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ABSTRACT
Information theory and its indices were developed for human 
communication to predict the amount of information transferred 
in a message. One such index, the Shannon-Weiner index (SWI), has 
often been used to analyse information from other fields in which 
its application may not be appropriate. In ecoacoustics, SWI is used 
to compare acoustic diversity (i.e. a measure derived by integrating 
the richness and abundance of animal sounds) between locations. In 
animal communication, SWI is used to quantify repertoire complexity 
(i.e. a measure derived by integrating the number and abundance 
of sound types produced by individuals or species) as an approach 
to understanding signal evolution. We discuss problems associated 
with using the SWI in ecoacoustics and animal communication. 
Specifically, we discuss conceptual and statistical problems associated 
with the SWI and then illustrate these problems using hypothetical 
data. In ecoacoustics, the SWI’s assumptions of random variables and 
independent samples are often violated. In animal communication, 
the SWI fails to distinguish among repertoires in which the number 
of sound types and the abundance of each sound type differ. We also 
show that other methods do capture these differences. We conclude 
that the SWI does not adequately represent acoustic diversity or 
repertoire complexity due to the multiple conceptual and statistical 
issues associated with its use. We recommend other analytical 
methods to more fully describe these biological systems, including 
goodness of fit, Morisita similarity index and Markov chain analysis. 
These methods provide more information for future comparisons and 
permit researchers to test hypotheses more directly.

Introduction

The Shannon-Weiner entropy index (SWI) was developed to measure the amount of infor-
mation transferred in a message over telephone lines (Shannon and Weaver 1949). This 
index estimates the uncertainty in the information code of a message (Pielou 1966; Krebs 
1999), but does not estimate the number of information codes (Jost 2006), the specific codes 
included in the message, or the order in which the codes are produced (Palmero et al. 2014).  
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Since its origin, the SWI, which is also called first-order entropy (McCowan et al. 1999, 2002), 
has been used extensively in community ecology and population genetics (e.g. Meirmans 
and Van Tienderen 2004; Forster et al. 2006; Sherwin 2010; Peakall and Smouse 2012). 
However, its use in those fields has been criticized because it: (1) condenses two unrelated 
variables into a single metric (e.g. species composition and the abundance of individuals in 
each species; Allen et al. 2009; Barrantes and Sandoval 2009); (2) is very sensitive to small 
samples (Peet 1975; Green 1979); and (3) does not adequately reflect rare species or alleles 
(Chao and Shen 2003). More recently, and despite its inappropriate use in other fields, the 
SWI has also been applied to the fields of ecoacoustics and animal communication.

In the field of ecoacoustics (Sueur and Farina 2015) and similar areas such as sound-
scape ecology (Farina et al. 2011; Krause 2016), the use of the SWI is becoming widespread 
(Pieretti et al. 2011; Depraetere et al. 2012). The main goal of ecoacoustics, as stated by 
Sueur and Farina (2015), is to be an ‘applied discipline that studies sound along a broad 
range of spatial and temporal scales in order to tackle biodiversity and other ecological 
questions’. Within this broad goal, a common approach is to relate the acoustic environment 
to species richness and the abundance of individuals within each species (Pijanowski et al. 
2011; Depraetere et al. 2012; Sueur et al. 2012). For example, Depraetere et al. (2012) tried 
to determine the relation between sound recordings and species richness and abundance. 
They asked: ‘(i) do the indices match with results provided by a classical bird inventory? 
… and (iii) could the indices highlight expected biodiversity differences between different 
habitats?’ Research in this field uses autonomous audio recorders to monitor the acoustic 
environment over long periods of time (e.g. hundreds or thousands of recording hours; 
Blumstein et al. 2011; Mennill et al. 2012; Sueur et al. 2012). The large acoustic data-sets 
are then analysed using different data extraction procedures that usually involve automatic 
detection of animal signals (Sueur et al. 2012). After the data are extracted, some studies 
estimate the diversity of the acoustic environment (i.e. the number of species detected and 
the frequency of occurrence of each species’ signals) by integrating all of the data into a 
single measure using information theory indices, such as the SWI (Sueur et al. 2012; Gasc 
et al. 2013). However, the SWI does not directly reflect species richness, the abundance of 
individuals within each species, or species composition, so a large portion of the original 
information is lost.

