
Computer Science 1000: Part #2

Algorithms

PROBLEMS, ALGORITHMS, AND PROGRAMS

REPRESENTING ALGORITHMS AS

PSEUDOCODE

EXAMPLE ALGORITHMS

ASSESSING ALGORITHM EFFICIENCY



. . . To Recap . . .

• The fundamental task of Computer Science is the design
and development of algorithms for solving important
problems.

• An algorithm is a well-ordered sequence of unambiguous
and effectively computable operations that produces a
result and halts in a finite amount of time.

IF WE CAN SPECIFY AN ALGORITHM
TO SOLVE A PROBLEM,

WE CAN AUTOMATE ITS SOLUTION!!!



Problems, Algorithms, and Programs

Problem

Program Algorithm

Solved BySolved By

Implemented As

(Mental)(Actual)

Problem: A set of inputs and their associated outputs.
Algorithm: A sequence of instructions that solves a problem,

i.e., computes the output for a given input.
Program: A sequence of instructions in some computer

language that solves a problem.



Example: Finding the Area of a Circle

Problem:
Input: A radius r.
Output: The area of a circle with radius r.

Algorithm:
Get the value of radius r
Set the value of area to π × r2

print area
Program:

import sys
r = sys.argv[1]
area = 3.14159 * r * r
print area



Example: Summing a List

Problem:
Input: A list L of n numbers.
Output: The sum of the numbers in L.

Algorithm:
Get the values for list L and n
Set the values of INDEX to 1 and SUM to 0
While (INDEX ≤ n) do

Set the value of SUM to SUM + LINDEX
Set the value of INDEX to INDEX + 1

print the value of SUM



Example: Summing a List (Cont’d)

Program:
import sys
sum = 0
n = int(sys.argv[1])
for i in range(1, n + 1):

curL = int(sys.argv[i + 1])
sum = sum + curL

print sum



Example: Finding the Maximum Value in a List

Problem #1:
Input: A list L with n elements.
Output: The largest-valued element in L.

Problem #2:
Input: A list L with n elements.
Output: The position of the largest-valued
element in L.

Problem #3:
Input: A list L with n elements.
Output: All positions at which the largest-valued
element in L occurs.

MANY POSSIBLE VARIANTS OF A PROBLEM;
MAKE SURE YOU SOLVE THE ONE YOU NEED TO.



Solving Problems with Algorithms:
The Big Picture

Program

Algorithm

Executable

Results

Compiler

Operating
System

Editor /

Word Processor

Compile

Code

Run



Representing Algorithms as Pseudocode

• Natural language not precise enough to express
algorithms as it often relies on context and background
knowledge; programming languages too precise for
abstract thinking needed during algorithm development.

• Pseudocode = programming-language-like statement of
algorithm that does not run on a computer.

• No standard way of writing pseudocode – anything goes,
as long as the result satisfies the definition of an algorithm.

• Three basic types of pseudocode statements:

1. Sequential operations
2. Conditional operations (IF-THEN-ELSE)
3. Iterative operations (loops)



Representing Algorithms as Pseudocode:
Stored Data

• Pseudocode statements manipulate stored data. Let’s
consider two kinds of stored date: variables and lists.

• A variable is a stored data location that can hold a data
value, e.g., variables INDEX and NAME with values 3 and
“Todd”, respectively.:

"Todd"INDEX 3 NAME



Representing Algorithms as Pseudocode:
Stored Data (Cont’d)

• A list is a sequence of some number of stored data
locations, e.g., a list LM with 5 data locations:

LM

2

index

2 4−1 1 3

51 3 4

• Each data location in a list has its own index, and that
location is accessed using that index as a subscript, e.g.,
LM2 and LM4 have values -1 and 1, respectively.

• A wanted index into a list may itself be a variable, e.g., if
INDEX has value 3, LMINDEX = LM3 has value 4.



Representing Algorithms as Pseudocode:
Stored Data (Cont’d)

• Many possible names for variables and lists, e.g.,

LISTINDEX⇔ INDEX⇔ IND⇔ X

FOUNDVALUEPOS⇔ FOUNDPOS⇔ FPOS⇔ Y

LISTVALUESUM⇔ LISTSUM⇔ SUM⇔ Z

• To make code easier to read and understand, choose
variable and list names that are short but informative, e.g.,
INDEX, FOUNDPOS, SUM.



