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N-Armed Bandit Problem
● Repeatedly make a choice 

among n different actions
● After each action you receive a 

reward from a stationary 
probability distribution 
depending on the action

● Objective is to maximize your 
expected total reward over a 
number of action selections
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N-Armed Bandit Problem
● Name is an analogy to slot machines: 

“One-armed bandit”
● You have a limited amount of money, and 

you try to win as much as possible

● How do we select which levers to pull?
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Exploitation vs. Exploration
● If we maintain an estimate of action values, at 

any time there is one greatest
● The ‘Greedy Action’

● Exploitation: Choosing the Greedy Action
● Maximizes single action returns

● Exploration: Choosing a non-greedy action to 
improve your action estimates

● Required for future reward maximization
● How to balance exploitation vs. exploration?
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Action-Value Methods

● Q*(a) = Actual Value of action a
● “Actual Value” = Mean Reward

● Qt(a) = Estimate of Q*(a) after play t
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Qt(a) Sample Average Estimation
● Natural way of calculating Qt(a) is to average the 

rewards received so far after a number of plays
● If at play t, action a has been chosen ka times, 

yielding rewards r1, r2, …, rka
then:

Qt(a) = (r1+r2+…+rka
) / ka

● If ka = 0, define Qt as some default, Qt(a) = 0
● As ka gets large, Qt(a) converges to Q*(a)
● This is called the “sample average” method
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Greedy Action Selection
● How to select an action from value estimations?
● Simples way: Greedy Selection
● Select on play t, a greedy action A* for which:

Qt(a*) = maxaQt(a)
● This method always exploits current knowledge 

to maximize immediate reward
● No sampling or exploration to determine values 

of another action to see if they may be better
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ε-Greedy Selection
● To add exploration, choose a random action with 

small probability ε
● In the limit, as the number of plays increases, 

each action will be sampled infinite times
● This guarantees ka -> infinity, and Qt(a) 

converges to Q*(a)
● In theory this works, but in practice it may take 

a very, very long time to converge
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Incremental Action-Value Est.
● Recall: Qt(a) = (r1+r2+…+rka

) / ka

● Problem: Memory and computational 
requirements grow over time

● Let’s derive an incremental formula so 
that memory is no longer an issue
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Incremental Implementation
Qk = average of first k rewards

Qk+1 = 1
k+1

∑𝑖𝑖=1𝑘𝑘 𝑟𝑟𝑖𝑖

= Qk + 1
k+1

(rk+1 −Qk)

NewEstimate = OldEstimate + StepSize(Target-OldEstimate)
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Nonstationary Problems
● Averaging works fine for stationary environments, 

but not if it changes over time
● Want to weight recent rewards more than old ones
● Use a constant step-size parameter 0 < α ≤ 1

Qk+1 = Qk + α (rk+1 – Qk)
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Incremental Update Example
● Qk+1 = Qk + α (rk+1 – Qk)
● New estimate pulled toward rk+1 by α

● Qk = 50, α = 1, rk+1 = 100
● Qk+1 = 50 + 1*(100-50) = 50+50 = 100

● Qk = 50, α = 0.5, rk+1 = 100
● Qk+1 = 50 + 0.5*(100-50) = 75
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Agent-Environment Interface
● Sequence of time steps

● t=0, 1, 2, 3, …
● At each time step t:

● Agent perceives state s Є S
● Selections action at Є A(st)
● One time step later gets rt+1 Є R
● Finds itself in new state st+1

● Agent selects action from its policy π
● General: π t(s,a) = Probability at=a if st=s
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Goals and Rewards
● In RL, purpose is defined by reward rt

● Reward often used to define ‘goal state’
● RL objective = maximize cumulative reward

● Example: Path-Finding
● Reward is -1 at every non-goal state
● Reward is 1 at the goal state
● Maximizing goal minimizes path length
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Returns
● Objective: maximize long term reward
● How can we formally define this?
● Reward Sequence: rt+1, rt+2, rt+3, …
● Objective: maximize expected return

● Return Rt is a function of reward sequence
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Returns
● Simplest case: Return is sum of rewards:

● Rt = rt+1 + rt+2 + rt+3 + … + rT

● T is the final time step

● In general we add a discounting factor 𝛾𝛾
● 𝛾𝛾 balances importance between present / future reward 
● Rt = 𝛾𝛾 rt+1 + 𝛾𝛾 2rt+2 + 𝛾𝛾 3rt+3 + …
● Rt = ∑𝑘𝑘=0∞ 𝛾𝛾𝑘𝑘 rt+k+1
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The Markov Property
● In the RL framework, agent makes decisions as a 

function of the state of an environment
● Recall: the ‘state’ of an environment is whatever 

info is available to the agent
● If a state contains all relevant information for 

making a decision, it is said to be Markov, or to 
have the Markov Property

● Intuitively: “no state history required”
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Markov Examples
● 3 balls in a box, 2 blue 1 green
● One ball is drawn from the box at random
● Next day, someone asks what is the 

probability of drawing a red ball
● Not Markov
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Markov Examples
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Markov Property Definition
● In general, environment state and rewards may 

be defined by action sequence
● Pr{st+1=s’,rt+1=r | st,at,rt,st-1,at-1,…,r1,s0,a0}

● If Markov Property holds, environment response 
at t+1 depends only on state and action at t

● Pr{st+1=s’,rt+1=r | st,at}
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Markov Decision Process (MDP)
● An RL task that satisfies the Markov 

Property is called a Markov Decision 
Process (MDP)

● If state and action spaces are finite, it is 
called a finite MDP 
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MDP Definition
● MDP = (S, A, P, R, γ)

● S = finite set of states
● A = finite set of actions (As legal from s)
● Pa(s,s’) = Pr(st+1=s’ | st=s, at=a)
● Ra(s,s’) = reward after transition s to s’
● γ Є [0,1] = discount factor
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MDP Problem / Objective
● Choose a policy that π maximizes Return:
● Rt = ∑𝑘𝑘=0∞ 𝛾𝛾𝑘𝑘 rt+k+1

● Can be solved by dynamic programming
● Assignment 3 = Grid World DP
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