Animal communication is another field in which the use of the SWI is becoming wide-
spread. Over the last seven decades, the field has amassed large literatures that describe 
how information is encoded in acoustic signals through structural variation, sequence level 
variation (e.g. number of signals or signalling rate) and syntactical rules (Gerhardt and 
Huber 2002; Marler 2004). Much of this effort has centred on identifying the fundamen-
tal units of communication (Bradbury and Vehrencamp 2011). Traditionally, information 
encoding mechanisms were analysed by identifying and counting the number of different 
sound units (e.g. syllables or elements) produced by each individual animal or species, 
and by then examining the order in which those units were produced (Botero et al. 2008; 
Vargas-Castro et al. 2012; Sandoval et al. 2014). Recently, the SWI has replaced these more 
traditional measures (McCowan et al. 1999; Aubin et al. 2004; Palmero et al. 2014). In 
spectacled warblers (Sylvia conspicillata) and bottlenose dolphins (Tursiops truncatus), for 
example, the SWI was used to calculate the entropy or complexity of their communication 
systems. The index incorporated the occurrence of different types of syllables, as well as the 
probabilities of their occurrence (McCowan et al. 1999; Palmero et al. 2014).
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Another problem in both fields is that multiple terms are used interchangeably (e.g. diver-
sity, complexity, entropy, richness, composition, randomness). This results in a confusing 
terminology that reduces the comparative scope of these studies. For instance, the SWI is 
often used to quantify different things, such as diversity, complexity, entropy. As an example, 
‘diversity’ is often labelled as ‘complexity’ or ‘entropy’ in sound analyses, though each of these 
terms has a different meaning. Diversity is an integrated measure of the number of sound 
types and the abundance of each sound type that are produced by an individual, population 
or species. Song complexity, which sometimes is used interchangeably with richness and 
composition, is an integrated measure of the number of different elements or syllables pro-
duced in each song (Buchanan and Catchpole 1997; Palmero et al. 2014) and the entropy 
order and versatility of the internal song structure (Hamao 2008). Song entropy, which 
sometimes is interchanged for randomness, is a measurement of song organization (first 
order of entropy according to McCowan et al. 1999; Palmero et al. 2014), where higher SWI 
values indicate higher entropy and a more even distribution of sounds among sound types.

Our objectives in this paper are: (1) to describe general conceptual and statistical prob-
lems inherent to the use of the SWI in ecoacoustics; and (2) to highlight the disadvantages 
of using information theory indices in studies of animal communication by analysing hypo-
thetical acoustic repertoires using the SWI and other alternative statistical techniques.

Case studies

Ecoacoustics

In ecoacoustics, investigators use the SWI to estimate biological diversity because the SWI 
combines sound richness and the abundance of sounds in each sound type into a single 
metric. Sound richness is determined by the number of unique sound types or the num-
ber of unique species that are detected in audio recordings, whereas sound abundance is 
determined by how often each sound type or species is detected over time.

A fundamental assumption of the SWI is that it measures the uncertainty of occurrence 
of a random variable, such as the probability that a particular letter will appear next in a 
string of text (Pielou 1966). However, animal sounds are not produced at random (Staicer 
et al. 1996). Rather, they exhibit diel and seasonal patterns (Staicer et al. 1996), respond 
predictably to non-random biotic and abiotic interference (Slabbekoorn 2004), and change 
in response to non-random intraspecific and interspecific social interactions (Bradbury 
and Vehrencamp 2011). This non-randomness in the context of ecoacoustics violates a 
fundamental assumption of the SWI (Pielou 1966; Krebs 1999).

