
Computer Science 1000: Part #7

Programming in Python

PROGRAMMING LANGUAGES: AN OVERVIEW

THE PYTHON PROGRAMMING LANGUAGE

IMPLEMENTING PROGRAMMING

Programming Languages: An Overview
• Disadvantages of assembly language:

1. Low-level / concrete conception of data, e.g.,
numbers, registers⇐⇒ memory.

2. Low-level / concrete conception of task, e.g., ADD,
COMPARE, JUMP.

3. Machine-specific.
4. Not like natural language.

• Advantages of high-level programming language:

1. High-level / abstract conception of data, e.g., lists,
data item⇐⇒ data item.

2. High-level / abstract conception of task, e.g.,
IF-THEN-ELSE, WHILE loop.

3. Machine-independent∗.
4. Like natural language.

Programming Languages: An Overview (Cont’d)

• A programming language is defined by the valid
statements in that language (syntax) and what those
statements do (semantics).

• A programming language can be compiled (whole
program translated into machine language) or interpreted
(individual program-statements translated as needed).

• Machine-independence achieved formally by standards,
e.g., ANSI, IEEE, and implemented in practice by
intermediate languages, e.g., bytecode.

• Machine-independence is often violated, e.g., may exploit
particular machines and/or modify language features;
additional incompatible variants may arise as language
evolves over time, e.g., Python 2.x vs. Python 3.x.

Programming Languages: An Overview (Cont’d)

Programming Languages: An Overview (Cont’d)

Two reasons why there are many programming languages:

1. Languages are designed for different tasks, e.g.,

• Scientific computation (FORTRAN)
• Business applications (COBOL)
• Web-page creation (HTML)
• Database creation (SQL)

2. Languages are designed for different ways of thinking
about programming, e.g.,

• Procedural programming (FORTRAN, COBOL, C)
• Object-oriented programming (OOP) (C++, Java)
• Logic Programming (Prolog)
• Script-based programming (Javascript, Ruby)

The Python Programming Language: Overview
• Created by Guido van Rossum in 1991 as an easy-to-learn

general-purpose programming language.
• Procedural scripting language that allows but does not

require OOP (“as OOP as you wanna be”).
• Key design principles:

• Control structure indicated by indentation.
• Powerful built-in data types.
• Any variable can refer to any type of data, and this

type can change as a program executes.

• Primarily interpreted but can be compiled for speed.
• General machine-independence achieved by bytecode;

however, Python 3.x not directly backward-compatible with
Python 2.x.

The Python Programming Language:
A First Example Program

1. # Example program; adapted from
2. # Online Python Supplement, Figure 1.2
3.
4. speed = input("Enter speed (mph): ")
5. speed = int(speed)
6. distance = input("Enter distance (miles): ")
7. distance = float(distance)
8.
9. time = distance / speed

10,
11. print("At", speed, "mph, it will take")
12. print(time, "hours to travel", \
13. distance, "miles.")

The Python Programming Language:
A First Example Program (Cont’d)

• Python programs are stored in files with extension.py,
e.g., example1.py.

• When this program is executed using a Python interpreter
and the user enters the boldfaced values, this is printed:

Enter speed (mph): 58
Enter distance (miles): 657.5
At 58 mph it will take
11.3362068966 hours to travel 657.5 miles.

The Python Programming Language:
A First Example Program (Cont’d)

• Line numbers not necessary; are given here to allow easy
reference to program lines.

• Lines beginning with hash (#) are comments (Lines 1-2);
a prologue comment at the top of the program gives a
program’s purpose and creation / modification history.

• Comment and blank lines (Lines 3, 8, and 10) are ignored.
• Each line is a program statement; multiline statements are

linked by end-of-line backslashes (\) (Lines 12-13).
• No variable-type declaration statements; this is handled by

assignment statements (Lines 4-7 and 9).
• This program also has basic I/O statements (Lines 4, 6,

and 11-13); control statements will be shown later.

The Python Programming Language:
Assignment Statements

• General form: variable = expression, e.g.,

• index = 1
• myDistanceRate = curDistanceRate * 1.75
• name = "Todd Wareham"
• curDataFilename = main + ".txt"
• callList = ["Bob", "Sue", "Anne"]

• Sets the value of variable to the value of expression.

• If variable did not already exist, it is created.
• If variable did already exist, its previous value is

replaced. Note that the data-type of this previous
value need not be that of the value created by
expression.

