
COMP 4752
Computational Intelligence

Lecture 23
AI Programming Optimizations

COMP 4752: Computational Intelligence
David Churchill

Bit Operations
● In low level languages like C, we can work

directly with bit information in memory
● Bit operations are extremely fast, can be

used to perform many initially unintuitive
but useful functions

● Recall: An integer is a 32-bit value
● We can manipulate integers with bit ops

COMP 4752: Computational Intelligence
David Churchill

Bit Operations
● Bitwise and & 0101011101

& 1101010100
= 0101010100

● Bitwise or | 0101011101
| 1101010100
= 1101011101

● Bitwise xor ^ 0101011101
^ 1101010100
= 1000001001

COMP 4752: Computational Intelligence
David Churchill

Bit Operations
● Bit LShift << 0001011100

<< 3
= 1011100000

● Bit RShift >> 0001011100
>> 3
= 0000001011

● Bit Negation ~ 0101011101
~= 1010100010

COMP 4752: Computational Intelligence
David Churchill

Bit Sets
● One of the most common uses for working

with bits is the concept of a bit set
● Bit sets are sets of bits of length N = 2n

● For example: 0101010110110010 N = 16
● Each element of the bit set typically

represents a Boolean true or false,
associated with the index in the set

COMP 4752: Computational Intelligence
David Churchill

Bit Set Example
● We have a set of integers

● S = {1, 4, 6, 7, 8, 12, 14}
● Can represent as a bit set of length N=16

● B = 0100101110001010
● We can store this in a 2-byte short in C
● We usually use a 4-byte int or 8-byte long
● ~No overhead going from short to int

COMP 4752: Computational Intelligence
David Churchill

Bit Set Operations
● RONE = 1 = 000…001

● LONE = 0x8000 = 100…000

● Set containing single 1 in bit n
● RBIT(n): RONE << n

● LBIT(n): LONE >> n

● Test to see if set contains 1 in bit n
● TEST(S, n): S & BIT(n)

COMP 4752: Computational Intelligence
David Churchill

Bit Set Operations
● Bit set intersection / union

● S1 & S2 S1 | S2

● Add/remove set to/from set
● S1 |= S2 S1 &= ~S2

● Add/remove/toggle bit in a set
● ADDBIT(S, n): S |= BIT(n)

● REMOVEBIT(S, n): S &= ~BIT(n)

● TOGGLEBIT(S, n): S ^= BIT(n)

COMP 4752: Computational Intelligence
David Churchill

Bit Set – Iterate Through Bits
S = 01010101010111

// iterate right to left
for (int b = RBIT(1); b != 0; b << 1)

if (S & b) // bit b is 1 in S

// iterate left to right
for (int b = LBIT(1); b != 0; b >> 1)

if (S & b) // bit b is 1 in S

COMP 4752: Computational Intelligence
David Churchill

Bit Set Uses – Bit Boards!
● Many board games use 8x8 grids = 64
● One byte per position to store piece
● Bit boards can be used to store the

positions of sets of pieces on the board
● In C, 64-bit long int can store board
● This will allow us to do many convenient

AI related tasks in parallel

COMP 4752: Computational Intelligence
David Churchill

Chess Bit Board

COMP 4752: Computational Intelligence
David Churchill

Bit Board Representation
white pawns black rooks

. 1 1

.

.

.

.

.

1 1 1 1 1 1 1 1

.

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence
David Churchill

Bit Board - Union
white pieces | black pieces = occupied squares

. 1 . 1 1 1 1 1 1 1 . 1 1 1 1 1 1

. 1 1 1 1 . 1 1 1 1 1 1 1 . 1 1 1

. 1 1

. 1 1 . . .

. . . . 1 . . . | = 1 . . .

. 1 1 . .

1 1 1 1 . 1 1 1 1 1 1 1 . 1 1 1

1 1 1 1 1 1 . 1 1 1 1 1 1 1 . 1

COMP 4752: Computational Intelligence
David Churchill

Bit Board - Intersection
queen attacks & opponent pieces = attacked pieces

. 1 . . 1 1 . . 1

. . . 1 . . 1 . 1 . 1 1 1 1 1 1 . . 1 .

. 1 . 1 . 1 . . . 1 1 . 1

. . 1 1 1

1 1 1 * 1 1 1 . & . . . * . . 1 . = . . . * . . 1 .

. . 1 1 1

. . . 1 . 1

. . . 1

COMP 4752: Computational Intelligence
David Churchill

Bit Board - Negation
~occupied squares = empty squares

1 . 1 1 1 1 1 1 . 1

1 1 1 1 . 1 1 1 1 . . .