The SWI includes in its formula the proportional contribution of each sound type to the 
total number of sounds in the sample:

where s is the number of sound types or species and pi is the proportion of the total sample 
belonging to ith sound type or species. In this formula, pi is multiplied by logpi because, in 
order to estimate the total complexity or diversity of sound types or species, it is necessary 
to average the potential contributions of each sound type or species (Ulanowicz 1997). A 

SWI = −

s
∑
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(

pi
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)
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second problem with the SWI is that its value increases in a nonlinear fashion as the number 
of sound types or species in the sample increases (Wolda 1981; Krebs 1999; Jost 2006). As 
an example, Jost (2006) showed that a community with 8 equally common species had a 
SWI value of H′ = 2.0, whereas a community with 16 equally common species had a SWI 
value of H′ = 3.0. In this example, the community with 16 equally common species has twice 
as many species and twice as much diversity as the community with 8 equally common 
species, but the ratio of the two SWI values is only 3:2. Additionally, a common practice 
when using the SWI is to convert H′ values into evenness values using the eH′ formula. This 
formula provides the total number of species, assuming equal abundances, based on the H′ 
value. But, for this example, the formula eH′ yields 7.4 species when H′ = 2 and 20 species 
when H′ = 3. In both cases, the estimated number of species differs from the real number 
(8 and 16 equally abundant species, respectively). This non-linear relationship between 
diversity and SWI values reduces the utility of the SWI in comparative studies because the 
SWI values are not directly proportional to species richness, species abundance or diversity.

A third problem is that communities with different values of richness and abundance can 
produce the same SWI value. Consider 2 communities that each contains 80 individuals. 
One community includes 10 individuals from each of 8 species, whereas the other includes 
35 individuals of 1 species, 6 individuals from each of 2 species, 5 individuals from each 
of 5 species, and 1 individual from each of 8 species. Despite their obvious differences in 
species richness and abundance, these two communities yield the same SWI value (Table 1).  
This is because the SWI penalizes rare species (Chao and Shen 2003) and does not fully 
capture other important aspects of a community, such as richness and abundance (Allen 
et al. 2009; Barrantes and Sandoval 2009), thus limiting its utility in comparing commu-
nities. In contrast, the Morisita Index considers species abundance and richness, and thus 
can distinguish among communities with similar diversity, but which differ in these other 
community metrics. In this example, the similarity of the two communities, according to 
the Morisita Index, is 66%, a value that better reflects the differences in the species richness 
and abundance of the two communities. Diversity (as defined by SWI) is only one param-
eter of a community, but, on its own, often provides little information. Thus, communities 
should be characterized by direct measures of abundance, richness, and composition, in 
addition to diversity or diversity indices, such as the Morisita index (used here), NESS 
(normalized expected species shared) index (Grassle and Smith 1976), their generalized 
versions (Chao et al. 2008), and Bray-Curtis (Bloom 1981) that preserve variation in each 
of these fundamental characteristics. It is important to mention here (although it is not 
the goal of this paper) that the Morisita index has been criticized because its calculation is 
affected by species abundance (see Ricklefs and Lau 1980; Bloom 1981; Chao et al. 2006, 
2008 for discussion about this topic). However, this characteristic makes this index robust 
when individual repertoires are not completely sampled because the most common sounds 
are present in the sampling effort (Chao et al. 2006).

Table 1. Shannon-Weiner index of diversity (H′) values for two populations with the same numbers of 
individuals, but different numbers of species.

