
COMP 4752
Computational Intelligence

Lecture 23
Monte-Carlo Tree Search (MCTS)



COMP 4752: Computational Intelligence
David Churchill

Monte-Carlo Methods
● Class of methods or algorithms that relies 

heavily on random sampling
● Very useful when traditional approaches 

cannot be applied to a problem
● Main idea: Over the course of many 

random samples, the true values will 
eventually emerge, decide on best action



COMP 4752: Computational Intelligence
David Churchill

Example Monte-Carlo Method



COMP 4752: Computational Intelligence
David Churchill

Monte-Carlo Tree Search
● Search starts at the root node
● Perform a number of traversals of the tree
● On each traversal we perform a number of 

steps which leads to tree expansion
● Simulation is performed to determine the 

quality of a node for a given player
● MCTS consists of 4 main steps



COMP 4752: Computational Intelligence
David Churchill

Monte-Carlo Tree Search



COMP 4752: Computational Intelligence
David Churchill

Node Representation
● Each node consists of 4 main components
● Visits: How many times has this node 

been visited in traversals
● Wins: How many times has passing 

through this node led to a player win
● Children: The children of this node that I 

have generated so far



COMP 4752: Computational Intelligence
David Churchill

Node Representation

Images: https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/



COMP 4752: Computational Intelligence
David Churchill

Step 1: Selection
● Multi-armed bandit
● Node selection policy

● Most wins
● Most visits
● Highest win %
● Formula n = (w, v)

● Follow until a leaf node
● Usually: all children visited 

once before any twice



COMP 4752: Computational Intelligence
David Churchill

N-Armed Bandit Problem
● Repeatedly make a choice 

among n different actions
● After each action you receive a 

reward from a stationary 
probability distribution 
depending on the action

● Objective is to maximize your 
expected total reward over a 
number of action selections



COMP 4752: Computational Intelligence
David Churchill

Exploitation vs. Exploration
● If we maintain an estimate of action values, at 

any time there is one greatest
● The ‘Greedy Action’

● Exploitation: Choosing the Greedy Action
● Maximizes single action returns

● Exploration: Choosing a non-greedy action to 
improve your action estimates
● Required for future reward maximization

● How to balance exploitation vs. exploration?



COMP 4752: Computational Intelligence
David Churchill

Selection Formulas
● Greedy selection doesn’t explore
● Epsilon greedy works fairly well
● Best option: Upper Confidence Bound UCB
● MCTS + UCB = UCT

● UCT Formula:



COMP 4752: Computational Intelligence
David Churchill



COMP 4752: Computational Intelligence
David Churchill

Step 2: Expansion
● We have reached a leaf 

node in the tree
● Can no longer select a node
● Generate a child of the leaf 

node to be evaluated
● This evaluation will be done 

via simulation



COMP 4752: Computational Intelligence
David Churchill

Step 3: Simulation
● Simulation occurs by playing 

the game from a given state 
to the end

● Some policy is needed to 
guide play, usually random

● The winner of the game 
using this policy is recorded

● We are now ready to update 
the parent node values



COMP 4752: Computational Intelligence
David Churchill

Step 4: Back Propagation
● Follow parent nodes back 

to the root node
● Add one visit to each node
● If the simulation won, add 

a win to each node, if not 
then don’t add anything

● Update is complete!



COMP 4752: Computational Intelligence
David Churchill

Final Action Selection
● After some traversals, we 

now select the root action
● No longer want to do any 

exploration
● Selection action with:

● Highest win %
● Most visits



COMP 4752: Computational Intelligence
David Churchill

Example Tree



COMP 4752: Computational Intelligence
David Churchill

MCTS Advantages
● Copes with large branching factors
● Any-time algorithm, stop at # traversals
● Doesn’t rely on a heuristic function, 

simulation determines state value
● Fairly simple implementation
● Can also use heuristics if available



COMP 4752: Computational Intelligence
David Churchill

MCTS Disadvantages
● Tree grows large quickly, memory usage 

is very intense, unlike DFS Alpha Beta
● Doesn’t find ‘narrow path to victory’ as 

well as algorithms like minimax
● Harder to make use of heuristics
● Doesn’t work if random playouts are bad 

in a given domain (ex: RTS games)


	�COMP 4752�Computational Intelligence���Lecture 23�Monte-Carlo Tree Search (MCTS)
	Monte-Carlo Methods
	Example Monte-Carlo Method
	Monte-Carlo Tree Search
	Monte-Carlo Tree Search
	Node Representation
	Node Representation
	Step 1: Selection
	N-Armed Bandit Problem
	Exploitation vs. Exploration
	Selection Formulas
	Slide Number 12
	Step 2: Expansion
	Step 3: Simulation
	Step 4: Back Propagation
	Final Action Selection
	Example Tree
	MCTS Advantages
	MCTS Disadvantages

