COMP 4752
Computational Intelligence

Lecture 12
Two-Player Games
Mini-Max / Alpha-Beta Search

VI E V] O K
UNIVERSITY

COMP 4752: Computational Intelligence

David Churchill

Multi-Player Games

e SO far we have only looked at problems
with a single agent (single agent search)

e Heuristic search can also be applied to
environments (and games) with multiple
agents (or players)

« Games can have a number of properties,
similar to single agent environments

COMP 4752: Computational Intelligence

David Churchill

Fully vs. Partially Observable

Deterministic vs. Stochastic

COMP 4752: Computational Intelligence

David Churchill

Episodic vs. Sequential

A I

i A1 eyl B

"
i
%]
m =
[
K1
[
-

L4

d

PRIkt R, | §S

3
0
9

g1

COMP 4752: Computational Intelligence
David Churchill

Dynamic vs. Static

COMP 4752: Computational Intelligence
David Churchill

Discrete vs. Continuous

COMP 4752: Computational Intelligence

David Churchill

Game Properties: Players

« HOw many players are in the game?

« Examples of Game Players:
e Chess, Go: 2 Players
o Baseball: 18 Players, 2 Teams
e Starcraft: 1v1, 2v2, 8 Person FFA
e Poker: 10 People at a table

Game Properties: Payoffs

« What does each player hope to achieve?

« Game Payoff Examples:
e Prisoner’s Dilemma: Maximize Reward
e Poker: Maximize Profits
e Chess: Win the game

e Zero Sum Game:

o« Each player’s gain or loss of payoff/utility is equally
balanced by the utility of the other players

e Win / Lose games are zero sum

COMP 4752: Computational Intelligence

David Churchill

Games In this Course

e TWo-Player
e ZEIO SUM
o Alternating Move

~ully Observable (Perfect Information)
Deterministic

Discrete

The Chess-Playing Computer

COMP 4752: Computational Intelligence

David Churchill

Game-Playing Computer

« HOw can we design an algorithm to play a
two-player alternating move game?

1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate

COMP 4752: Computational Intelligence

David Churchill

Look-Ahead and Evaluate

e Generate a list of actions
from a given state

e Evaluate those actions
based on features of the
resulting states

e Do the action which has Q
the highest evaluation

Tic-Tac-Toe Example

o| |x
foT:
wx|olo
o | Y

o] |x O|x|X

X | % X

XX

{010 X100

COMP 4752: Computational Intelligence

David Churchill

O X
X X
X O

COMP 4752: Computational Intelligence

David Churchill

Game-Playing Computer

« HOw can we design an algorithm to play a
two-player alternating move game?

Analysis / Strategy / Tactics
Thousands of If-Then Statements
Look-Ahead and Evaluate

Search the Entire Game Tree

> W bk

COMP 4752: Computational Intelligence

David Churchill

How Dbig Is the game tree?

e Some number of actions at each state
e b = “Branching Factor”

e Game ends after some number of moves
e d = Search Depth

e Game tree = bd
e Chess = 10120

COMP 4752: Computational Intelligence

David Churchill

Game-Playing Computer

« HOw can we design an algorithm to play a
two-player alternating move game?

Analysis / Strategy / Tactics
Thousands of If-Then Statements
Look-Ahead and Evaluate

Search the Entire Game Tree
Look-Ahead as Far as Possible

a & L K

COMP 4752: Computational Intelligence

David Churchill

Look Ahead as Far as Possible

O

COMP 4752: Computational Intelligence

David Churchill

Competing Players

COMP 4752: Computational Intelligence

David Churchill

Competing Players

COMP 4752: Computational Intelligence

David Churchill

Competing Players

COMP 4752: Computational Intelligence

David Churchill

Competing Players

Mln Player a ‘

COMP 4752: Computational Intelligence

David Churchill

Competing Players

COMP 4752: Computational Intelligence

David Churchill

Competing Players

COMP 4752: Computational Intelligence
David Churchill

Minimax Algorithm

1. Function MiniMax(node, depth, maxPlayer)

2. If (depth > maxDepth or node.terminal)

3. return eval(node)

4. If (node.playerToMove == maxPlayer)

5. bestValue = -infinity

6. for each child of node

7. value = MiniMax(child, depth+1, maxPlayer)
8. bestValue = max(bestValue, value)

9. else

10. bestValue = infinity

11. for each child of node

12. value = MiniMax(child, depth+1, maxPlayer)
13. bestValue = min(bestValue, value)

14. Initial Call: MiniMax(rootNode, O, maxPlayer)

Negamax Algorithm

Function NegaMax(nhode, depth, player)
If (depth > maxDepth or node.terminal)
return eval(node)
bestValue = -infinity
for each child of node
value = -NegaMax(child, depth+1, opponent(player))
bestValue = max(bestValue, value)

Initial Call: NegaMax(root, O, player)

COMP 4752: Computational Intelligence

David Churchill

Mini-Max Properties

« Complete and Optimal: Will find the
optimal solution to a given max depth

o Each player plays a best response to the
possible actions of the other player

o Mini-Max plays the Nash Equilibrium

COMP 4752: Computational Intelligence

David Churchill

Nash Equilibrium (NE)

e For two-player, finite, zero-sum games, a
Nash Equilibrium exists

e Recall that in a NE:
e Each player is best responding to the other
e Neither player can gain by deviating
e Neither player has any regrets