Representing Algorithms as Pseudocode:
Sequential Operations

Computation: Set the value of a variable to something, e.g.,

Set the value of INDEX to INDEX + 1
Add 1 to INDEX
INDEX = INDEX + 1

Input: Get variable values from the outside world, e.g.,

Get the values for X and list L
Read in the values for X and list L

Output: Send some message (such as computed variable
values) to the outside world, e.g.,

Print the value of SUM
Print the message "not found"
Return the value of SUM



Representing Algorithms as Pseudocode:
Conditional Operations

• In general, conditional operations only execute if a
specified condition is true.

• Basic conditions ask if a variable or list-location has a
value with particular characteristics, e.g.,

SUM is 10
FOUNDPOS is not equal to -1

INDEX ≤ n
LINDEX is "potato"

• Conditions can also be logical combinations (via AND and
OR) of basic conditions, e.g.,

(INDEX ≥ 1 and INDEX ≤ n)
(LINDEX is "apple" or LINDEX is "orange")



Representing Algorithms as Pseudocode:
Conditional Operations (Cont’d)

IF-THEN: Do something if some condition is true, e.g.,

if (LINDEX is X) then
Set the value of FOUND to "YES"
Print the message "found"

IF-THEN-ELSE: Do first thing if some condition is true and if
not do second thing, e.g.,

if (LINDEX is X) then
Set the value of FOUND to "YES"
Print the message "found"

else
Set the value of INDEX to INDEX + 1



Representing Algorithms as Pseudocode:
Conditional Operations (Cont’d)

Multiple IF-THEN-ELSE: Do something depending on which of
a set of conditions is true and if none of the
conditions are true do something else, e.g.,

if (LINDEX is "apple" or "orange") then
NUMFRUIT = NUMFRUIT + 1

else if (LINDEX is "potato") then
NUMVEG = NUMVEG + 1

else if (LINDEX is "thyme") then
NUMHERB = NUMHERB + 1

else
print "unrecognized produce item"



Representing Algorithms as Pseudocode:
Iterative Operations

Conditional Iteration: Repeat something as long as a condition
is true, e.g.,

Set the values of INDEX to 1 and SUM to 0
while (INDEX ≤ n) do

Set the value of SUM to SUM + LINDEX
Set the value of INDEX to INDEX + 1

Counted Iteration: Repeat something as long as a condition is
true, e.g.,

Set the value of SUM to 0
for INDEX = 1 to n do

Set the value of SUM to SUM + LINDEX



Example Algorithms:
Overview

• Every algorithm has at least one underlying intuition which
is subsequently refined into an algorithm proper.

• Let’s look at how some classic algorithms are derived from
their underlying intuitions.

• These algorithms are for the following problems:

1. List Search
2. List Maximum Value
3. List Sorting
4. Bin Packing



The List Search Problem

LIST SEARCH

Input: A list L with n elements and a value X.
Output: The position of the element with value X in L if such
an element exists and -1 otherwise.

• Has many applications, e.g., looking up a person’s
telephone number, charging some amount to a credit card,
finding out if anyone won the Lotto Max jackpot this week.

• For simplicity, assume X and all list-elements are numbers;
however, our algorithms work for any values that can be
ordered, e.g., words, names.



Sequential List Search:
Intuition

“Well, if I don’t know anything else about the list
except that it has n elements, I suppose I’ll have
to look at each element in the list and see if it
is equal to the target-value. If I find such an el-
ement, I can stop and save that element’s posi-
tion; otherwise, I return -1 after I’ve looked at all
elements in the list. Sounds like a lot of work.
Bummer.”



