
Component Compatibility and its Verification

Donald Craig Wlodek Zuberek

Department of Computer Science
Memorial University of Newfoundland

Canada

The First International Workshop on
Software Architecture Research and Practice

July 2, 2007 – Silicon Valley, USA

Introduction

• Construction of large-scale software projects is becoming
increasingly difficult as architectures and requirements become
more sophisticated.

• To combat complexity, there has been a trend from low-level
constructs to higher-level abstractions in the software
engineering process:

• structured programming
• object-oriented programming
• agile software development
• aspect-oriented programming
• ...

• Component-based software engineering (CBSE) is becoming
more popular as a means of mitigating the complexities
associated with construction of large software architectures.

• One of the challenges of CBSE is the issue of integrating a
collection of components together to form a functioning system.

Components

• Informal definitions of components are numerous. For example:
• “An independently deliverable piece of functionality providing

access to its services through interfaces.”
Alan W. Brown (2001) An Overview of Components and Component-Based Development.

• “A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third parties.”

Clemens Szyperski (2002) Component Software : Beyond Object-Oriented Programming (second edition).

• Almost all informal definitions mention the concept of an
interface, through which components interact with the external
world.

• Before an attempt can be made to verify component
compatibility, formal definitions of component must be proposed.

• Petri nets can be used to model components — in particular,
their interface behaviours.

Introduction to Petri Nets

p5

t1

t3

t4t2

p1 p2

p4p3

C =

266664
+1 −1 0 0
−1 0 0 +1
−1 0 +1 0
+1 0 −1 0

0 +1 −1 −1

377775
• Structurally, a Petri net is defined by sets of places and

transitions which are connected to each other by directed arcs,
N = (P, T, A). We define:

Inp(p) = { t ∈ T | (t, p) ∈ A }, e.g. Inp(p5) = {t2}
Out(p) = { t ∈ T | (p, t) ∈ A }, e.g. Out(p5) = {t3, t4}
Inp(t) = { p ∈ P | (p, t) ∈ A }, e.g. Inp(t1) = {p2, p3}
Out(t) = { p ∈ P | (t, p) ∈ A }, e.g. Out(t1) = {p1}.

• The structure of a Petri net can be described by a connectivity
matrix.

• A siphon is a subset of places, S, such that Inp(S) ⊆ Out(S). e.g.
{p3, p4} and {p1, p3, p4} are siphons (there are others).

Petri Nets

p5

t1

t3

t4t2

p1 p2

p4p3

[0, 0, 0, 1, 1]

[0, 1, 0, 1, 0][0, 0, 1, 0, 0]

t4t3

[1, 0, 0, 1, 0]

[0, 0, 1, 0, 1]

[0, 1, 1, 0, 0]

t4 t2

[1, 0, 1, 0, 0]

t2

t1

p5

t1

t3

t4t2

p1 p2

p4p3

• A marked Petri net is a bipartite graph, M = (P, T, A, m0), where
P, T and A are a set of places, transitions and arcs, respectively,
and m0 is the initial marking function.

• A transition, t, is enabled in marking m iff ∀p ∈ Inp(t) : m(p) > 0.
An enabled transition can fire — this removes one token from
each of the transition’s input places and adds one token to each
of its output places.

• The reachability graph of a marked net can be derived by
exhaustively determining all possible markings.

• When no transition is enabled, the net is deadlocked. The firing
sequence t2, t4, t1, t2, t4 results in the net above becoming
deadlocked.

Petri Net Interface Model

A model of a component’s interface is a labelled Petri net:

Mi = (Pi, Ti, Ai, Li, `i, mi, Fi)

where (Pi, Ti, Ai, mi) is a deadlock-free, marked Petri net, Li is an
alphabet representing a set of services which are associated with
transitions by a labelling function `i : Ti → Li ∪ {ε}, where ε is the
empty label, ε 6∈ Li, and Fi is a set of final markings, Fi ⊆ M(Mi).

cb

d
a

Component interactions occur between requester interfaces
(r-interfaces) and provider interfaces (p-interfaces). The same
component may have several r-interfaces and several p-interfaces.

Interface Languages

The language of Mi = (Pi, Ti, Ai, Li, `i, mi, Fi), denoted by L(Mi), is
the set of all strings over Li obtained by labelling firing sequences
which begin with mi and end at one of the final markings.
For example, for the previous interface model:

cb

d
a

If Fi = {mi}, then the language describing the behaviour of this
interface is:

(a(b|c)∗d)∗.

Petri nets can represent all regular, some context-free and even some
context-sensitive languages.

Component Compatibility

• In order for two components to be compatible, any sequence of
services that the requester may demand must be satisfied by the
provider:
Interface models of requester and provider, Mi and Mj,
respectively, are compatible iff

L(Mi) ⊆ L(Mj).

• If both provider and requester languages are regular, then the
interface nets can be converted to deterministic finite automata.
The compatibility property can be confirmed through using the
product construction technique.

L(Mi) ∩ L(Mj) = ∅ ⇔ L(Mi) ⊆ L(Mj).

• If one or both of the languages are non-regular, a formal means
of composing two interfaces using the Petri net models must be
developed.

Interface Composition

The composition of two interfaces, is performed by the following
transformation at their common service points:

Before

tj

a

ti

a

p′′j
...

...

p′j
...

...

Mi

Provider

Requester

Mj

p′′ip′i

After

t′i t′′i

εε

......

p′ti

t′′′iε

Provider

Mi

p′tjp′j p′′tj p′′j

pti

tj

Requester

Mj

p′i
...

