\'d Vi O) I

COMP 4752 UNIVERSITY
Computational Intelligence

Lecture 6
Assignment Tips and
A* Search Improvements



COMP 4752: Computational Intelligence

David Churchill

Assignment 1 Marking Scheme

e code style / modularity / readability 10%
e use of decent admissible heuristic 05%
e IS _connected all correct for size =1 15%
e IS _connected all correct for size = 2, 3 10%
e get_path costs correct for size = 1 40%0

e get_ path costs correct for size = 2,3 20%
e You MUST use the A* algorithm for get_path



A* Graph-Search (GENERAL)

Function AStar(problem, h(n))
closed = empty set # stores states (tile locations)
open = [(Node(problem.initial_state)] # stores Nodes
while (true)
if (open.empty) return fail
node = remove_min_f node(open)
if (node.state is goal) return solution
closed.add(node.state)
for child in Expand(node, problem)
iIf (child.state in closed) continue
child.f = child.g + h(child)
open.add(child)

© © N o 0 A~ w0 NPRe

=
N R O



A* Graph-Search (Improvement)

Function AStar(problem, h(n))
closed = empty set # stores states (tile locations)
open = [(Node(problem.initial_state)] # stores Nodes
while (true)
if (open.empty) return fail
node = remove_min_f node(open)
if (node.state is goal) return solution
closed.add(node.state)
for child in Expand(node, problem)
iIf (child.state in closed) continue
child.f = child.g + h(child)
If (any node in open with state = child.state and g < child.g) continue
open.add(child)

© © N o 0 A~ w0 NPRe

PR R e
w N p O



Node Implementation

class Node:
def _init__ (self, tile):
self.state = tile
self.action = (0O, 0)
self.g, self.f =0
self.parent = None



Node Implementation

class Node:
def _init__ (self, tile):
self.state = tile
self.action = (0O, 0)
self.g, self.f =0
self.parent = None

def It (self, other):
return self.f < other.f



COMP 4752: Computational Intelligence

David Churchill

General Al Programming Tips

e Algorithm should read like pseudocode
wherever possible

e All get / set data functionality should be
handled by functions

e Don’t dirty up algorithm with indices or
details about data storage / locations

« Be modular wherever possible



A* Search (Python)

def a_star_search(self, start, goal, size):
closed =[]
open = [Node(start)]
while (len(open) > 0):
node = remove_min_from(open)
If (node.state == goal) return self.reconstruct_path(node)
closed.append(node.state)
for child in self.expand(node):
if (child.state in closed) continue
child.f = child.g + self.grid.estimate_cost(start, goal)
open.append(child)
return []

© ® N O g b~ 0 DNPR

=
N B O



COMP 4752: Computational Intelligence

David Churchill

Open List Implementation

o Implement functions in A* class
e add_to_ open(node)
e remove_min_from_open()
e IS_In_open(node)
e IS_INn_closed(state)
o Start out with open / closed as Python list

o Algorithm calls above functions, shouldn’t care
about how the data is stored

o Gradually move to more clever Node storage



COMP 4752: Computational Intelligence

David Churchill

Open / Closed List Query Time

e “Is a given state on the open / closed list”
e Scanning list = O(n)
e Closed list as set = O(logn) query

e Open list
o If we sort it, will sort on f values
o« Can’t query a state in logn time
e How to speed up this query?



Open List Query Time

e If problem is small, use a lookup table

e 2D array [map_width][map_height]

e Array[x][y] = # of (X,y) on the open list
o Constant time queries! 0O(1)

o Updating the table
e« add_to_open(node) a[x]ly] +=1
e remove_min_from_open() a[x]ly] =1



A* Graph-Search (Improvement)

Function AStar(problem, h(n))
closed = empty set # stores states (tile locations)
open = [(Node(problem.initial_state)] # stores Nodes
while (true)
if (open.empty) return fail
node = remove_min_f node(open)
if (node.state is goal) return solution
closed.add(node.state)
for child in Expand(node, problem)
iIf (child.state in closed) continue
child.f = child.g + h(child)
If (any node in open with state = child.state and g < child.g) continue
open.add(child)

© © N o 0 A~ w0 NPRe

PR R e
w N p O



Informing the Algorithm

e NOTE: FOR OUR ASSIGNMENT PROBLEM ONLY

e Think about the case in red
If (any node in open with state = child.state
and g < child.g) continue
open.add(child)
e “If there is a node on the search tree that’s on a shorter

path through this state, then don’t bother searching this
child node’s path”

e Our problem can’t generate a shorter path through a node
with a higher g cost



COMP 4752: Computational Intelligence

David Churchill

Informing the Algorithm

« What about the opposite case?

e “If the new path through this node is shorter
than any other node on the open list, don’t
bother searching those paths!”

o Instead of putting a new node onto the open list,
we can instead replace the existing node on the
open list with the newly generated one



A* Graph-Search (2D Grid Improve)

Function AStar(problem, h(n))
closed = empty set # stores states (tile locations)
open = [(Node(problem.initial_state)] # stores Nodes
while (true)
if (open.empty) return fail
node = remove_min_f _node(open)
if (node.state is goal) return solution
closed.add(node.state)
for child in Expand(node, problem)
if (child.state in closed) continue
child.f = child.g + h(child)
if (any node in open with state = child.state and g <= child.g) continue
if (any node in open with state = child.state and g > child.qg)
update_in_open_list(node_in_open, child)
else open.add(child)

© ©® N o g pr w0 Dd e

e i e =
O h w N p O



COMP 4752: Computational Intelligence
David Churchill

« Example Removed, see improved version
In Lecture 8 slides



COMP 4752: Computational Intelligence

David Churchill

Update Open = Huge Savings!

e By updating the node in the open list instead of
adding a new one, we now only have max of 1
state on the open list

« We can now pre-allocate all nodes in a 2D grid of
size of the map

o all nodes[x][y] = Node((X,y))
e Max nodes generated = x*y
e Open list now stores pointers to nodes



COMP 4752: Computational Intelligence

David Churchill

Constant Time Node Lookup

e Want to know Iif a state iIs in a node In the
open list to look up its g cost

e Previously had to scan the list for node

e We can now simply look up in array
e all_nodes|x]ly]

o IMPORTANT:
e Must re-sort open list upon updating a node



	�COMP 4752�Computational Intelligence���Lecture 6�Assignment Tips and�A* Search Improvements
	Assignment 1 Marking Scheme
	A* Graph-Search (GENERAL)
	A* Graph-Search (Improvement)
	Node Implementation
	Node Implementation
	General AI Programming Tips
	A* Search (Python)
	Open List Implementation
	Open / Closed List Query Time
	Open List Query Time
	A* Graph-Search (Improvement)
	Informing the Algorithm
	Informing the Algorithm
	A* Graph-Search (2D Grid Improve)
	A* Example
	Update Open = Huge Savings!
	Constant Time Node Lookup