Sequential List Search:
Algorithm (Version 0)

Get values for X, list L, and n
Set the value of INDEX to 1 and FOUND to "NO"
While (FOUND is "NO") and (INDEX ≤ n) do

If LINDEX is X then
Set the value of FOUND to "YES"
Print the message “found”

Else
Set the value of INDEX to INDEX + 1

If (FOUND is "NO") then
Print the message “not found”



Sequential List Search:
Algorithm (Version 1)

Get values for X, list L, and n
Set the value of FOUNDPOS to -1 and INDEX to 1
while (FOUNDPOS is -1) and (INDEX ≤ n) do

if (LINDEX is X) then
Set the value of FOUNDPOS to INDEX

else
Set the value of INDEX to INDEX + 1

return FOUNDPOS



Sequential List Search:
Algorithm (Version 2)

Get values for X, list L, and n
FOUNDPOS = -1
INDEX = 1
while (FOUNDPOS is -1) and (INDEX ≤ n) do

if (LINDEX is X) then
FOUNDPOS = INDEX

else
INDEX = INDEX + 1

return FOUNDPOS



Binary List Search:
Intuition

“Hmmm ... Suppose this time I know L is sorted.
Whenever I look at LINDEX where INDEX is the
middle of the list and LINDEX is not equal to
the target-value, as L is sorted, I know that
the target-value must be either above or below
INDEX in the list (depending on whether the
target-value is greater or less than LINDEX). I
can keep repeating this in a loop until I either
find the target-value or run out of list to search.
This should finish way faster because each time
I halve the size of the list I’m looking at. Cool!”



Binary List Search:
Algorithm (Version 0)

Get values for X, list L, and n
Set the current list to all of L
while we haven’t found X in list L and
there’s still a current list to search do

if X isn’t the middle element of the current list then
if X > middle element then

set current list to upper part of current list
else

set current list to lower part of current list



Binary List Search:
Algorithm (Version 1)

Get values for X, list L, and n
FOUNDPOS = -1
LEFT = 1
RIGHT = n
while (FOUNDPOS is -1) and (LEFT ≤ RIGHT) do

FOUNDPOS = (LEFT + RIGHT) / 2
if (LFOUNDPOS is not equal to X) then

if (X > LFOUNDPOS) then
LEFT = FOUNDPOS + 1

else
RIGHT = FOUNDPOS - 1

FOUNDPOS = -1
return FOUNDPOS



The List Maximum Value Problem

LIST MAXIMUM VALUE

Input: A list L with n elements.
Output: The position of the largest-valued element in L.

• Has many applications, e.g., looking for the employer that
pays the highest salary for a particular job; is also a useful
building block in more complex algorithms, e.g., list sorting.

• For simplicity, assume all list-elements are numbers;
however, our algorithm work for any values that can be
ordered, e.g., words, names.

• Can be readily adapted to find smallest list values.



List Maximum Search:
Intuition

“Well, if I don’t know anything else about the
list except that it has n elements, I suppose I’ll
have to look at each element in the list and keep
track as I go of which element is the largest I’ve
found so far. After I’ve gone through this list, the
largest I found by then is the largest in the list.
Again, sounds like a lot of work. Bummer.”



List Maximum Search:
Algorithm (Version 0)

Get values for list L and n
Set the values of LARGEST to L1, FOUNDPOS to 1, and

INDEX to 2
While (INDEX ≤ n) do

If LINDEX > LARGEST then
Set the value of LARGEST to LINDEX
Set the value of FOUNDPOS to INDEX

Set the value of INDEX to INDEX + 1
Print the value of FOUNDPOS



List Maximum Search:
Algorithm (Version 1)

Get values for list L and n
FOUNDPOS = 1
INDEX = 2
while (INDEX ≤ n) do

if LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

INDEX = INDEX + 1
return FOUNDPOS



List Maximum Search:
Algorithm (Version 2)

Get values for list L and n
FOUNDPOS = 1
for INDEX = 2 to n do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

return FOUNDPOS



The List Sorting Problem

LIST SORTING

Input: A list L with n elements.
Output: The version of L sorted in ascending value order.

• Has many applications, e.g., generating lists of employees
by name or salary; also enables algorithms that require
sorted list, e,g„ binary list search.

• For simplicity, assume all list-elements are numbers;
however, our algorithms work for any values that can be
ordered, e.g., words, names.

• Can be readily adapted to sort in descending value order.



Selection Sort:
Intuition

“The last element in a sorted list is the largest
in the list, the second-last element is the largest
among the remaining elements in the list, and so
on. Perhaps we could use a find-list-maximum
algorithm in a loop!”