The Python Programming Language:
Assignment Statements (Cont’d)

• Variable names (also called identifiers) can be arbitrary
sequences of letters, numbers and underscore symbols (_)
such that (1) the first symbol is a letter and (2) the
sequence is not already used in the Python language, e.g.,
if, while.

• Python is case-sensitive wrt letter capitalization, e.g.,
myList is a different variable than mylist.

• By convention, variables are a mix of lower- and upper-
case letters and numbers; words may be combined to form
a variable name in so-called “camel-style”, e.g., myList,
dataFilename1.

The Python Programming Language:
Assignment Statements (Cont’d)

• By convention, constants use only upper-case letters and
numbers, e.g., �PI, TYPE1COLOR.

• Though constants should not change value, they are
still technically variables, e.g.,

...
PI = 3.1415927
...
PI = -1
...

It is up to programmers to make sure that such
changes do not happen.

• Underscores reserved for Python system constants.

The Python Programming Language:
Assignment Statements (Cont’d)

• The int and float data-types

• Encode “arbitrary” integers, e.g., -1001, 0, 57, and
floating-point numbers, e.g. -100.2, 3.1415927.

• Support basic arithmetic operations (+, -, *, /);
also have floor-division (//) and remainder (%)
operations, e.g.,

7 / 2 =⇒ 3.5
7 // 2 =⇒ 3
7 % 2 =⇒ 1

Behaviour of / incompatible with Python 2.x.
• Many additional math functions and constants

available in the math module, e.g., abs(x),
pow(base, exponent), sqrt(x), pi.

The Python Programming Language:
Assignment Statements (Cont’d)

radius = input("Enter radius: ")
radius = float(radius)
area = 3.1415927 * radius * radius
print("Circle Area = ", area)

import math

radius = input("Enter radius: ")
radius = float(radius)
area = math.pi * math.pow(radius, 2)
print("Circle Area = ", area)

The Python Programming Language:
Assignment Statements (Cont’d)

• The str data-type

• Encodes “arbitrary” character strings, e.g., "657.5",
"Todd Wareham".

• Supports many operations, e.g.,

• Concatenation (+) ("Todd" + " " +
"Wareham" =⇒ "Todd Wareham")

• Lower-casing ("Todd".lower() =⇒ "todd")
• Upper-casing ("Todd".upper() =⇒ "TODD")

• Convert between data types using type casting functions,
e.g., float("657.5") =⇒ 657.5, int(657.5) =⇒
657, str(58) =⇒ "58".

The Python Programming Language:
Assignment Statements (Cont’d)

• The list data-type

• Encodes “arbitrary” lists, e.g., [22, 5, 13, 57,
-1], ["Bob", "Sue", "Anne"].

• Items in list L indexed from 0 as L[IND], e.g., if L =
[22, 5, 13, 57, -1], L[0] =⇒ 22 and L[4]
=⇒ -1.

• Supports many operations, e.g.,

• Number of values in list (len(L))
• Append x to right end of list (L.append(x))
• List sorting (L.sort())
• Get list maximum value (max(L))

The Python Programming Language:
I/O Statements

• Keyboard input done via input(string).
• Prints string on screen, waits for user to enter input

followed by a key return, and then returns this input-string.
• Input-string can be converted as necessary by type-casting

functions, e.g., float(radius).

• Screen output done via print(plist).
• Comma-separated items in plist converted to strings as

necessary and concatenated, and resulting string printed.
• By default, each print-statement prints one line; can

override this by making end = " ") the last item.
• Can include escape characters to modify printout, e.g.,
\t (tab), \n (newline),

• Above I/O incompatible with Python 2.x.

The Python Programming Language:
I/O Statements (Cont’d)

The statements

print("Here is \t a weird")
print("way \n of printing ", end = " ")
print("this message.")

print(out)

Here is a weird
way
of printing this message.

The Python Programming Language:
A First Example Program Redux

1. # Example program; adapted from
2. # Online Python Supplement, Figure 1.2
3.
4. speed = input("Enter speed (mph): ")
5. speed = int(speed)
6. distance = input("Enter distance (miles): ")
7. distance = float(distance)
8.
9. time = distance / speed

10,
11. print("At", speed, "mph, it will take")
12. print(time, "hours to travel", \
13. distance, "miles.")