Individuals Species H′ Number of individual per species
80 8 2 N1 = 10, N2 = 10, N3= 10, N4=10, N5 = 10, N6 = 10, N7 = 10, N8 = 10
80 16 2 N1 = 35, N2 = 6, N3 = 6, N4 = 5, N5 = 5, N6 = 5, N7 = 5, N8 = 5, N9 = 1, N10 = 1, N11 

= 1, N12 = 1, N13 = 1, N14 = 1, N15 = 1, N16 = 1
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A fourth problem when using the SWI in ecoacoustic studies is that it does not provide an 
error estimation (e.g. log-likelihood or residual sum of squares). Rather, the SWI is a single 
value derived from the number of sound types or species and the abundance of each sound 
type or species at a given location. Therefore, SWI values cannot be adjusted to a particular 
probability distribution, which reduces their utility in comparative studies. The lack of an 
error term also makes it difficult to calculate an effect size, which is the basic measurement 
used in meta-analysis (Arnqvist and Wooster 1995). Some investigators suggest that multiple 
recordings be obtained from the same location (or that a single recording be subdivided 
into multiple smaller recordings) and that the jackknife or bootstrapping approach be used 
to estimate confidence intervals around the mean SWI value (Adams and McCune 1979). 
Although confidence intervals are useful, they are not the same as measures of error because 
confidence intervals are based on observed variation, whereas error terms are based on how 
much observed values differ from expected values derived from a theoretical distribution.

Animal communication

We analysed repertoire complexity (i.e. number of song types and abundance of each song 
type per individual) using four simulated data-sets. We chose this method because it pro-
vides precise control over sample size, repertoire complexity and repertoire size.

We created the four data-sets such that each of them contained different repertoire 
complexities: (1) a data-set in which individuals’ repertoires contained the same two song 
types at various ratios (Table S1), (2) a data-set in which individuals’ repertoires contained 
the same eight song types at various ratios (Table S2), (3) a data-set in which individuals’ 
repertoires contained the same 20 song types at various ratios (Table S3), and (4) a data-set 
in which individuals’ repertoires contained between 2 and 16 song types, and in which the 
number of songs of each song type varied among individuals (Table S4). This last data-set 
is representative of several avian species in which conspecifics have different repertoire 
sizes (e.g. Botero et al. 2008; Sandoval et al. 2014). The first 3 data-sets contained 100 songs 
from each of 20 individuals, and the fourth data-set contained 100 songs from each of 30 
individuals (Tables S1–S4). These data-sets were selected to illustrate species with small, 
medium and large song repertoires, and to illustrate the inability of the SWI to distinguish 
among individuals with different pattern of song production.

In each of the first 3 data-sets, we divided the 20 individuals into 2 groups of 10. For 
the first group (individuals 1–10; Tables S1–S3), we controlled the distributions of songs 
among song types, so that they ranged from an individual having all songs represented in 
the same proportion (i.e. individual 1; Tables S1–S3) to an individual having an extremely 
uneven distribution of songs among song types (i.e. individual 10). For the second group 
(individuals 11–20; Tables S1–S3), we used the ‘random’ function in Excel (version 2007 for 
Windows; Microsoft Corporation, Redmond, WA, USA) to randomly create each individ-
ual’s distribution of songs among the available song types. In the fourth data-set, we varied 
the number of song types included in each individual’s repertoire from 2 to 16 (Table S4). 
We also created distributions in which songs were distributed evenly among song types for 
15 individuals (ev2–ev16; Table S4), and in which they were distributed extremely unevenly 
among song types for the other 15 individuals (sk2–sk16). This fourth data-set was selected 
to illustrate how differences in song richness and abundance can produce similar measures 
of diversity, complexity or randomness, as quantified by the SWI. In all four data-sets, we 
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assigned songs to song types in a random order, even though their probabilities of being 
assigned to each song type were often quite different.

Following the approach used in recent studies of repertoire complexity (Aubin et al. 2004; 
Kershenbaum 2013; Palmero et al. 2014), we used the SWI to compare repertoire complex-
ities among individuals from the same data-set. We calculated the SWI value (H′) for each 
individual based on the natural logarithm, and estimated its 95% confidence interval using a 
bootstrap approach with 9999 random permutations. For each permutation, one of the 100 
songs of a given individual was selected at random and excluded before re-calculating H′.

