Computer Science 1000: Part #5

Computer Organization

COMPUTER ORGANIZATION: AN OVERVIEW
COMPUTER MEMORY
COMPUTER PROCESSOR

IMPLEMENTING COMPUTERS

The Von Neumann Architecture:
An Abstract View

()
data
instructions
results person
memory * I

processor <+ 1/O interface
. 7

computer

Also known as the stored-program architecture

The Von Neumann Architecture:
A More Detailed View

Memory Control unit Input-Output

ALU

Processor

Figure 5.2 Components of the Von Neumann Architecture

Invitation to Computer Science, 5th Edition

The Von Neumann Architecture:
A Really Detailed View

I 1 |

= — -
Memory unit Arithmetic/Logic unit Input/Output Control unit
l ' p~ RO T | l l '
MAR MDR [/le} PC R
—_ controller
—> RI el
| e C ol B
signal
e g Ininucion
/o) Fetch/Store J ciregit. | Control
e controller A8 signals
-
L .[kil
— Aw -
Selector lines
| =i Figure 5.18 The Organization
Bandenazsas ey of a Von Neumann Computer
[S Condiion code reqister

Invitation to Computer Science, 6th Edition 42

The Von Neumann Architecture:
An Operational View

The Von Neumann Execution Cycle:

repeat
Fetch next instruction
Decode instruction
Execute instruction

Computer Memory :
Overview
e Focus here on (volatile) Random-Access Memory (RAM),
cf. (non-volatile) Read-Only Memory (ROM).
e Three characteristics of RAM:

1. Divided into fixed-width cells, each of which has a
unique unsigned-integer address 0,1,2,..., MAX
(address space).

2. The cell is the minimal unit of fetch / store access.

3. All cells have the same access time.

e Crucial to distinguish a memory address and the contents
of memory at a particular address, e.g.,

address = 5743;: <= contents

Computer Memory :
Overview (Cont'd)

e Standard cell-width W = 8 bits (byte); standard address =
32 or 64 bits; standard access time ~ 5-10 nanoseconds.

e Memory size stated in terms of number of bytes:

Kilobyte (KB) = 103 (thousand) bytes
Megabyte (MB) = 10° (million) bytes
Gigabyte (GB) = 10’ (billion) bytes
Terabyte (TB) = 10'? (trillion) bytes
Petabyte (PB) = 10'° (quadrillion) bytes
Exabyte (EB)

= 10" (quintillion) bytes

Computer Memory :
Overview (Cont'd)

¢ All communication done via the Memory Address
Register (MAR) and the Memory Data Register (MDR).

e Two basic operations:
o Fetch(address):

1. Load address into MAR
2. Decode address in MAR
3. Copy cell contents at address into MDR

o Store(address, value):

1. Load address into MAR

2. Load value into MDR

3. Decode address in MAR

4. Copy MDR value into addressed cell

Computer Memory :
Internal Structure (1D Abstract)

Address Memory
1 bit
1 N bits
2 MAR
Maximum memory size{ 3 Memory address register
- i 'MDR |
: : MDR
oN_ 1 Memory data register
W or a multiple of W bits
e
Memory width
(W)
Figure 5.3

Structure of Random Access Memory

Tavitation to Computer Scieace

Computer Memory:
Internal Structure (1D)

N=4

MAR d|d|d|d]|(d=0or1)

-

(4 input lines) A (24=16 output lines) Memory Address
0000 0000, (6]
gg?:) 0001 (1)
4-40-16 - 0010 (2)
decoder circuit .
1110

1111 * »
1110 (14)
~ 1111 (15)

Figure 5.5 Organization of Memory and the Decoding Logic

Invitation to Computer Science, 6th Edition

Computer Memory:
Internal Structure (2D Abstract)

Column Column Column Column
0 1 2

(00) (01) (10) (11 / Address
Row 0 (00) ‘lOOOO lOOOI lOCHO LOO'I'I
Row 1(01) —630]00 $0101 eB01 10 ﬁ01'|1

t Row selection lines

Row 2 (10) _$1000 $'IOOI $IO'IO E"IO'I]

Row 3 (11) G'I'IOO GHOI TH]O g

Column selection lines

Figure 5.6 Two-Dimensional Memory Address Organization

Invitation to Computer Science, 6th Edition 18

Computer Memory:
Internal Structure (2D)

Memory unit.

