
COMP 4770 – Architecture Document Specification

The second milestone for COMP 4770 is to write an Architecture Document for the system you will be creating. This

document is intended to give a high-level overview, as well as technical description of your system, and its underlying

architecture. You will use this document as a guide when implementing your system, so make it as detailed as possible.

For UML diagram specifications and examples use: https://www.smartdraw.com/uml-diagram/

It is expected that your final game will deviate from this document, but try to make it as accurate as possible.

Due Date: February 21st, 2020 @ 11:59pm (on GitHub)

Architecture Document

1. Introduction

1.1. Purpose – What is the purpose of this document?
1.2. Scope – What exactly will this document cover?
1.3. Definitions / Abbreviations – List any technical terminology used in the document
1.4. References – List any outside references used in the creation of the document

2. Architectural Goals / Constraints

2.1. Goals – What are the goals the system attempts to achieve
2.2. Constraints – What are the constraints on the system?

3. Logical View

3.1. Major Logical Components – Describe the major logical components (including project modules) of the system

and include a high-level UML Package Diagram showing their organization and interaction.
3.2. Classes – Describe the most important classes in the system, their relation to the major logical components,

and their organization / interactions. Give UML Class Diagrams for each class discussed.

4. Use Case View

4.1. UML State Diagram – Describe the major user flow within the system and give a high-level UML State Diagram.

Major states for your game may include “Main Menu”, “Playing Game”, “Level Editor”, “Player Profile”, etc. The
state diagram should show all possible transitions between these major system states.

4.2. Architecturally Significant Use Cases – Take the significant uses cases from your Software Requirements
document, and for each of them create a software UML Sequence Diagram.

5. Process View

5.1. Processes / Threads – List all processes and threads which run during normal system operation. This should

address issues such as startup and shutdown, concurrently running system components, fault tolerance.
5.2. Classes – Give a standard UML diagram showing the assignment of system classes to system processes.

6. Deployment View

6.1. Deployment View – Give a description of the deployment of the system, and the physical nodes required to be

running / set up for the system to function properly. Give the related UML Deployment Diagram.

7. Size and Performance

7.1. Size – Describe how many users the system should support
7.2. Memory – Describe how large the database / asset storage system will be. For our case, this will include max

number of registered users, how much data each user requires, how many levels can be made, etc.
7.3. Performance – For each major task in the game, describe how long each should take (upper/lower bound). Also

list game performance such as ideal frames per second, loading times, etc.

8. Database Organization

8.1. Overview – Give the high-level view of the organization of the system’s database structure.
8.2. Specifics – For each major database item, give specific storage details, and database organization.

9. Component Organization

9.1. Overview – Give a high-level overview of the component architecture of the system. Describe where the files

and software are stored during development and maintenance.
9.2. Component Diagram – Give a detailed UML Component Diagram of the organization of the physical software

components of the system. These include source code, assets, binaries, websites, configuration files, etc.

