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N-Armed Bandit Problem

o Repeatedly make a choice

among n different actions 7
o After each action you receive a :

' — e
reward from a stationary arf-
probability distribution :
depending on the action <

o Objective Is to maximize your
expected total reward over a
number of action selections
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N-Armed Bandit Problem

« Name Is an analogy to slot machines:
“One-armed bandit”

e« YOU have a limited amount of money, and
you try to win as much as possible

« How do we select which levers to pull?



Exploitation vs. Exploration

o If we maintain an estimate of action values, at
any time there is one greatest
o The ‘Greedy Action’
o Exploitation: Choosing the Greedy Action
e Maximizes single action returns
e Exploration: Choosing a non-greedy action to
Improve your action estimates
e Required for future reward maximization

e How to balance exploitation vs. exploration?
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Action-Value Methods

e Q*(a) = Actual Value of action a
e “Actual Value” = Mean Reward

e Q.(a) = Estimate of Q*(a) after play t
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Q.(a) Sample Average Estimation

o Natural way of calculating Q,(a) is to average the
rewards received so far after a number of plays

o If at play t, action a has been chosen k_, times,
yielding rewards rq, r,, ..., e, then:
Q@) = (r+ry+..+nr )/ k,
e If k, = O, define Q, as some default, Q,(a) = 0
e As k, gets large, Q;(a) converges to Q*(a)
e This is called the “sample average” method
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Greedy Action Selection

e How to select an action from value estimations?

o« Simples way: Greedy Selection

e Select on play t, a greedy action A* for which:
Qi(a*) = max,Q(a)

e This method always exploits current knowledge
to maximize immediate reward

e No sampling or exploration to determine values
of another action to see If they may be better



COMP 4752: Computational Intelligence

David Churchill

e-Greedy Selection

o To add exploration, choose a random action with
small probability €

e In the limit, as the number of plays increases,
each action will be sampled infinite times

e This guarantees k, -> infinity, and Q.(a)
converges to Q*(a)

e In theory this works, but in practice it may take
a very, very long time to converge
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Incremental Action-Value Est.

e Recall: Q. (a) = (r1+r2+...+rka) / K,
e Problem: Memory and computational
regquirements grow over time

e Let’s derive an incremental formula so
that memory is no longer an issue
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Incremental Implementation
Q. = average of first k rewards

1
Qu+1 =17 gy

= Qy+ ﬁ (N1 — Q)

NewEstimate = OldEstimate + StepSize(Target-OldEstimate)
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Nonstationary Problems

o Averaging works fine for stationary environments,
but not if it changes over time

o« Want to weight recent rewards more than old ones
e Use a constant step-size parameter O <a <1

Qi1 = Qx + a (Neer — Q)
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Incremental Update Example
e Qi1 = Qe+ a (ner — Q)

« New estimate pulled toward r,,, by a

e Q. =50,a=1,r., =100
e Q.., = 50 + 1*(100-50) = 50+50 = 100

«Q, =50,a=0.5r,, =100
e Qu,., = 50 + 0.5%(100-50) = 75



COMP 4752: Computational Intelligence
David Churchill

Agent-Environment Interface

e Sequence of time steps _:[ Agent }

e 1=0,1, 2, 3, .. state | | reward action
o At each time step t: 11 !

e Agent perceives state s € S ;:, Environment lq—

o Selections action a; € A(Sy)
e One time step later gets r,; €R
e Finds itself in new state s, ;
e Agent selects action from its policy n
e General: n (s,a) = Probability a,=a if s;=s



Goals and Rewards

e In RL, purpose is defined by reward r,
e Reward often used to define ‘goal state’
e« RL objective = maximize cumulative reward

« Example: Path-Finding
e Reward is -1 at every non-goal state
e Reward is 1 at the goal state
¢ Maximizing goal minimizes path length
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e Objective: maximize long term reward
« HOow can we formally define this?
e Reward Sequence: r, {, lio, Mg -

e Objective: maximize expected return
e« Return R, is a function of reward sequence
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e Simplest case: Return is sum of rewards:
e Ri=Tlyq o trgg+ .o+ 1y
e T is the final time step

e In general we add a discounting factor y
e y balances importance between present / future reward
e Ri =yl + v, +y°oras + ..

—_— (00
o Rt — Zk:O Vk Virk+1
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The Markov Property

e In the RL framework, agent makes decisions as a
function of the state of an environment

e Recall: the ‘state’ of an environment is whatever
Info is available to the agent

e If a state contains all relevant information for

making a decision, it is said to be Markov, or to
have the Markov Property

o Intuitively: “no state history required”
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Markov Examples

e 3 balls in a box, 2 blue 1 green
e One ball iIs drawn from the box at random

o Next day, someone asks what is the
probability of drawing a red ball

e Not Markov
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Markov Examples
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Markov Property Definition

e In general, environment state and rewards may
be defined by action sequence

e Pr{s,,;=S",rs1=r | Sy, r,S¢.1,8¢.1,---»1,S0,80%

o If Markov Property holds, environment response
at t+1 depends only on state and action at t

e Pr{s,,;=S’,r,=r | sp,a.
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Markov Decision Process (MDP)

« An RL task that satisfies the Markov
Property Is called a Markov Decision
Process (MDP)

o If state and action spaces are finite, It iIs
called a finite MDP
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MDP Definition

e MDP = (S, A, P, R, Y)
e S = finite set of states
e A = finite set of actions (A, legal from s)
e P (s,S’) = Pr(s(;;=S’ | si=s, a;—a)
e R, (S,S’) = reward after transition s to s’
e Y € [0,1] = discount factor
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MDP Problem / ODbjective

e« Choose a policy that # maximizes Return:

—_— (00
¢ Rt — Zk=0 Vi Niak+1

e Can be solved by dynamic programming
o Assignment 3 = Grid World DP
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