SWI values are difficult to interpret because they do not denote the original biological 
units that were used to create them. We therefore exponentiated our SWI values by calcu-
lating e to the power of H′ to obtain biologically meaningful units (in this case, song types), 
as recommended by Jost (2006). However, because most studies present only the original 
SWI values, we report both the original (H′) and the converted values (H ′

c).
In addition to the SWI, we used three other statistical tests to compare individuals within 

a data-set and to show that these methods provide a better characterization of interindivid-
ual differences than the SWI alone. First, for data-sets 1–3, we used a Chi-square goodness 
of fit test to determine if the distribution of song types varied between the 20 individuals. 
For this test, we expect that individuals that have a similar abundance of each song type 
would also have similar SWI values. Second, we used a Morisita index of similarity to 
determine whether song repertoires (richness and abundance) were similar (values near 1) 
or different (values near 0) among individuals. The Morisita index incorporates repertoire 
size (richness) and the abundance of each song type, and its results are presented using a 
cluster analysis. We tested for differences among the clusters of individuals using one-way 
analysis of similarity (ANOSIM). Statistical differences obtained with this analysis indicate 
that richness and abundance differ between groups of individuals, and that individuals 
within groups have similar composition. In ANOSIM, there is no set rule for defining 
groups, rather, groups are usually defined a priori based on knowledge on the working 
system (e.g. individuals 1–5 are from one population, while individuals 6–12 are from a 
different population, and so on). In our data-sets, there was no a priori knowledge about 
grouping structure, so we determined the grouping structure through post hoc inspection 
of the cluster trees. Third, we conducted a Markov chain analysis for each individual in 
the second data-set to illustrate the potential use of this technique to describe repertoire 
entropy (sometimes also called repertoire randomness) characteristics that have also been 
analysed using a second-order SWI (e.g. McCowan et al. 1999; Dayou et al. 2011; Palmero 
et al. 2014). Markov chain analysis reports the probability that the sample was drawn from 
an individual in which all possible transitions between song types are equally probable (i.e. 
the choice of song type does not depend on which song type was sung last). All statistical 
analyses were conducted using PAST 2.17 (Hammer et al. 2001).

Results

Results first scenario

In this case, the entropy of the repertoire ranged from H′ = 0.06 (H ′

c = 1.05 song types) for 
individual i10 to H′ = 0.69 (H ′

c = 2.00 song types) for individual i1 (Figure 1(a)). Overall, the 
distribution of each individual’s 100 songs between the two song types differed significantly 
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among the 20 individuals (χ2 = 566.77, df = 19, p < 0.001). Individuals i2 and i3 had exactly 
the same SWI values for their repertoires (Figure 1(a)), yet they differed the most in the pro-
portion of each song type according to the Morisita index of similarity (Figures 1(b) and S1).  
The cluster tree showed three groups of individuals (Figure 1(b)), with individuals in each 
cluster being significantly more similar to each other than to individuals from other clusters 
(ANOSIM using Morisita scores: R = 0.85, p = 0.001).

Figure 1. Analysis of 20 individuals with 2 song types in each individual’s repertoire. (a) Results of the 
Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. 
Individuals with overlapping error bars do not differ significantly in repertoire complexity. (b) Results 
of the Morisita similarity index. Groups used for the ANOSIM analysis (see methods) are denoted by 
different font type. Similarity is measured as the distance between the two individuals from their closest 
common node (represented by the similarity scale bar). Individuals separated only by a vertical line are 
identical to each other.
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Results second scenario