N/2 bits N/2 bits

d’dd-‘»d‘ddd

d] MAR (N bits)

2N memory cells
organized into a
2N/2 5 2N/ square
as shown in
Figure 5.6

. 000 -+ 011
§. Co!umn:.o”codur 000 o010
g ©00 ::: 001
2 - 000 000
s
=
a8 000 --- 000
] 000 ::- 001
S 000 --- 010
Row decoder circuit 000 --- 011
{ MDR I]
——
Some multiple of W I
775 wignal Figure 5.7
(specifying whether to do . .
aferch or @ store operation) QOverall RAM Organization

Inrvitation to Computer Science, C++ Version, Third Edition

Performance

Computer Memory:
The Memory Hierarchy

100,000

B B e ey S e sl e) R

Processor

Year
2007 Elsender,Inc. Al rghts resenved.

Memory speed lags behind CPU speed

Processor vs. Memory
performance gap

14 ' ' L L
1980 1985 1990 1995 2000 2005 2010

Computer Memory:
The Memory Hierarchy (Cont'd)
Deal with processor / memory speed differences as follows:

1. Registers: Communicate with(in) processor; contain
currently-executed instruction and data and associated
information.

2. Cache: Communicates with registers and primary; uses
principle of locality to pre-load anticipated instructions
and data from primary.

3. Primary: Communicates with cache and secondary;
contains programs being executed and their data.

4. Secondary: Communicates with primary; contains all
programs and data of interest.

I/O interface devices, e.g., keyboards, screens, are treated as
secondary memory devices.

Computer Memory:
The Memory Hierarchy (Cont’d)

Size
h
< 1KB Sns
Registers
<4 MB 10 ns
Caches

<4 GB 5

Main Memory 100 ns
> 1 GE . 5ms

Disk Storage
Y

Speed

Computer Memory:
The Memory Hierarchy (Cont'd)

Deal with very large access-time difference between
primary and secondary memory using an /O controller, a
special-purpose computer consisting of one or more 1/0
buffers and associated control logic.

When fetching from secondary, the 1/O controller loads
data from the appropriate device into the buffer and, when
full, sends the buffer’s contents to the processor.

When storing to secondary, the 1/0O controller loads data
from the processor into the buffer and sends the buffer’s
contents to the appropriate device.

Special interrupt signals used to let the processor know
when /O operations are done.

Computer Memory:
The Memory Hierarchy (Cont'd)

Inferrupt signal (completion)

Data

T Ty

| | |

Processor Memory 1/0 buffer

1/O controller

Control/Logic

1/O device

Figure 5.9
Organization of an 1/O Controller

Invitation to Computer Science, C++ Version, Third Edition 24

Computer Processor:
Overview

e Two main parts:

1. Arithmetic Logic Unit (ALU): Performs arithmetic
and logical operations.

2. Control Unit: Handles interpretation and execution of
program instructions. This involves directing the
operations of the ALU and memory as well as
interacting with the 1/0 controller.

e Both the ALU and the Control Unit have their own
associated groups of special-purpose registers associated
with their internal operations.

Computer Processor:
The Arithmetic Logic Unit (ALU)

e Two types of ALU registers:

1. Value Registers (R0, R1, R2, ...): A set of 16-128
registers which contain data for current and upcoming
operations as well as intermediate results.

2. Condition Code Register (CCR): A collection of bits
specifying the results (1 if true, 0 if false) of the most
recently executed value comparison, e.g., LT
(less-than), EQ (equal-to), GT (greater-than).

e Value registers communicate with memory and the ALU
and can specified as either the left or right operand.

e The CCR communicates with the ALU, which passes the
value of any condition-bit as requested to the control unit.

Computer Processor:
The Arithmetic Loaic Unit (ALU) (Cont'd)

Result Registers Left Right

+— RO [

+— R 1

+— R2 =1

+—— Rr3 -1

+—— RI5 =y
Figure 5.11 Multiregister
ALU Organization

I ALV

Invitation to Computer Science, 5th Edition

25

Computer Processor:
The Arithmetic Logic Unit (ALU) (Cont'd)

Bus 2 Bus O Bus1

S
$—— R

— Y
——— Rl

.t

T |

B B B B
1

-1

—_—
Selector lines

Figure 5.13 Overall ALU Organization

Invitation to Computer Science, 5th Edition 27

Computer Processor:
The Control Unit

e Two Control Unit registers:

1. Program Counter (PC): Holds address in memory of
next instruction to be executed.

2. Instruction Register (IR): Holds the current
instruction being executed. This includes not only the
op-code (IR,y) but the addresses of the instruction
operands (IR, €.9., memory / ALU value registers).

e Instruction decoder circuitry uses the the k-bit opcode in
the instruction in the IR to specify the appropriate one of
the 2F signals to that instruction’s execution circuitry and/or
other computer components.