The Python Programming Language:
Control Statements

• Sequential Statements (Statement Block):

• A set of statements with the same indentation.
• All Python programs seen so far are purely sequential.

• Conditional Statements:

• General form:
if (CONDITION1):

〈 CONDITION1 Block〉
elif (CONDITION2):

〈 CONDITION2 Block〉
...

else:
〈 ELSE Block〉

• elif and else blocks are optional.

The Python Programming Language:
Control Statements (Cont’d)

Conditions typically based on variable-comparisons, possibly
connected together by logical operators.

x == y x equal to y
x != y x not equal to y
x < y x less than y
x <= y x less than or equal to y
x > y x greater than y
x >= y x greater than or equal to y

E1 and E2 logical AND of E1 and E2
E1 or E2 logical OR of E1 and E2
not E1 logical NOT of E1

The Python Programming Language:
Control Statements (Cont’d)

if ((number % 2) == 0):
print("number is even")

if ((number >= 1) and (number <= 10)):
print("number in range")

if (1 <= number <= 10)):
print("number in range")

if not (1 <= number <= 10)):
print("number not in range")

The Python Programming Language:
Control Statements (Cont’d)

if ((number % 2) == 0):
print("number is even")

else:
print("number is odd")

if (number < 10):
print("number less than 10")

elif (number == 10):
print("number equal to 10")

else:
print("number greater than 10")

The Python Programming Language:
Control Statements (Cont’d)

• Conditional Looping Statement:

• General form:
while (CONDITION):
〈 Loop Block 〉

• Executes Loop Block as long as CONDITION is True.

• Iterated Looping Statement:

• General form:
for x in LIST:
〈 Loop Block 〉

• Executes Loop Block for each item x in LIST.

The Python Programming Language:
Control Statements (Cont’d)

Print the numbers between 1 and 100 inclusive:

number = 1
while (number <= 100):

print(number)
number = number + 1

for number in range(1, 101):
print(number)

The Python Programming Language:
Control Statements (Cont’d)

Sum the numbers in a −1-terminated list:

sum = 0
number = int(input("Enter number: "))
while (number != -1):

sum = num + number
number = int(input("Enter number: "))

print("Sum is ", sum)

The Python Programming Language:
Control Statements (Cont’d)

Find the maximum value in a −1-terminated list:

maxValue = -99
number = int(input("Enter number: "))
while (number != -1):

if (number > maxValue):
maxValue = number

number = int(input("Enter number: "))
print("Maximum value is ", maxValue)

The Python Programming Language:
Control Statements (Cont’d)

Store the values in a −1-terminated list in L:

L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

Print the values in list L (one per line):

for number in L:
print(number)

The Python Programming Language:
Control Statements (Cont’d)

Sort the n values in list L (Selection Sort pseudocode):

ENDUNSORT = n
While (ENDUNSORT > 1) do

FPOS = 1
for IND = 2 to ENDUNSORT do

If LIND > LFPOS then
FPOS = IND

TMP = LENDUNSORT
LENDUNSORT = LFPOS
LFPOS = TMP
ENDUNSORT = ENDUNSORT - 1

The Python Programming Language:
Control Statements (Cont’d)

Sort the values in list L (Selection Sort):

endUnSort = len(L) - 1
while (endUnSort > 0):

maxPos = 0
for ind in range(1, endUnSort + 1):

if (L[ind] > L[maxPos]):
maxPos = ind

tmp = L[endUnSort]
L[endUnSort] = L[maxPos]
L[maxPos] = tmp
endUnSort = endUnSort - 1

The Python Programming Language:
Control Statements (Cont’d)

Store unique values in sorted list L in list LUnique:

LUnique = []
curValue = L[0]
for ind in range(1, len(L)):

if (L[ind] != curValue):
LUnique.append(curValue)
curValue = L[ind]

LUnique.append(curValue)

The Python Programming Language:
Functions

• Compartmentalize data and tasks in programs with
functions; allow implementation of divide-and-
conquer-style programming.

• General form:

def funcName():
〈 Function Block 〉

def funcName(parameterList):
〈 Function Block 〉

def funcName(parameterList):
〈 Function Block 〉
return value

The Python Programming Language:
Functions (Cont’d)

• A variable defined inside a function is a local variable;
otherwise, it is a global variable.

• If a local variable has the same name as a global variable,
the local variable is used inside the function.

