010001100 |

] COMPARE \ Addrl \ Addr2 \

e Is part of either Reduced or Complex Instruction Set
Computer (RISC / CISC) machine language; differ in
tradeoff of required hardware vs. resulting program size.



Computer Processor:
Machine Language (Cont'd)

Four types of machine language instructions:

1. Data Transfer: Move values between memory cells and/or
ALU registers, e.g., LOAD Addrl, LOAD Addr2,
MOVE Addrl Addr?2.

2. Arithmetic: Perform arithmetic / logical operations on
values in memory cells and/or ALU registers, e.g.,
ADD Addrl Addr2 Addr3, ADD Addrl Addr2.

3. Comparison: Compare two values and set CCR bits, e.g.,
COMPARE Addrl Addr2.
4. Branch: Alter next instruction to be executed (often on

basis of preceding comparison), e.g., JUMP Addrl,
JUMPGT Addrl, HALT.



Computer Processor:
Machine Language (Cont'd)
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The Von Neumann Architecture:
A Detailed View Redux
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The Von Neumann Architecture:
An Operational View Redux

The Von Neumann Execution Cycle:

while no HALT or fatal error do
Fetch next instruction
Decode instruction
Execute instruction

e Let us consider the details of this cycle in the context of a
16-instruction RISC machine language for a computer with
a single-register ALU.



The Von Neumann Architecture:
An Operational View Redux (Cont'd)

OC Instruction Meaning
0 LOAD Addr CON(Addr) — R
1 STORE Addr R — CON (Addr)
2 CLEAR Addr 0 — CON(Addr)
3 ADD Addr R + CON(Addr) — R
4  INCREMENT Addr CON(Addr)+1 — CON(Addr)
5 SUBTRACT Addr R —CON(Addr) — R
6 DECREMENT Addr CON(Addr) —1 — CON(Addr)
7  COMPARE Addr if CON(Addr) > Rthen GT =1 else 0

if CON(Addr) = Rthen EQ =1 else 0
if CON(Addr) < R then LT = 1 else 0




The Von Neumann Architecture:
An Operational View Redux (Cont'd)

OC Instruction Meaning

8 JUMP Addr Addr — PC

9 JUMPGT Addr  if GT =1 then Addr — PC
10 JuMPEQ Addr if EQ =1 then Addr — PC
11 JUMPLT Addr  if LT =1 then Addr — PC
12 JuMPNEQ Addr if EQ =0 then Addr — PC

13 IN Addr Store input value at Addr
14 OUT Addr Output CON(Addr)
15 HALT Stop program execution

See page 261 of textbook for notations in “Meaning” column.



The Von Neumann Architecture:
An Operational View Redux (Cont'd)
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The Von Neumann Architecture:
An Operational View Redux (Cont'd)

100 value of a
101 value of b
102 value of ¢
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else 62 JUMPGT 66
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The Von Neumann Architecture:
An Operational View Redux (Cont'd)
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The Von Neumann Architecture:
An Operational View Redux

Details of the three phases of the Von Neumann cycle:

1. Fetch next instruction: Load next instruction into IR and
update PC, i.e.,
1. PC — MAR
2. FETCH
3. MDR — IR
4. PC+1 — PC
2. Decode instruction: Determine which circuitry must be
activated to execute the instruction, i.e.,

1. IRoy — instruction decoder



The Von Neumann Architecture:
An Operational View Redux

3. Execute instruction: Trigger the unique circuitry required
to execute the instruction, e.g.,

LOAD Addr 1. IRy — MAR
2. FETCH
3. MDR —R
STORE Addr 1. IRy — MAR
2. R— MDR
3. STORE
ADD Addr 1. IR — MAR
2. FETCH
3. MDR — ALU
4. R— ALU
5. ADD
6

ALU — R



Implementing Computers: Beginnings

SSEM ("Baby") EDSAC
(1948, U. Manchester) (1949, U. Cambridge)

SSEM and EDSAC were world’s first operational electronic
stored-program computers.



Implementing Computers: Mainframes

IBM System/360 (1967)



Implementing Computers: Minicomputers

PDP | (1960) PDP 8 (1965)



Implementing Computers: Memory

Magnetic  Magnetic disk Magnetic core
tape (1956) (1953)
(1951)

Massive cheap transistor-based storage possible in 1990s.



Implementing Computers: I/O Interfaces

Punch card / tape Teletype CRT Display
(1940s) (1940s) (1940s)



Implementing Computers: Microprocessors

Instead of being a little mainframe, the PC is, in fact,
more like an incredibly big chip. — Robert X. Cringely

The microprocessor was invented by Ted Hoff in 1971.



Implementing Computers: Microcomputers
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Implementing Computers: Microcomputers (Cont'd)

e First true “laptop” PCs (GRiD Compass 1101 (1982) [$8K];
see above left) appear in 1980s, cf., portable “desktop”
PCs like the Osborne I; expense of display and memory
technologies limits market severely.

e Laptops finally surpass desktops in sales in 2008.



Implementing Computers: Microcomputers (Cont'd)

e Hand-held personal computing
appears first as Personal Digital
Assistants (PDAs) in early 1990s.

e Early PDAs (Palm Pilot, Newton)
were typically too too expensive
and based on technologies of
limited user interest, e.g.,
handwriting recognition.

e Second-generation PDAs achieve success among
business and government users when combined with basic
secure messaging abilities, e.g., Blackberry (1999).



Implementing Computers: Microcomputers (Cont'd)

e The convergence of hand-held multimedia-enabled
computing and communication technology has resulted in
tablet computers and smartphones; the former is
preferable for screen size and the latter for device size.



Implementing Computers:
Non-Von Neumann Architectures

CM-2 (1987) DWAVE 2000Q (2017)

Based on massively parallel instruction execution by multiple
processors (CM-2) or quantum entanglement (DWAVE 2000Q).



...And If You Liked This ...

e MUN Computer Science courses on this area:

o COMP 2003: Computer Architecture
o COMP 4723: Introduction to Microprocessors

e« MUN Computer Science professors teaching courses /
doing research in in this area:

» Rod Byrne