For this scenario, the entropy of the repertoire ranged from H′ = 0.39 (H ′

c = 1.48 song types) 
for individual i10 to H′ = 2.08 (H ′

c = 8.00 song types) for individual i1 (Figure 2(a)). Overall, 
the distribution of each individual’s 100 songs among the 8 song types differed significantly 
among the 20 individuals (χ2 = 874.42, df = 133, p < 0.001). Individuals i3, i4 and i5 had 
exactly the same SWI values for their repertoires (Figure 2(a)), yet the abundance of each 
song type in their repertoires varied by up to 20% according to the Morisita index of sim-
ilarity (Figure 2(b)). For individuals whose repertoires were created randomly, and whose 
entropy values were similar (i.e. had overlapping 95% confidence intervals in Figure 2(a)), 
repertoire similarities varied from only 2 to 12% according to the Morisita index (Figures 2(b)  
and S2). The cluster tree showed four groups of individuals (Figure 2(b)), with individuals 
in each group being significantly more similar to each other than to individuals from other 
groups (ANOSIM using Morisita scores: R = 0.74, p < 0.001).

The SWI quantifies the randomness of the distribution of items (e.g. songs) among 
categories (e.g. song types). It was not designed to quantify the randomness of the order 
in which items from different categories appear (e.g. AABB vs. ABAB), though it has often 
been used for this purpose. The Markov chain analysis showed that 11 individuals produced 
songs in a random order (Table 2; all p > 0.1), and that 9 individuals did not (Table 2; all 
p < 0.001). Furthermore, some individuals that produced their song repertoire in a random 
order had SWI values that were indistinguishable from those of individuals that produced 
their song repertoire in a non-random order. For example, individuals i14 and i16 had the 
same SWI values, yet i14 produced its songs in a non-random order, while i16 produced its 
songs in a random order (Table 2; Figure 2(a)). Thus, the SWI does not reliably distinguish 
individuals that produce their songs in a random order from those that produce their songs 
in a non-random order.

Results third scenario

The entropy of the repertoire ranged from H′ = 1.05 (H ′

c = 2.86 song types) for individual 
i10 to H′ = 3.00 (H ′

c = 20.01 song types) for individual i1 (Figure 3(a)). The distribution of 
each individual’s 100 songs among the 20 song types differed significantly among the 20 
individuals (χ2 = 1133.60, df = 361, p < 0.001). Individual i5 and i3 had the same entropy 
value (i.e. H′ = 2.54; H ′

c = 12.63 song types; Figure 3(a)), yet the abundance of each song type 
in their repertoires was quite different (approximately 40% according to the Morisita index of 
similarity; Figures 3(b) and S3). In contrast, individuals i5 (H′ = 2.53; H ′

c = 12.55 song types) 
and i9 (H′ = 2.15; H ′

c = 8.58 song types) had markedly different entropy values (Figure 3(a)), 
yet the abundance of each song type in their repertoires was more similar (30% according 
to the Morisita index of similarity; Figure 3(b)). The cluster tree showed three groups of 
individuals (Figure 3(b)), with individuals in each group being more similar to each other 
than to individuals from other groups (ANOSIM using Morisita scores: R = 0.88, p < 0.001).

Results fourth scenario

Among the 15 individuals that had songs assigned to song types from a skewed distribution, 
the entropy of the repertoire ranged from H′ = 0.06 (H ′

c = 1.06 song types) for individual sk2 
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to H′ = 0.83 (H ′

c = 2.29 song types) for individual sk16 (Figure 4(a)). Among the 15 individuals 
that had their songs distributed evenly among song types, repertoire entropy ranged from 
H′ = 0.69 (H ′

c = 2.00 song types) for individual ev2 to H′ = 2.77 (H ′

c = 15.96 song types) for 
individual ev16 (Figure 4(a)). Individuals with nine or more song types in their repertoire 
and a skewed distribution of songs had entropy values that were statistically indistinguishable 
from those of individual ev2 (based on overlapping 95% confidence intervals), whose songs 
were distributed evenly among only two song types (Figures 4(a) and S4). According to the 
Morisita index of similarity, increasing repertoire size had the smallest effect on repertoire 

Figure 2. Analysis of 20 individuals with 8 songs in each individual’s repertoire. (a) Results of the Shannon-
Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. Individuals 
with overlapping error bars do not differ significantly in repertoire complexity. (b) Results of the Morisita 
similarity index. Groups used for the ANOSIM analysis (see methods) are denoted by different font type. 
Similarity is measured as the distance between the two individuals from their closest common node 
(represented by the similarity scale bar). Individuals separated only by a vertical line are identical to 
each other.