• What does this print?

def myFunc1():
one = -1
print(one, two)

one = 1
two = 2
print(one, two)
myFunc1()
print(one, two)

The Python Programming Language:
Functions (Cont’d)

• The parameters in a function’s parameter-list match up
with and get their values from the arguments in the
argument-list of a function call in numerical order, not by
parameter / argument name.

• What does this print?

def myFunc2(one, two, three):
print(one, two, three)

one = 1
two = 2
three = 3
print(one, two, three)
myFunc2(two, three, one)
print(one, two, three)

The Python Programming Language:
Functions (Cont’d)

• The value returned by a function can be captured by an
assignment statement which has that function as the
expression.

• What does this print?

def myFunc3(one, two, three):
sum = (one + two) - three
return sum

one = 1
two = 2
three = 3
result = myFunc3(two, three, one)
print(result)

The Python Programming Language:
Functions (Cont’d)

• Eliminate global variables with main functions.
• What does this print?

def myFunc4(one, two, three):
sum = (one + two) - three
return sum

def main():
one = 1
two = 2
three = 3
result = myFunc4(two, three, one)
print(result)

main()

The Python Programming Language:
Functions (Cont’d)

• Compartmentalize data and tasks in programs with
functions; allow implementation of divide-and-
conquer-style programming (which is based on the
levels-of-abstraction organizational principle).

• Functions useful in all stages of software development:

1. Planning (View complex problem as set of simple
subtasks)

2. Coding (Code individual subtasks independently)
3. Testing (Test individual subtasks independently)
4. Modifying (Restrict changes to individual subtasks)
5. Reading (Understand complex problem as set of

simple subtasks)

The Python Programming Language:
Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #1):

L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

for number in L:
print(number)

The Python Programming Language:
Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #2):

def readList():
L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

def printList():
for number in L:

print(number)

readList()
printList()

The Python Programming Language:
Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #3):

def readList():
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

def printList():
for number in L:

print(number)

L = []
readList()
printList()

The Python Programming Language:
Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #4):

def readList():
L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

return L

def printList(L):
for number in L:

print(number)

L = readList()
printList(L)

The Python Programming Language:
Functions (Cont’d)

def readList():
L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

return L

def printList(L):
for number in L:

print(number)

def main():
L = readList()
printList(L)

main()

The Python Programming Language:
Functions (Cont’d)

Sort the values in list L (Selection Sort) (Function):

def sortList(L):
endUnSort = len(L) - 1
while (endUnSort > 0):

maxPos = 0
for ind in range(1, endUnSort + 1):

if (L[ind] > L[maxPos]):
maxPos = ind

tmp = L[endUnSort]
L[endUnSort] = L[maxPos]
L[maxPos] = tmp
endUnSort = endUnSort - 1

return L

The Python Programming Language:
Functions (Cont’d)

Compute unique values in sorted list L (Function):

def getUniqueList(L):
LUnique = []
curValue = L[0]
for ind in range(1, len(L)):

if (L[ind] != curValue):
LUnique.append(curValue)
curValue = L[ind]

LUnique.append(curValue)
return LUnique

The Python Programming Language:
Functions (Cont’d)

Main function for unique-value list program:

def main():
L = readList()
L = sortList(L)
L = getUniqueList(L)
printList(L)

The Python Programming Language:
Object-Oriented Programming

• Python implements OOP using standard dot syntax, e.g.,

• object.attribute (internal object attribute, e.g.,
c.radius)

• object.function(plist) (internal object
function, e.g., L.sort())

Note that some attributes / functions are publicly available
and others are private to the object itself.

• Objects typically created by assignment statements in
which expression is special object-constructor function,
e.g., o = object(plist).

• Illustrate OOP via graphics library (Dr. John Zelle).

The Python Programming Language:
Graphics Programming

• Graphics critical in GUI and visualization.
• Graphics screen hardware is bitmapped display

(1560× 1280 pixels); by convention, position (0, 0) is in the
upper lefthand corner.

• Each pixel in this display directly maps to one element of
the frame buffer (1560× 1280× 24 bits / pixel = 6 MB).

• Due to screen fading, each pixel re-painted / refreshed on
screen 30–50 times pers second to avoid flicker.

• Objects in Python graphics library model not only graphics
window on screen but also all high-level graphics objects
that are displayed in that window.