Selection Sort:
Algorithm (Version 0)

Get values for list L and n
Set the marker for the unsorted section at the end of L
While the unsorted section is not empty do

Find largest element in unsorted section of list
Swap this largest element with the last element in

the unsorted part of the list
Move the marker for the unsorted section left

one position



Selection Sort:
Algorithm (Version 1)

Get values for list L and n
ENDUNSORTED = n
While (ENDUNSORTED > 1) do

FOUNDPOS = 1
for INDEX = 2 to ENDUNSORTED do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

TMP = LENDUNSORTED
LENDUNSORTED = LFOUNDPOS
LFOUNDPOS = TMP
ENDUNSORTED = ENDUNSORTED - 1



Bubble Sort:
Intuition

“In order for a list to be unsorted, there must
be at least one pair of adjacent list-elements
LINDEX and LINDEX+1 such that LINDEX > LINDEX+1.
Suppose we kept going through the list, swap-
ping bad adjacent list-element pairs until there
weren’t any more such pairs?”



Bubble Sort:
Algorithm (Version 0)

Get values of list L
while list is not sorted do

traverse L, swapping bad adjacent list-element pairs
as necessary

if no swaps occurred then
the list is sorted



Bubble Sort:
Algorithm (Version 1)

Get values of list L and n
SORTED = "NO"
while (SORTED is "NO") do

NUMSWAP = 0
for INDEX = 2 to n do

if (LINDEX−1 > LINDEX) then
TMP = LINDEX−1
LINDEX−1 = LINDEX
LINDEX = TMP
NUMSWAP = NUMSWAP + 1

if (NUMSWAP is 0) then
SORTED = "YES"



Bubble Sort:
Algorithm (Version 2)

Get values of list L and n
SORTED = "NO"
while (SORTED is "NO") do

SORTED = "YES"
for INDEX = 2 to n do

if (LINDEX−1 > LINDEX) then
TMP = LINDEX−1
LINDEX−1 = LINDEX
LINDEX = TMP
SORTED = "NO"



The Bin Packing Problem

BIN PACKING

Input: A bin size B and a list L of n item sizes, each ≤ B.
Output: The smallest number of bins of size B that can hold
all of the items in L.

• Has many applications, e.g., minimizing order packaging
for online retailers.

• Has a set of candidate solutions (packings of the items of L
into bins), each with their own cost (number of bins in a
packing), and requires a candidate solution that optimizes
that cost; hence, this is an optimization problem.



Bin Packing:
Intuitions

Intuition #1: “If I have at most n items, I’ll need
at most n bins. How about I try all possible ways
of dividing the items in L among n or less bins,
and then check each packing to make sure that
no bin has items that are too big for that bin?”

Intuition #2: “Intuition #1 sounds way too hard.
How about I just do it like Doug at Sobey’s – take
each item in L in turn and add it to the current
bin, and if that item is too large, make a new bin
and add it to that one?”



Problems, Algorithms, and Programs Redux

• A problem typically has many algorithms – which one
should we implement in a program?

• Attributes of algorithms:
• Correctness, i.e., does the algorithm produce the

requested outputs for all inputs?
• Comprehensibility, i.e., is the algorithm easy to

understand?
• Elegance, i.e., is the algorithm compact and/or

mathematically beautiful?
• Efficiency, i.e., is the runtime and/or memory used by the

algorithm practical as input sizes increase?

• There may not be one algorithm for a problem that has all
four attributes above. However, in general, correctness and
efficiency are primary in real-world applications.



Assessing Algorithm Efficiency

• In general, the best algorithm is the one with the lowest
running time.

• Comparing algorithms by raw running time problematic:
• Raw running times machine / language / OS dependent.
• Raw running times input dependent.
• Algorithm may not be implemented in a program.

• Need an abstract mathematical conception of algorithm
efficiency, phrased in terms of a function of input size n,
which is easily usable and comprehensible.

• The three abstractions involved in this conception sketched
here can be viewed as necessary lies.



Necessary Lie #1:
Focus on Important Instructions

A

B

C

D

E

F

GH

I K

K

L

M
N

O

P

Q

R

S
T

U

• Compute runtime on an input by counting the number of
important instructions that are executed.

• Is machine-independent (raw abstract runtime).