BIOACOUSTICS   305



similarity when repertoires were large and songs were evenly distributed among song types 
(Figure 4(b)). The cluster tree showed three groups of individuals (Figure 4(b)), with individ-
uals from the same group being significantly more similar to each other than to individuals 
from other groups (ANOSIM using Morisita scores: R = 0.16, p = 0.04).

Discussion

Ecoacoustics is a developing field that bridges diverse areas of investigation, including 
biodiversity, urban development, changes in land use (e.g. mining, forestry, agriculture) 
and conservation (Truax and Barrett 2011; Farina and Pieretti 2012; Sueur et al. 2012). As 
a complex and flourishing field, a diverse set of methods has been developed to compare 
biological communities based on the sounds recorded at different locations. One method 
that has become popular for analysing those data in recent years is the SWI. However, as 
we have argued here, the SWI has several inherent problems that undermine its validity 
in studies of ecoacoustics. For example, when presented on its own, the SWI fails to ade-
quately describe biological communities because it does not consider the specific species 
in a community, but, rather, reduces the number of species and the number of individuals 
in each species to a single number. As a result, communities with different species com-
positions, different number of species, and different distributions of individuals among 
species can all have the same SWI value, despite their obvious differences. The absence of 
error terms around the SWI values precludes the calculation of effect size, which is the basic 
measurement used in meta-analysis (Arnqvist and Wooster 1995). This makes it difficult to 
include results of the SWI in meta-analyses, which are very valuable for evaluating general 
patterns and for resolving the complex interactions that occur among animal species and 
other abiotic factors (e.g. noise, habitat structures, or urban development). Therefore, in 
ecoacoustics, we encourage researchers to use or develop analyses that provide error terms, 
such as likelihood or odd ratios.

Table 2. Results of Markov chain analyses for 20 individuals with 8 song types in each individual’s reper-
toire. Shannon-Wiener entropy values (H′) are also shown.

Individual χ2 p H′
i01 693.6 <0.001 2.08
i02 518.8 <0.001 1.88
i03 566.4 <0.001 1.95
i04 566.4 <0.001 1.95
i05 566.4 <0.001 1.95
i06 598.1 <0.001 1.92 
i07 553.6 <0.001 1.48
i08 303.5 <0.001 1.55
i09 13.45 1 0.99
i10 0.57 1 0.39
i11 61.92 0.1 2.04
i12 58.16 0.27 2.06
i13 44.38 0.66 2.03
i14 67 0.04 2.06
i15 41.52 0.76 2
i16 51.29 0.38 2.06
i17 37.19 0.89 2.03
i18 41.7 0.76 2.02
i19 48.26 0.5 2.04
i20 39.28 0.83 2.05
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Several descriptive and statistical methods can be used to analyse the complexity or 
diversity of an animal’s acoustic repertoire (Botero et al. 2008; Sandoval et al. 2014). The 
chosen method depends on the question to be answered and the complexity or diversity of 
the repertoire in terms of syntax, number of sound types, and the distribution of sounds 
among sound types. The SWI conveniently reduces each individual’s repertoire or the reper-
toire of the entire community to a single value, but that value does not indicate the specific 
sound types in the repertoire, the sound-type richness, the distribution of sounds among 
sound types, or the order in which sound types are produced. Therefore, when used by itself, 

Figure 3. Analysis of 20 individuals with 20 songs in each individual’s repertoire. (a) Results of the Shannon-
Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. Individuals with 
overlapping error bars do not differ significantly in repertoire complexity. (b) Results of the Morisita similarity 
index. Groups used for the ANOSIM analysis (see methods) are denoted by different font type. Similarity is 
measured as the distance between the two individuals from their closest common node (represented by 
the similarity scale bar). Individuals separated only by a vertical line are identical to each other.