• Invoke library via command from graphics import *.

The Python Programming Language:
Graphics Programming (Cont’d)

The Python Programming Language:
Graphics Programming (Cont’d)

The Python Programming Language:
Graphics Programming (Cont’d)

win = GraphWin(title, width, height)

Blah Blah Blah

h
e
ig
h
t

width

title

The Python Programming Language:
Graphics Programming (Cont’d)

point = Point(x, y)
line = Line(startPoint, endPoint)
circle = Circle(centerPoint, radius)

startPoint

endPoint

centerPoint

radius

The Python Programming Language:
Graphics Programming (Cont’d)

rect = Rectangle(upperLeftP, lowerRightP)
oval = Oval(upperLeftP, lowerRightP)
text = Text(centerP, textString)

upperLeftPoint upperLeftPoint

lowerRightPointlowerRightPoint Blah blah blah.

centerPoint textString

The Python Programming Language:
Graphics Programming (Cont’d)

from graphics import *

win = GraphWin("My Robot", 120, 100)
face = Circle(Point(60, 50), 30)
face.draw(win)
mouth = Rectangle(Point(45,55), Point(75,65))
mouth.setFill(’black’)
mouth.draw(win)
antenna = Line(Point(30,50), Point(30,20))
antenna.draw(win)
antennaText = Text(Point(30, 15), "beep")
antennaText.draw(win)
eye = Oval(Point(50,35), Point(70,45))
eye.draw(win)

win.getMouse()
win.close()

The Python Programming Language:
Graphics Programming (Cont’d)

beep

My Robot

The Python Programming Language:
Graphics Programming (Cont’d)

• To draw graphics-object o in graphics window win, use
command o.draw(win).

• To color interior of circle, rectangle, or oval graphics object
o, use command o.setFill(colorString), e.g.,
rect.setFill(‘blue’).

• Make sure all drawn lines are inside the grid defined on the
graphics window – otherwise, portions of what you want to
draw will be missing (“If it’s not in the frame, it doesn’t
exist.” – Shadow of the Vampire (2000)).

• An alternative to drawing lines object by object is to create
a list of line-objects and then draw them using a for- loop.

The Python Programming Language:
Graphics Programming (Cont’d)

from graphics import *

win = GraphWin("List-drawn figure", 120, 100)
L = []
L.append(Line(Point(60,10), Point(110,50))
L.append(Line(Point(110,50), Point(60,90))
L.append(Line(Point(60,90), Point(10,50))
L.append(Line(Point(10,50), Point(60,10))
for line in L:

line.draw(win)

win.getMouse()
win.close()

The Python Programming Language:
Graphics Programming (Cont’d)

List−drawn figure

Implementing Programming: The Software Crisis

• Act of programming
made easier by
compilers, languages,
and operating systems;
problem of developing
algorithms remained.

• Special notations like
flowcharts help with
small- and medium-size
programs; hope was
that appropriate
management would
help with large ones.

Implementing Programming:
The Software Crisis (Cont’d)

The SABRE Airline Reservation System (1964)

Implementing Programming:
The Software Crisis (Cont’d)

IBM System/360 (1967)

Implementing Programming:
The Software Crisis (Cont’d)

Fred Brooks Jr.
(1931–)

• OS/360 initially planned for 1965 costing $125M; limped to
market in 1967 costing $500M, and virtually destroyed
IBM’s in-house programming division.

• Brooks discussed causes in The Mythical Man Month.

Implementing Programming:
The Software Crisis (Cont’d)

Implementing Programming:
The Software Crisis (Cont’d)

As both larger programs and larger teams have more complex
internal relationships, adding more programmers to larger
projects makes things worse.

Implementing Programming:
The Software Crisis (Cont’d)

• Software Engineering born at 1968 NATO-sponsored
conference; goal of SE is to develop efficient processes for
creating and maintaining correct software systems.

• Many types of processes proposed, e.g., design and
management methodologies (Agile), automatic software
derivation methods; however, “No Silver Bullet” (Brooks).

. . . And If You Liked This . . .

• MUN Computer Science courses on this area:

• COMP 1001: Introduction to Programming
• COMP 2001: Object-oriented Programming and HCI
• COMP 2005: Software Engineering
• COMP 4711: Structure of Programming Languages

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Miklos Bartha
• Ed Brown
• Rod Byrne
• Adrian Fiech