Computer Processor:
The Control Unit (Cont’d)

’—~ PC Op code Address field(s) IR
. | I

R ——
——— Signals to memory,

_—
Instruction decoder circuit s ALU, 1/O controllers,

. and other components
e

Figure 5.16
Organization of the Control Unit Registers and Circuits

Invitation to Computer Science, C++ Version, Third Edition 34

Computer Processor:
Machine Language

e An instruction = op-code + 0-3 address fields, e.g.,

| op-code | address-1 | address-2 |

(000101 | 000000110011 [000010001100 |

] COMPARE \ Addrl \ Addr2 \

e Is part of either Reduced or Complex Instruction Set
Computer (RISC / CISC) machine language; differ in
tradeoff of required hardware vs. resulting program size.

Computer Processor:
Machine Language (Cont'd)

Four types of machine language instructions:

1. Data Transfer: Move values between memory cells and/or
ALU registers, e.g., LOAD Addrl, LOAD Addr2,
MOVE Addrl Addr?2.

2. Arithmetic: Perform arithmetic / logical operations on
values in memory cells and/or ALU registers, e.g.,
ADD Addrl Addr2 Addr3, ADD Addrl Addr2.

3. Comparison: Compare two values and set CCR bits, e.g.,
COMPARE Addrl Addr2.
4. Branch: Alter next instruction to be executed (often on

basis of preceding comparison), e.g., JUMP Addrl,
JUMPGT Addrl, HALT.

Computer Processor:
Machine Language (Cont'd)

100
101
102

setatovalueofb+c¢ 50

if a > b then

set ¢ to value of a
else

set c to value of b

51
52

60
61
62
63
64
65

value of a

value of b

value of ¢

LOAD 101

ADD 102

STORE 100

COMPARE 100 101

JUMPGT 64

MOVE 101 102

JUMP 65

MOVE 100 102

The Von Neumann Architecture:
A Detailed View Redux

. = 1 =
Memory unit ‘ Arithmetic/Logic unit Input/Output Control unit
J l t~ RO | I]
MAR MDR Ve PC IR
. controller
> Rl
| e i
signal
R2 " +1 Instruction
lenicuy Fetch/Store J :i.mn' Control
el L A
J ¢~ R3
L——— Aauv
Selector lines
==l Figure 5.18 The Organization
Refnelost SEdass mamery of a Von Neumann Computer
e - n Condition code reaister

Invitation to Computer Science, 6th Edition 42

The Von Neumann Architecture:
An Operational View Redux

The Von Neumann Execution Cycle:

while no HALT or fatal error do
Fetch next instruction
Decode instruction
Execute instruction

e Let us consider the details of this cycle in the context of a
16-instruction RISC machine language for a computer with
a single-register ALU.

The Von Neumann Architecture:
An Operational View Redux (Cont'd)

OC Instruction Meaning
0 LOAD Addr CON(Addr) — R
1 STORE Addr R — CON (Addr)
2 CLEAR Addr 0 — CON(Addr)
3 ADD Addr R + CON(Addr) — R
4 INCREMENT Addr CON(Addr)+1 — CON(Addr)
5 SUBTRACT Addr R —CON(Addr) — R
6 DECREMENT Addr CON(Addr) —1 — CON(Addr)
7 COMPARE Addr if CON(Addr) > Rthen GT =1 else 0

if CON(Addr) = Rthen EQ =1 else 0
if CON(Addr) < R then LT = 1 else 0

The Von Neumann Architecture:
An Operational View Redux (Cont'd)

OC Instruction Meaning

8 JUMP Addr Addr — PC

9 JUMPGT Addr if GT =1 then Addr — PC
10 JuMPEQ Addr if EQ =1 then Addr — PC
11 JUMPLT Addr if LT =1 then Addr — PC
12 JuMPNEQ Addr if EQ =0 then Addr — PC

13 IN Addr Store input value at Addr
14 OUT Addr Output CON(Addr)
15 HALT Stop program execution

See page 261 of textbook for notations in “Meaning” column.