. . 1 1 1 . 1 1 1 1 1

. . . . 1 . . . 1 1 1 1 . 1 1 1

~ 1 . . . = 1 1 1 1 . 1 1 1

. 1 . . 1 1 1 1 1 . 1 1

1 1 1 1 . 1 1 1 1 . . .

1 1 1 1 1 1 . 1 1 .

COMP 4752: Computational Intelligence
David Churchill

Bit Boards – Direction Shift
northwest north northeast

+7 +8 +9

\ | /

west -1 <- 0 -> +1 east
/ | \

-9 -8 -7

southwest south southeast

COMP 4752: Computational Intelligence
David Churchill

Bit Board – Population Count
● How many bits are 1 in a set?
● MANY ways of doing this
● MANY optimized versions
● POPCOUNT hardware instructions

● https://chessprogramming.wikispaces.com/Population+Count

COMP 4752: Computational Intelligence
David Churchill

Bit Board Optimizations
● Many people have worked on chess

specific optimizations for bit boards
● Functions for operations such as:

● Is any piece attacking a given square
● Is a given side attacking a given square

● These optimized functions are much
faster than iterating over all cells

COMP 4752: Computational Intelligence
David Churchill

Hashing Game Boards
● Often we want to store information about

a particular board configuration
● Table[boardPosition] = ImportantInfo
● We need a hash function which can turn a

given board state into an integer

● One method: Zobrist Hashing

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Zobrist relies makes use of two tools

● Tables of random numbers
● Bitwise XOR operator

● Create tables of random numbers representing
pieces on given squares
● Z[Player][Piece][Square] = Random

● Zobrist Hash Function
● Hash = XOR Z[Player][Piece][Square] for all pieces

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Z[White][Pawn][B6] = R1

● Z[White][Pawn][C5] = R2

● Z[White][King][D5] = R3

● Z[Black][Pawn][B7] = R4

● Z[Black][King][D7] = R5

● Zobrist Hash = R1 ^ R2 ^ R3 ^ R4 ^ R5

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Z[White][Pawn][B6] = R1

● Z[White][Pawn][C5] = R2
● Z[White][King][D5] = R3

● Z[Black][Pawn][B7] = R4

● Z[Black][King][D7] = R5

● Zobrist Hash = R1 ^ R2 ^ R3 ^ R4 ^ R5

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Recall that XOR is reversible
● A = 1001, B = 1101
● A ^ B = 0100
● A ^ B ^ A = 1101 = B
● A ^ A = 0000
● We can remove a piece by applying XOR

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Z[White][Pawn][B6] = R1

● Z[White][Pawn][C5] = R2
● Z[White][King][D5] = R3

● Z[Black][Pawn][B7] = R4

● Z[Black][King][D7] = R5

● Zobrist Hash = R1 ^ R2 ^ R3 ^ R4 ^ R5

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Z[White][Pawn][B6] = R1

● Z[White][Pawn][C5] = R2
● Z[White][King][D5] = R3

● Z[Black][Pawn][B7] = R4

● Z[Black][King][D7] = R5

● Zobrist Hash = R1 ^ R2 ^ R3 ^ R4 ^ R5 ^ R2

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Z[White][Pawn][B6] = R1

● Z[White][King][D5] = R3

● Z[Black][Pawn][B7] = R4

● Z[Black][King][D7] = R5

● Zobrist Hash = R1 ^ R3 ^ R4 ^ R5

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Z[White][Pawn][B6] = R1

● Z[White][King][D5] = R3

● Z[Black][Pawn][B7] = R4

● Z[Black][King][D7] = R5

● Z[White][Pawn][C7] = R6

● Zobrist Hash = R1 ^ R3 ^ R4 ^ R5 ^ R6

COMP 4752: Computational Intelligence
David Churchill

Zobrist Hashing
● Zobrist Hashing is incremental
● When a piece is added, we simply XOR

the existing hash by the Z-value
● When a piece is removed, we XOR the

existing hash by the Z-value
● Moving a piece = remove then add at a

different location = 2 XOR ops (3 if capt)

	�COMP 4752�Computational Intelligence���Lecture 23�AI Programming Optimizations
	Bit Operations
	Bit Operations
	Bit Operations
	Bit Sets
	Bit Set Example
	Bit Set Operations
	Bit Set Operations
	Bit Set – Iterate Through Bits
	Bit Set Uses – Bit Boards!
	Chess Bit Board
	Bit Board Representation
	Slide Number 13
	Bit Board - Union
	Bit Board - Intersection
	Bit Board - Negation
	Bit Boards – Direction Shift
	Bit Board – Population Count
	Bit Board Optimizations
	Hashing Game Boards
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing
	Zobrist Hashing

