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Neural Networks

e« In 2010, MIT was reviewing what topics it should
drop from its Al course to make room for ‘more
modern’ techniques

o Neural Networks were on the way out

e« They decided to leave them in, just to show a
possible model of the brain

e In almost 30 years of research, Neural Networks
had failed to yield any significant results
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Deep Neural Networks

o Geoffrey Hinton, 2012

o ImageNet Classification with Deep
Convolutional Neural Networks

e« 60,000,000 parameters in the network

e Purpose: which of 1000 categories best
characterized a given picture

e Blew away the competition
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Neural Networks
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Computer

o e EESRGRIGNERN 1 CPU, 10° transistors 1071 neurons

10° B RAM, 1012 B 1011 neurons, 1014

storage capacity  p NPTy synapses

processing speed 108 second 10-3 second

bandwidth 109 bits/sec. 1014 bits/sec.
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The Neuron
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Schematic of a biological neuron.
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The Neuron

e AXons from one neuron extend to the dendrites
of another neuron

o Stimulation of the dendritic tree of a neuron may
cause the axon to ‘spike’, like a transmission line

o After firing, the neuron will go ‘quiet’ for a while
(refractory period)

e Firing can affect surrounding / connected
neurons, cause a chain reaction
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Threshold Logic Units (TLU)

e INputs X, X,, ... X,, binary (fire or don’t fire)
e« Weights w,, w,, ..., w, (real values)

e Inputs multiplied by weights, and summed

o Output spike if result sum meets threshold
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TLU for the conjunction 1 A x9
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TLU for the implication
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TLU Linear Separability

e« We call two points in an n-dimensional
space linear separable if they can be
separated by an (n-1)-dimensional
hyperplane. One of these sets may
contain points on the hyperplane

e A Boolean function is called linearly
separable If the set of points of O and the
set of points of 1 are linearly separable



Linear Separability

e Consider the bi-implication problem, In
which there Is no separation line

T < I9 A
14 O [
X1 2|y
001 2
L)oo 01 ® 0
0|10 _
| |
L)1 0 =z 1




COMP 4752: Computational Intelligence
David Churchill

Linear Separable Boolean Functions

inputs | Boolean functions | linearly separable functions
1 4 4
2 16 14
3 256 104
4 65536 1774
5 4.3-10° 04572
6 1.8-10% 5.0 - 10°

e FOr many inputs, TLU can’t compute functions
e Networks of TLUs are needed to overcome this
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Perceptron (Simple Neuron)

@ Activation
Fundamental unit of a Neural Network f’,x function
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A Simplified Brain Model

Input
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Neural Network
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‘Training’ a Neural Network

e Given input data and known outputs

e« Running inputs through the network gives us a
calculated value y = f(x,w,t) (feed forward)

e Training a neural network involves tuning the
weights/thresholds until the values we get out of
the network match our training data

e A neural network is a function approximator
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Training Progress

« Desired function: d=g(x)

e NN function: y=f(x,w,t)

e Performance should be a function of the desired
d and the calculated y

« How about vector distance? P = |d —y|?2
e Best performance is P = 0, but minimizing



Adjusting the Weights

e« Weights w,, w,
e Performance contour

e At any given time we
are at a given (W,, w,)

e FiNnd the action that
prings us toward P,

e Hill climbing? Intractible
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Gradient Descent
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Gradient Descent
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Gradient Descent

e Derivative 9P
ow
oP
° Update Aw = T'E
. _ oP . oP .
e Weight(s) Aw =71 (awll + ow, )

e Obstacle: When does this work?
e Only when P is differentiable
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@ Activation
Fundamental unit of a Neural Network .~ function
© ¥

1 if Ewl.,:[l. =)
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. -1 otherwise
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Step 1: Removing Threshold

e Thresholding makes our function non-
differentiable, also annoying to compute

e Ideally, we want y=f(x,w)

e TOOk 25 years to figure out a good way to
accomplish this

e Enter the Bias Neuron



Bias Neuron

e AN extra neuron
added to each layer

o Has fixed output
value of 1.0

o Has effect similar to
that of thresholding
with easier compute
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Step 2: Smoothing the Activation

o Step function non-differentiable
e Apply a sigmoid function to smooth it out

4% i3, a
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Step 2: Smoothing the Activation

o Step function non-differentiable

e Apply a sigmoid function to smooth it out
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Sigmoid Functions
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The Improved Neuron
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