e Playing a NE Is a very strong strategy

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min <2

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min <2

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

>2

Min

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

>2

Min <1

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax

Min a <1

COMP 4752: Computational Intelligence

David Churchill

Improving MiniMax
Alpha-Beta
a Pruning
Min a <1

COMP 4752: Computational Intelligence

David Churchill

Alpha-Beta Pruning

o Alpha-Beta Is not a different algorithm
than MiniMax, It Is an optimization

o Maintains all of the properties of minimax
but is strictly better

o Cutting off branches of the search tree
yields exponential savings

COMP 4752: Computational Intelligence

David Churchill

Min

Min

8 7 3 9 98 2 4 1 8 8 9 9 9 3 4

COMP 4752: Computational Intelligence

David Churchill

Min

Min <8

(8)7 39 9 82 418899 9 3 4

COMP 4752: Computational Intelligence

David Churchill

Min

Min /

(8)(7)3 9 9 8 2 4188 9 9 9 3 4

COMP 4752: Computational Intelligence

David Churchill

Min

(8)(7)3 9 9 8 2 4188 9 9 9 3 4

Min

COMP 4752: Computational Intelligence

David Churchill

Min

(8)(7)(3)¥~9 8 2 4 1 8 8 9 9 9 3 4

COMP 4752: Computational Intelligence

David Churchill

Min

(8)(7)(3)¥~9 8 2 4 1 8 8 9 9 9 3 4

COMP 4752: Computational Intelligence

David Churchill

Min <7

Min /

(8)(7)(3)¥~9 8 2 4 1 8 8 9 9 9 3 4

Min <7

Min / <9

(8)(7)(3)¥~(9)8 2 4 1 8 8 9 9 9 3 4

Min <7

Min <7

Min / 8

(8)(7)(3) ¥~ (9)(8)A A 1 8 8 9 9 9 3 4

Min <7

Min / 8

(8)(7)(3) ¥~ (9)(8)A A 1 8 8 9 9 9 3 4

Min 7

Min / 8

(8)(7)(3) ¥~ (9)(8)A A 1 8 8 9 9 9 3 4

Min 7

Min / 8

(8)(7)(3) ¥~ (9)(8)A A 1 8 8 9 9 9 3 4

Min 7

Min 7 8 <1

(8)(7)(3) 8~ (9)(8) A A (1)8 8 9 9 9 3 4

Min 7

Min / 8

(8)(7)(3) 8~ (9)(8) A A (1)8 8 9 9 9 3 4

Min 7

Min / 8 <8

(8RB A (1B (8)9 9 9 3 4

Min 7

Min I 8 8

(8)7)(3)%~(0)(8) A A (1% (8)9) 9 9 3 4

Min 7 <8

Min I 8 8

(8)7)(3)%~(0)(8) A A (1% (8)9) 9 9 3 4

Min 7
<8

Min I
8 8 <9

(8RB ()2 A (1B (8)(9)(9) 9 3 4

Min 7
<8

Min I
8
8 9

(8RB~ (9)(8) 2 A (1B (8)(9)(9)9) 3 4

Min 7
<8

Min I
8
8 9

(8RB~ (9)(8) 2 A (1B (8)(9)(9)9) 3 4

Min 7
<8

Min I
8
8 9

(8)(7)(3)8~(9)(8) 2~ A (18- (8)(9)(9)(9) B A

COMP 4752: Computational Intelligence

David Churchill

Min 7 8

Min 4 8 8 9

(8)(7)(3)8~(9)(8) 2~ A (18- (8)(9)(9)(9) B A

Min

COMP 4752: Computational Intelligence

David Churchill

Computational Savings

e MiNnIMax Tree Search
e Nodes searched = bd

o Alpha-Beta Search
o Nodes searched — 2bd%/2 (optimal savings)

e Depth 7 search becomes depth 14
o Bad program beats world champion

Alpha-Beta Algorithm

Function AlphaBeta(node, depth, alpha, beta, maxPlayer)
if (depth > maxDepth or node.terminal)
return eval(node)
if (maxPlayer)
value = -infinity
for each child of node
value = max(value, AlphaBeta(child, depth+1, alpha, beta, false))
if (depth == 0 and value > alpha) best_action = child.action
alpha = max(alpha, value)
if (alpha >= beta) break
return value
else
value = infinity
for each child of node
value = min(value, AlphaBeta(child, depth+1, alpha, beta, true))
beta = min(beta, value)
if (beta <= alpha) break
return value
Initial Call: AlphaBeta(root, 0, -infinity, +infinity, true)

Alpha-Beta Algorithm (shorter)

Function AlphaBeta(nhode, depth, alpha, beta, maxPlayer)
If (depth > maxDepth or node.terminal)
return eval(node)
for each child of node
value = AlphaBeta(child, depth+1, alpha, beta, ImaxPlayer)
If (maxPlayer and (value > alpha))
If (depth == 0) best_action = child.action
alpha = value
If (!maxPlayer and (value < beta)) beta = value
If (alpha >= beta) break
return alpha if maxPlayer else beta
Initial Call: AlphaBeta(root, O, -infinity, +infinity, true)

	�COMP 4752�Computational Intelligence���Lecture 12�Two-Player Games�Mini-Max / Alpha-Beta Search
	Multi-Player Games
	Fully vs. Partially Observable
	Deterministic vs. Stochastic
	Episodic vs. Sequential
	Dynamic vs. Static
	Discrete vs. Continuous
	Game Properties: Players
	Game Properties: Payoffs
	Games in this Course
	The Chess-Playing Computer
	Game-Playing Computer
	Look-Ahead and Evaluate
	Tic-Tac-Toe Example
	Game-Playing Computer
	How big is the game tree?
	Game-Playing Computer
	Look Ahead as Far as Possible
	Competing Players
	Competing Players
	Competing Players
	Competing Players
	Competing Players
	Competing Players
	Minimax Algorithm
	Negamax Algorithm
	Mini-Max Properties
	Nash Equilibrium (NE)
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Alpha-Beta Pruning
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Computational Savings
	Alpha-Beta Algorithm
	Alpha-Beta Algorithm (shorter)