...

p′′i

a

Interface Composition — Formally

Definition: Let Pi ∩ Pj = Ti ∩ Tj = ∅. A composition of an r-interface
Mi = (Pi, Ti, Ai, L, `i, mi, Fi) and a p-interface
Mj = (Pj, Tj, Aj, L, `j, mj, Fj), denoted Mi BMj, is a net
Mij = (Pij, Tij, Aij, L, `ij, mij, Fij) where:

Pij = Pi ∪ Pj ∪ { pti , p′
ti

: ti ∈ T̂i } ∪ { p′
tj
, p′′

tj
: tj ∈ T̂j };

Tij = Ti ∪ Tj − T̂i ∪ { t′i , t′′i , t′′′i : ti ∈ T̂i };
Aij = Ai ∪ Aj − Pi × T̂i − T̂i × Pi − Pj × T̂j − T̂j × Pj ∪

{ (p′
i , t′′′i), (t′′′i , p′

ti
), (p′

ti
, t′i), (t′i , pti), (pti , t′′i), (t′′i , p′′

i) :

ti ∈ T̂i ∧ p′
i ∈ Inp(ti) ∧ p′′

i ∈ Out(ti) } ∪
{ (p′

j , t′i), (t′i , p′
tj
), (p′

tj
, tj), (tj, p′′

tj
), (p′′

tj
, t′′i), (t′′i , p′′

j) :

ti ∈ T̂i ∧ tj ∈ T̂j ∧ `j(tj) = `i(ti) ∧
p′

j ∈ Inp(tj) ∧ p′′
j ∈ Out(tj) };

∀t ∈ Tij : `ij(t) =

8<:
`i(t), if t ∈ Ti,
`j(t), if t ∈ Tj,
ε, otherwise;

∀p ∈ Pij : mij(p) =

8<:
mi(p), if p ∈ Pi,
mj(p), if p ∈ Pj,
0, otherwise;

Fij = {mij : Pij → {0, 1, . . .} | (mij ↽ Pi) ∈ Fi ∧ (mij ↽ Pj) ∈ Fj ∧
∀p ∈ Pij − Pi − Pj : mij(p) = 0}.

Component Compatibility Verification

Whether or not two components are compatible can be determined
by testing the composed net for deadlock:
Two interfaces with the same alphabet L, an r-interface Mi and a
p-interface Mj, are incompatible iff the composition Mij contains a
deadlock.
Two ways of testing for deadlock:
• Reachability analysis:

• Systematically derive all possible markings reachable from the
initial marking; dead markings can be identified in this set of
markings.

• Not suitable for unbounded nets (i.e., nets in which the number of
tokens is unlimited).

• Structural analysis combined with linear programming:
• Identify net substructures called siphons and use linear

programming to check if the number of tokens in the siphons can
be minimized to zero.

• If a net is deadlocked, then all unmarked places constitute a
siphon.

Strategies for Verifying Compatibility

Reachability analysis:
Reachability analysis systematically derives all possible markings
reachable from the initial marking. Dead markings can be easily
identified in this set of markings.
Limitations:

• Not suitable for unbounded nets (i.e., nets in which the number of tokens is
unlimited) since the reachability graph becomes infinite.

• The number of reachable markings could be quite large for nets that exhibit
concurrency.

Structual analysis and Linear programming:
For each minimal siphon in a marked net, the siphon contains a
marked trap or if the minimal number of tokens in the siphon is
greater than zero, then the net is deadlock free [Xie & Chu, 1997].
Limitations:

• Finding mimimal siphons can be difficult (but this may be mitigated by simplifying
the composed net).

• If the number of siphons is large, many objective functions may have to be
minimized during linear programming (but this number can often be reduced by
simple transformations).

Example

Consider database client and server components. The server
(provider) supports an open operation (a), followed by any number of
read/write operations in any order (b|c)∗ followed by a close
operation (d).

Provider

d
a

cb

Requester

b

a

c

d

Provider language LP = (a(b|c)∗d)∗; requester language
LR = (a(bc)∗d)∗.

Example (cont’d)

There are 15 reachable markings, none of which result in deadlock.
(Deadlock freeness can also be verified by linear programming.) Mij
is deadlock-free ⇒Mi is compatible with Mj.

Requester

Provider

a

b c

d

Example (cont’d)

Swapping the provider and requester in the previous example, so
LP = (a(bc)∗d)∗ and LR = (a(b|c)∗d)∗, results in a composition that
exhibits a deadlock as shown below:

Requester

Provider

a

b c

d

t11 t12t10t9t8t7t6t5

t4t3t2t1

p21

p20p19p17p16

p13p12

p11 p14

p10

p9

p8

p7

p6p5

p4p3

p1

p2

p15

p18

Firing sequence resulting in deadlock: t1, t5, a, t6, t3. This can be
determined by reachability analysis or by structural analysis/linear
programming.

Future Work and Open Questions

• A possible way of extracting Petri net models from high-level
specifications and/or source code should be investigated.

• The composition model was initially intended for traditional
software architectures. As software becomes increasingly more
distributed, can this technique be applied to modern web
services and/or service oriented architectures?

• Extensions of Petri nets (e.g., inhibitor arcs) provide enhanced
modelling power, but introduce undecidability issues.

Concluding Remarks

• Using appropriate definitions of components, composition and
compatibility, this work has presented a formal model which
allows one to compose components and to verify their
compatibility.

• Component compatibility can be checked by representing the
interface behaviours as Petri nets and then composing them.

• If the resulting net exhibits a deadlock, the components are not
compatible.

• Deadlock detection can be done using structural properties and
linear programming or reachability analysis.

Supplementary slides

Example of Non-Regular Interface Languages

Consider the case where the open and close calls can nest in the
provider and requesters:

Requester

Provider

a d

a

b c

b c
d

Example of Non-Regular Interface Languages (cont’d)

After composition:

Requester

Provider

a

b

d

c

It can be shown through linear programming that this net is does not
deadlock – the two components are compatible.

