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Multi-Player Games
● So far we have only looked at problems 

with a single agent (single agent search)
● Heuristic search can also be applied to 

environments (and games) with multiple 
agents (or players)

● Games can have a number of properties, 
similar to single agent environments
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Fully vs. Partially Observable
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Deterministic vs. Stochastic
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Episodic vs. Sequential
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Dynamic vs. Static
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Discrete vs. Continuous
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Game Properties: Players
● How many players are in the game?
● Examples of Game Players:

● Chess, Go: 2 Players
● Baseball: 18 Players, 2 Teams
● Starcraft: 1v1, 2v2, 8 Person FFA
● Poker: 10 People at a table
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Game Properties: Payoffs
● What does each player hope to achieve?
● Game Payoff Examples:

● Prisoner’s Dilemma: Maximize Reward
● Poker: Maximize Profits
● Chess: Win the game

● Zero Sum Game:
● Each player’s gain or loss of payoff/utility is equally 

balanced by the utility of the other players
● Win / Lose games are zero sum
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Games in this Course
● Two-Player
● Zero Sum
● Alternating Move
● Fully Observable (Perfect Information)
● Deterministic
● Discrete
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The Chess-Playing Computer
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Game-Playing Computer
● How can we design an algorithm to play a 

two-player alternating move game?
1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate
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Look-Ahead and Evaluate
● Generate a list of actions 

from a given state
● Evaluate those actions 

based on features of the 
resulting states

● Do the action which has 
the highest evaluation
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Tic-Tac-Toe Example
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Game-Playing Computer
● How can we design an algorithm to play a 

two-player alternating move game?
1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate
4. Search the Entire Game Tree
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How big is the game tree?
● Some number of actions at each state

● b = “Branching Factor” 
● Game ends after some number of moves

● d = Search Depth
● Game tree = bd

● Chess = 10120
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Game-Playing Computer
● How can we design an algorithm to play a 

two-player alternating move game?
1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate
4. Search the Entire Game Tree
5. Look-Ahead as Far as Possible
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Look Ahead as Far as Possible
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Competing Players
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Competing Players
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Minimax Algorithm
1. Function MiniMax(node, depth, maxPlayer)
2. if (depth > maxDepth or node.terminal)
3. return eval(node)
4. if (node.playerToMove == maxPlayer)
5. bestValue = -infinity
6. for each child of node
7. value = MiniMax(child, depth+1, maxPlayer)
8. bestValue = max(bestValue, value)
9. else
10. bestValue = infinity
11. for each child of node
12. value = MiniMax(child, depth+1, maxPlayer)
13. bestValue = min(bestValue, value)
14. Initial Call: MiniMax(rootNode, 0, maxPlayer)
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Negamax Algorithm
Function NegaMax(node, depth, player)

if (depth > maxDepth or node.terminal)
return eval(node)

bestValue = -infinity
for each child of node

value = -NegaMax(child, depth+1, opponent(player))
bestValue = max(bestValue, value)

Initial Call: NegaMax(root, 0, player)
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Mini-Max Properties
● Complete and Optimal: Will find the 

optimal solution to a given max depth
● Each player plays a best response to the 

possible actions of the other player
● Mini-Max plays the Nash Equilibrium
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Nash Equilibrium (NE)
● For two-player, finite, zero-sum games, a 

Nash Equilibrium exists
● Recall that in a NE:

● Each player is best responding to the other
● Neither player can gain by deviating
● Neither player has any regrets

● Playing a NE is a very strong strategy
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Improving MiniMax

Max

Min
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Alpha-Beta Pruning
● Alpha-Beta is not a different algorithm 

than MiniMax, it is an optimization
● Maintains all of the properties of minimax 

but is strictly better
● Cutting off branches of the search tree 

yields exponential savings
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Computational Savings
● MiniMax Tree Search

● Nodes searched = bd
● Alpha-Beta Search

● Nodes searched ~ 2bd/2 (optimal savings)
● Depth 7 search becomes depth 14

● Bad program beats world champion
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Alpha-Beta Algorithm
Function AlphaBeta(node, depth, alpha, beta, maxPlayer)

if (depth > maxDepth or node.terminal)
return eval(node)

if (maxPlayer)
value = -infinity
for each child of node

value = max(value, AlphaBeta(child, depth+1, alpha, beta, false))
if (depth == 0 and value > alpha) best_action = child.action
alpha = max(alpha, value)
if (alpha >= beta) break

return value
else

value = infinity
for each child of node

value = min(value, AlphaBeta(child, depth+1, alpha, beta, true))
beta = min(beta, value)
if (beta <= alpha) break

return value
Initial Call: AlphaBeta(root, 0, -infinity, +infinity, true)
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Alpha-Beta Algorithm (shorter)
Function AlphaBeta(node, depth, alpha, beta, maxPlayer)

if (depth > maxDepth or node.terminal)
return eval(node)

for each child of node
value = AlphaBeta(child, depth+1, alpha, beta, !maxPlayer)
if (maxPlayer and (value > alpha)) 

if (depth == 0) best_action = child.action
alpha = value

if (!maxPlayer and (value < beta)) beta = value
if (alpha >= beta) break

return alpha if maxPlayer else beta
Initial Call: AlphaBeta(root, 0, -infinity, +infinity, true)
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