
COMP 4752
Computational Intelligence

Lecture 6
Assignment Tips and
A* Search Improvements

COMP 4752: Computational Intelligence
David Churchill

Assignment 1 Marking Scheme
● code style / modularity / readability 10%
● use of decent admissible heuristic 05%
● is_connected all correct for size = 1 15%
● is_connected all correct for size = 2, 3 10%
● get_path costs correct for size = 1 40%
● get_path costs correct for size = 2,3 20%

● You MUST use the A* algorithm for get_path

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search (GENERAL)
1. Function AStar(problem, h(n))
2. closed = empty set # stores states (tile locations)
3. open = [(Node(problem.initial_state)] # stores Nodes
4. while (true)
5. if (open.empty) return fail
6. node = remove_min_f_node(open)
7. if (node.state is goal) return solution
8. closed.add(node.state)
9. for child in Expand(node, problem)
10. if (child.state in closed) continue
11. child.f = child.g + h(child)
12. open.add(child)

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search (Improvement)
1. Function AStar(problem, h(n))
2. closed = empty set # stores states (tile locations)
3. open = [(Node(problem.initial_state)] # stores Nodes
4. while (true)
5. if (open.empty) return fail
6. node = remove_min_f_node(open)
7. if (node.state is goal) return solution
8. closed.add(node.state)
9. for child in Expand(node, problem)
10. if (child.state in closed) continue
11. child.f = child.g + h(child)
12. if (any node in open with state = child.state and g < child.g) continue
13. open.add(child)

COMP 4752: Computational Intelligence
David Churchill

Node Implementation
class Node:

def __init__(self, tile):
self.state = tile
self.action = (0, 0)
self.g, self.f = 0
self.parent = None

COMP 4752: Computational Intelligence
David Churchill

Node Implementation
class Node:

def __init__(self, tile):
self.state = tile
self.action = (0, 0)
self.g, self.f = 0
self.parent = None

def __lt__(self, other):
return self.f < other.f

COMP 4752: Computational Intelligence
David Churchill

General AI Programming Tips
● Algorithm should read like pseudocode

wherever possible
● All get / set data functionality should be

handled by functions
● Don’t dirty up algorithm with indices or

details about data storage / locations
● Be modular wherever possible

COMP 4752: Computational Intelligence
David Churchill

A* Search (Python)
1. def a_star_search(self, start, goal, size):
2. closed = []
3. open = [Node(start)]
4. while (len(open) > 0):
5. node = remove_min_from(open)
6. if (node.state == goal) return self.reconstruct_path(node)
7. closed.append(node.state)
8. for child in self.expand(node):
9. if (child.state in closed) continue
10. child.f = child.g + self.grid.estimate_cost(start, goal)
11. open.append(child)
12. return []

COMP 4752: Computational Intelligence
David Churchill

Open List Implementation
● Implement functions in A* class

● add_to_open(node)
● remove_min_from_open()
● is_in_open(node)
● is_in_closed(state)

● Start out with open / closed as Python list
● Algorithm calls above functions, shouldn’t care

about how the data is stored
● Gradually move to more clever Node storage

COMP 4752: Computational Intelligence
David Churchill

Open / Closed List Query Time
● “Is a given state on the open / closed list”
● Scanning list = O(n)
● Closed list as set = O(logn) query
● Open list

● If we sort it, will sort on f values
● Can’t query a state in logn time
● How to speed up this query?

COMP 4752: Computational Intelligence
David Churchill

Open List Query Time
● If problem is small, use a lookup table
● 2D array [map_width][map_height]
● Array[x][y] = # of (x,y) on the open list
● Constant time queries! O(1)
● Updating the table

● add_to_open(node) a[x][y] += 1
● remove_min_from_open() a[x][y] -= 1

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search (Improvement)
1. Function AStar(problem, h(n))
2. closed = empty set # stores states (tile locations)
3. open = [(Node(problem.initial_state)] # stores Nodes
4. while (true)
5. if (open.empty) return fail
6. node = remove_min_f_node(open)
7. if (node.state is goal) return solution
8. closed.add(node.state)
9. for child in Expand(node, problem)
10. if (child.state in closed) continue
11. child.f = child.g + h(child)
12. if (any node in open with state = child.state and g < child.g) continue
13. open.add(child)

COMP 4752: Computational Intelligence
David Churchill

Informing the Algorithm
● NOTE: FOR OUR ASSIGNMENT PROBLEM ONLY
● Think about the case in red

if (any node in open with state = child.state
and g < child.g) continue

open.add(child)
● “If there is a node on the search tree that’s on a shorter

path through this state, then don’t bother searching this
child node’s path”

● Our problem can’t generate a shorter path through a node
with a higher g cost

COMP 4752: Computational Intelligence
David Churchill

Informing the Algorithm
● What about the opposite case?
● “If the new path through this node is shorter

than any other node on the open list, don’t
bother searching those paths!”

● Instead of putting a new node onto the open list,
we can instead replace the existing node on the
open list with the newly generated one

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search (2D Grid Improve)
1. Function AStar(problem, h(n))
2. closed = empty set # stores states (tile locations)
3. open = [(Node(problem.initial_state)] # stores Nodes
4. while (true)
5. if (open.empty) return fail
6. node = remove_min_f_node(open)
7. if (node.state is goal) return solution
8. closed.add(node.state)
9. for child in Expand(node, problem)
10. if (child.state in closed) continue
11. child.f = child.g + h(child)
12. if (any node in open with state = child.state and g <= child.g) continue
13. if (any node in open with state = child.state and g > child.g)
14. update_in_open_list(node_in_open, child)
15. else open.add(child)

COMP 4752: Computational Intelligence
David Churchill

A* Example
● Example Removed, see improved version

in Lecture 8 slides

COMP 4752: Computational Intelligence
David Churchill

Update Open = Huge Savings!
● By updating the node in the open list instead of

adding a new one, we now only have max of 1
state on the open list

● We can now pre-allocate all nodes in a 2D grid of
size of the map

● all_nodes[x][y] = Node((x,y))
● Max nodes generated = x*y
● Open list now stores pointers to nodes

COMP 4752: Computational Intelligence
David Churchill

Constant Time Node Lookup
● Want to know if a state is in a node in the

open list to look up its g cost
● Previously had to scan the list for node
● We can now simply look up in array

● all_nodes[x][y]
● IMPORTANT:

● Must re-sort open list upon updating a node

	�COMP 4752�Computational Intelligence���Lecture 6�Assignment Tips and�A* Search Improvements
	Assignment 1 Marking Scheme
	A* Graph-Search (GENERAL)
	A* Graph-Search (Improvement)
	Node Implementation
	Node Implementation
	General AI Programming Tips
	A* Search (Python)
	Open List Implementation
	Open / Closed List Query Time
	Open List Query Time
	A* Graph-Search (Improvement)
	Informing the Algorithm
	Informing the Algorithm
	A* Graph-Search (2D Grid Improve)
	A* Example
	Update Open = Huge Savings!
	Constant Time Node Lookup