Necessary Lie #2:
Worst-Case Runtime Summary

E

B

H

D

C

A

I

GK

L

M

O

N

F

J

Input Size

Run

Time

(n)

T(n)

• Group inputs by input size; summarize each size by largest
runtime for that size.

• Is input-independent (worst-case abstract runtime).



Necessary Lie #3:
Asymptotic Smoothing

E

B

H

D

C

A

I

GK

L

M

O

N

F

J

Input Size

Run

Time

(n)

T(n)

O(f(n))

• Reduce worst-case abstract runtime function to largest
term.

• Is simple (asymptotic worst-case abstract runtime, i.e.,
worst-case time complexity).



Deriving Worst-Case Time Complexities

If already have worst-case abstract runtime function, select
largest term, e.g.,

2 log n + 4 ⇒ O(log n)

3n2 + 1000n + 13 ⇒ O(n2)

12n4 + 5n2 + 900 ⇒ O(n4)

(3× 2n) + 900n50 + 57 ⇒ O(2n)



Deriving Worst-Case Time Complexities (Cont’d)

Otherwise, multiply out “deepest” loop-chain in algorithm, e.g.,
n× n = O(n2) time for Selection Sort.

Get values for list L and n
ENDUNSORTED = n
While (ENDUNSORTED > 1) do

FOUNDPOS = 1
for INDEX = 2 to ENDUNSORTED do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

TMP = LENDUNSORTED
LENDUNSORTED = LFOUNDPOS
LFOUNDPOS = TMP
ENDUNSORTED = ENDUNSORTED - 1



. . . And This All Matters Because? . . .

• Considering all instructions rather than just important ones
only increases raw abstract runtime and hence worst-case
abstract runtimes by constant multiplicative factors. But
this is not the problem that it initially seems (see below).

• Could consider best- or average-case time complexity;
however, worst-case best when trying to plan using
algorithm-produced results in the real world, e.g., aircraft
collision avoidance.

• Asymptotic smoothing gives much simpler functions than
worst-case abstract runtimes, which eases algorithm
comparison.



. . . And This All Matters Because? . . . (Cont’d)

• We typically want to solve larger and larger inputs (living
in Asymptopia); moreover, functions with different leading
terms often differ regardless of constant multiplicative
factors for sufficiently large inputs, i.e.,

c1n2 > c2n
c1n > c2

n >
c2

c1

This is the ultimate justification for asymptotic smoothing
and our focus on orders of magnitude in assessing
algorithm efficiency.



Time Complexity Orders of Magnitude

O(log n) Logarithmic Time (Binary Search)

O(n) Linear Time (Sequential Search)

O(n2) Quadratic Time (List Sort)

O(2n) Exponential Time (Bin Packing #1)

Polynomial Time = O(nc) time for constant c



Table of Doom (1 Gigaflop/s Version)

Time Complexity
Input B-Search S-Search Sort MST BP#1

Size (n) (log2 n) (n) (n2) (n3) (2n)
10 < 1 < 1 < 1 < 1 < 1

second second second second second
50 < 1 < 1 < 1 < 1 13

second second second second days
100 < 1 < 1 < 1 < 1 4× 1013

second second second second years
1000 < 1 < 1 < 1 1 4× 10284

second second second second years
one < 1 < 1 2 30 –

million second second minutes years
300 < 1 < 1 10 9× 105 –

million second second days years
five < 1 5 8 4× 1012 –

billion second seconds centuries years



Algorithms: Some Final Thoughts

• The conception of algorithm efficiency sketched here
makes various assumptions that need not always be
relevant, e.g., input sizes may always be small.

• It can be proven that certain problems do not have
algorithms that are fast and correct – hence, fast
algorithms that produce approximate solutions may need
to be invoked, e.g., Bin Packing #2.

• There is typically no best algorithm for a problem – rather,
there are algorithmic options that are more or less
appropriate.

. . . Much work remains to be done . . .



. . . And If You Liked This . . .

• MUN Computer Science courses on this area:

• COMP 2002: Data Structures and Algorithms
• COMP 4740: Design and Analysis of Algorithms
• COMP 4741: Formal Languages and Computability

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Rod Byrne
• Antonina Kolokolova
• Manrique Mata-Montero
• Todd Wareham