BIOACOUSTICS   307



the SWI may not reveal fundamental differences among individuals or communities. For 
example, it would not distinguish between an individual that sings song types a and b at 
a 1:3 ratio and an individual that sings those same song types at a 3:1 ratio. Furthermore, 
differences in SWI values can be difficult to interpret because they could simply reflect the 
random error created by incomplete sampling of each individual’s repertoire; meaningful 
comparisons can only be made by computing and comparing confidence intervals for each 

Figure 4. Analysis of 30 individuals with 2–16 song types in each individual’s repertoire. (a) Results of the 
Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. 
Individuals with overlapping error bars do not differ significantly in repertoire complexity. (b) Results of 
the Morisita similarity index. Groups used for the ANOSIM analysis (see methods) are denoted by different 
fonts. Similarity is measured as the distance between the two individuals from their closest common node 
(represented by the similarity scale bar). Individuals separated only by a vertical line are identical to each 
other. Individuals whose songs were distributed evenly among song types are represented by circles 
(panel a) or the prefix ‘ev’ (panel b), whereas individuals whose songs were distributed among song types 
according to a skewed distribution are represented by triangles (panel a) or the prefix ‘sk’ (panels b, c).
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SWI value, as advocated by Adams and McCune (1979) and as demonstrated in our exam-
ples (Figures 1–4). However, even this method is not ideal because the 95% confidence 
intervals are very wide, especially when song types are unevenly distributed among song 
types (Figure 4(a)). The confidence intervals also tend to increase with increasing repertoire 
size (Figure 4(a)). Consequently, there is a low probability that the SWI will distinguish 
between repertoires of unequal complexity, especially when songs are distributed unevenly 
among song types, and for individuals with larger repertoires.

We recommend that a combination of techniques be used when describing and com-
paring biological communities in studies of ecoacoustics, or vocal repertoires in studies of 
animal communication. Begin by reporting the specific sound types or species detected, 
the number of sound types or species detected, and the population-level distribution of 
sounds or individuals among sound types/species. Then run a chi-square goodness of fit test 
to test if the distribution of sounds/individuals among sound types/species varies among 
individuals/locations. If it does, then a Morisita index can be used to quantify similarity 
among individuals/locations, and an ANOSIM can be used to test for differences among any 
set of groups that were known a priori (e.g. two different populations of the same species). 
For studies of animal communication, a Markov chain analysis can also be used to test the 
randomness or complexity of songs. This could be conducted on the entire population, or, if 
the chi-square goodness of fit test was significant, then perhaps on each individual separately.

In conclusion, the SWI provides only a poor representation of complexity inherent to the 
fields of ecoacoustics and animal communication. In ecoacoustics, it is important to preserve 
information about the number of species, species composition, and the distribution of indi-
viduals among species, since these parameters result from different and unrelated processes 
(Barrantes and Sandoval 2009). Yet, communities that differ greatly in these parameters can 
yield identical SWI values. This issue is especially important when dealing with changes in 
species composition or conservation because not all species have the same ecological role or 
the same conservation problems. In animal communication, the SWI is also an oversimpli-
fication of biological complexity because it reduces the complexity of an individual’s vocal 
repertoire to a single value that does not reliably reflect repertoire size, repertoire composition, 
the distribution of sounds among sound types, or the animal’s syntactical rules. Other statis-
tical methods, such as the contingency table analysis, Morisita index of similarity, Markov 
chain analysis, are more informative and more conducive for comparisons among studies.
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