The Von Neumann Architecture:
An Operational View Redux (Cont'd)

100 value of a
101 value of b
102 value of ¢

setatovalueofb+c¢ 50 LOAD 101
51 ADD 102
52 | STORE 100

The Von Neumann Architecture:
An Operational View Redux (Cont'd)

100 value of a
101 value of b
102 value of ¢

if a > b then 60 LOAD 101
setctovalueofa 61 | COMPARE 100
else 62 JUMPGT 66

setctovalueof b 63 LOAD 101
64 STORE 102
65 JUMP 68
66 LOAD 100
67 STORE 102
68 o o o

The Von Neumann Architecture:
An Operational View Redux (Cont'd)

100 value of IND

101 | value of MAXIND

setINDto O 60 CLEAR 100
while IND < MAXIND do 61 LOAD 101
<LOOPBODY> 62 COMPARE 100
set IND to IND + 1 63 JUMPGT 77
s <LOOPBODY>
75 INCREMENT 100

76 JUMP 61
77 o o

The Von Neumann Architecture:
An Operational View Redux

Details of the three phases of the Von Neumann cycle:

1. Fetch next instruction: Load next instruction into IR and
update PC, i.e.,
1. PC — MAR
2. FETCH
3. MDR — IR
4. PC+1 — PC
2. Decode instruction: Determine which circuitry must be
activated to execute the instruction, i.e.,

1. IRoy — instruction decoder

The Von Neumann Architecture:
An Operational View Redux

3. Execute instruction: Trigger the unique circuitry required
to execute the instruction, e.g.,

LOAD Addr 1. IRy — MAR
2. FETCH
3. MDR —R
STORE Addr 1. IRy — MAR
2. R— MDR
3. STORE
ADD Addr 1. IR — MAR
2. FETCH
3. MDR — ALU
4. R— ALU
5. ADD
6

ALU — R

Implementing Computers: Beginnings

SSEM ("Baby") EDSAC
(1948, U. Manchester) (1949, U. Cambridge)

SSEM and EDSAC were world’s first operational electronic
stored-program computers.

Implementing Computers: Mainframes

IBM System/360 (1967)

Implementing Computers: Minicomputers

PDP | (1960) PDP 8 (1965)

Implementing Computers: Memory

Magnetic Magnetic disk Magnetic core
tape (1956) (1953)
(1951)

Massive cheap transistor-based storage possible in 1990s.

Implementing Computers: I/O Interfaces

Punch card / tape Teletype CRT Display
(1940s) (1940s) (1940s)

Implementing Computers: Microprocessors

Instead of being a little mainframe, the PC is, in fact,
more like an incredibly big chip. — Robert X. Cringely

The microprocessor was invented by Ted Hoff in 1971.

Implementing Computers: Microcomputers

iy < =
o !, P
\\i/

IBM PC (1981) Apple Macintosh (1984)

Implementing Computers: Microcomputers (Cont'd)

e First true “laptop” PCs (GRiD Compass 1101 (1982) [$8K];
see above left) appear in 1980s, cf., portable “desktop”
PCs like the Osborne I; expense of display and memory
technologies limits market severely.

e Laptops finally surpass desktops in sales in 2008.

Implementing Computers: Microcomputers (Cont'd)

e Hand-held personal computing
appears first as Personal Digital
Assistants (PDAs) in early 1990s.

e Early PDAs (Palm Pilot, Newton)
were typically too too expensive
and based on technologies of
limited user interest, e.g.,
handwriting recognition.

e Second-generation PDAs achieve success among
business and government users when combined with basic
secure messaging abilities, e.g., Blackberry (1999).

Implementing Computers: Microcomputers (Cont'd)

e The convergence of hand-held multimedia-enabled
computing and communication technology has resulted in
tablet computers and smartphones; the former is
preferable for screen size and the latter for device size.

Implementing Computers:
Non-Von Neumann Architectures

CM-2 (1987) DWAVE 2000Q (2017)

Based on massively parallel instruction execution by multiple
processors (CM-2) or quantum entanglement (DWAVE 2000Q).

...And If You Liked This ...

e MUN Computer Science courses on this area:

o COMP 2003: Computer Architecture
o COMP 4723: Introduction to Microprocessors

e« MUN Computer Science professors teaching courses /
doing research in in this area:

» Rod Byrne

