COMP 4770 — Required Game Features + Group Structure

Your game must have the following functionality, but it should probably have a little bit extra! When in doubt,
use Mega Maker as an example. Replicating as much of the functionality of that game as possible is what you
should aim for.

Required Game Features

1. Game Overview

e 2D Platforming Game.

e Must contain several pre-built levels, and have a ‘Game Over’ final boss.

e Must contain ‘overworld-like’ level selection screen (similar to NES Mario 3)
e Style should be simple, 8-bit feel. But more complex if you can handle it.

2. Gameplay and Mechanics

Gameplay

° Similar to Mega Maker, must login to server to access the game

° Objective should be to beat levels

° Must include game saving of some sort (save / load to DB)

Mechanics

° Standard 2D platformer physics. Player is affected by gravity unless some sort of other effect
nullifies it or it hits a solid object.

° Player falls due to gravity until hitting solid ground, and stands on it. Player cannot move through
walls or other ‘solid’ objects

° Player can move left / right, jump, slide, shoot currently equipped weapon.

. Objects exist in the game that can be interacted with. In simplest form, something like walking
over a health pack restores health, or weapon energy (like mega man).

° Falling onto spikes (part of level) and into holes should instantly kill player

° Upon taking damage, player should have several ‘invincibility frames’ and not take damage during

o Player and enemy weapons / projectiles should have custom scripts if/when they collide with
entities in the game. (ex: entity takes damage from bullet)

° Movement through the level should be smooth, unless for some cinematic effect.

Game should have options like difficulty (easy/medium/hard) which multiply enemy HP / damage.

User should be able to re-map keyboard keys to jump, shoot, etc. Controller support optional.

Infinite health / ammo cheats should be included (helps with debugging)

2. Story, Setting and Character

e Write something for story, but it doesn’t have to be Shakespeare.
e The game should have the main player, and several bosses with unique / complex behaviours.

3. Levels
e Overall structure of levels. How are they accessed, how are they completed?
e Level Design - Description of level design. This document does not need to include a description of all
levels that will be in the game (we are making a maker after all), however, describe characteristics of a
level so that a reader can get an idea of how one looks / plays.

4. Interface
e Game Ul should show health, weapon status, etc.

e Player controls the game with keyboard / mouse by default, controller optional
e The game should have sound effects and music

5. Artificial Intelligence
e Basic scripted enemy Al behavior is expected (move, shoot, follow, etc.)
6. Game Art
e Game should have *some* sprites / art, but not professional. Would prefer 2D 8-bit style.
7. Level Editor
e Use MegaMaker as an example for your Level Editor
8. Player Account
e Player should be prompted with login screen, create account / log in to server

e Each player must have their own ‘Player Profile Page’
e Player profile contains saved games / high scores / achievements etc

GROUP STRUCTURE

The course will be divided into teams, each team consisting of 4 members (or 5, if odd number of students).
Each project will be divided into the following 4 components:

e Main Interface (front-end login screen, game rendering, etc)

e Game Engine (game logic, physics, player movement, etc)

e Level Editor (all level editor logic, saving / loading of levels)

e Backend Server / Database (node.js server, mongodb database, etc)

Groups will assign each of the group members to cover TWO of these 4 components, such that no single
component having less than two people assigned to it. For example, group members A, B, C, D might be
assigned in the following ways:

e A) Interface + Game Engine
e B) Backend + Level Editor
e () Interface + Level Editor
e D) Backend + Game Engine

Even though you will be working mostly on the two components you have chosen, you MUST have a working knowledge
of the entire system, and be familiar with the code of the entire project.

