COMP 4752
Computational Intelligence

Lecture 9

Heuristic Search Improvements
Depth-First Branch and Bound
Starcraft Al

VI E V] O K
UNIVERSITY

COMP 4752: Computational Intelligence

David Churchill

A* Search — Memory

e A* search stores nodes in the search tree,
so the memory required may far exceed
the number of states in the problem

o Worst-Case Memory Required: O(b™)
o Heuristic may guide us to bad parts of tree

o« A* not used In practice for large problems
« How can we reduce memory usage?

COMP 4752: Computational Intelligence

David Churchill

Iterative Deepening A* (IDA*)

e Iterative deepening used in DFS to ensure
the search was complete

e Instead of using a depth limit like DFS,
IDA* uses an increasing f-value cutoff

« But memory / CPU usage still high due to
storing and sorting the entire open list

COMP 4752: Computational Intelligence

David Churchill

Recursive Best-First Search (RBFS)

e Recall DFS can be implemented using the Tree-
Search algorithm with a fringe stack

e However, a better implementation of DFS was
using a recursive function

o Similarly, we can implement Best-First Search
algorithms as recursive functions

o« Mimics the operations of standard BeFS, but only
uses linear space

Recursive Best-First Search (RBFS)

o Keeps track of the f-value of the best alternative path from
any ancestor of the current node

e If the current node exceeds this limit, recursion unwinds
back to the alternative path

e As recursion unwinds, RBFS replaces the f value of each
node along the path with the best f-value of its children

e RBGS retains the f-value of the best leaf in the forgotten
subtree and can decide whether it should reexpand that
subtree at a later time

Recursive Best-First Search (RBFS)

Function RBFS(problem, node, f_limit)

If (node.state == goal) return node

successors = Expand(node, problem)

If (successors.empty()) return (failure, infinity)

for s in successors:
s.f = max(s.g + h(s), node.f)

repeat:
best node = min_f node(successors)
if (best_node.f > f_limit) return (falure, best.f)
alt node = second_lowest_f(successors)
result, best _node.f = RBFS(problem, best_node, min(f_limit, alt_node))
if (result !'= failure) return result

© © N o 0 A~ w0 NPRe

o =
N B O

COMP 4752: Computational Intelligence

David Churchill

RBFS Performance

e LiIke A*, RBFS iIs optimal if the heuristic
function h(n) i1s admissible

e Memory usage is linear in search depth O(d)

e Time complexity is difficult to analyze
o Accuracy of heuristics?
« How often does the best path change?

Memory-Bounded A*

e Simple Memory-Bounded A* (SMA¥)
e Use all available system memory

« When all memory used and we need to add a node, erase the
highest f-value node

e SMA* then backs up the value of the forgotten node to its parent

e The ancestor of a forgotten subtree knows the quality of the best
path in that subtree

e In case of ties, SMA* selects the newest node generated, and
deletes the oldest node generated

e SMA™ is complete/optimal only if depth of shallowest goal < memory

COMP 4752: Computational Intelligence

David Churchill

Branch and Bound

COMP 4752: Computational Intelligence

David Churchill

Branch & Bound Algorithms

e “Any-time” search algorithm

o Will continue to find increasingly better
solutions until the you stop the algorithm

e If run to completion, will find optimal solution

e« Choose an Initial search cutoff bound and
search all solutions up to that bound,
when a solution Is found, update the
bound to the cost of that solution

COMP 4752: Computational Intelligence
David Churchill

Depth-First Branch and Bound (DFBB)

best path =[]
bound = infinity
Function DFBB(problem, node, bound)
If (node.state == goal)
best path = reconstruct_path(node)
bound = path_cost(best path)
children = Expand(node, problem)
sort(children, h()) # optional move-ordering

for child in Expand(node, problem):
iIf (child.g + h(child) = bound) continue # h must be admissible

DFBB(problem, child, bound)

COMP 4752: Computational Intelligence

David Churchill

DFBB Example: Starcraft

COMP 4752: Computational Intelligence

David Churchill

" e

= \ ; J
Real-Time Strategy 8

e War-like Simulation
e Single / Multiplayer Games

e Most RTS Games:
o Gather Resources
e Build Town / Army
o Combat With Enemies

Properties of RTS

e Real-Time

e Simultaneous Move

o« Non-Deterministic

e Imperfect Information
e Multi-Unit Control

e Unknown Game Engine
e Action / State Space

COMP 4752: Computational Intelligence

David Churchill

Benefits of RTS Al

o Better In-Game Al
o More intelligent NPCs
o Better single player

e Create Offline Tools
« Game balancing
e Reduce human testing

o Apply to any game

eSports

COMP 4752: Computational Intelligence
David Churchill

Human vs. Machine

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence
David Churchill

Strategic Tactical Reactive Control
High Level, Abstract Mid-Level Low-Level, Concrete
3 mins + 30 sec-1 min ~ 1 sec
Knowledge q :
& Learning >couting
Opponent ¥
Modeling
Strategic
Stance
Army ¥ Combat Timing X Unit
Composition » & Position » Micro
Build-Order Unit & Building Multi-Agent
Planning » Placement » Pathfinding

COMP 4752: Computational Intelligence
David Churchill

Strategic Tactical Reactive Control
High Level, Abstract Mid-Level Low-Level, Concrete
3 mins + 30 sec-1 min ~ 1 sec
Knowledge q :
& Learning >couting
Opponent ¥
Modeling
Strategic
Stance
Army ¥ Combat Timing X Unit
Composition » & Position » Micro
9 Build-Order Unit & Building Multi-Agent
| Planning » Placement » Pathfinding

COMP 4752: Computational Intelligence

David Churchill

Build-Order Planning
and Optimization

COMP 4752: Computational Intelligence

David Churchill

What i1s a Build-Order?

e Sequence of economic actions
e List of buildings /7 units to build in order
e Players memorize ‘opening books’

L 2B 2B 2B 2B 2B

COMP 4752: Computational Intelligence

David Churchill

Current Game State

Build-Order Search

Build Order Sequence: A, A,, ...

COMP 4752: Computational Intelligence

David Churchill

Algorithm - DFBB

e Depth-First Branch and Bound
e Optimize: Build-Order Makespan

Algorithm - DFBB

e Depth-First Branch and Bound
e Optimize: Build-Order Makespan

e Low Memory Usage

e Any-Time

e Save / Load Search

o Upper + Lower Bound Heuristics

COMP 4752: Computational Intelligence

David Churchill

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
xample
Build-Order Search Corend

Cybernetics Core

@ Cybernetics Core @ Cybernetics Core

G G Commrema> ()
D T D D G o> G G o> G
D G > e
& G Bl Ge=> Bl

Cybernetics Core

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
xample
Build-Order Search Corend

Cybernetics Core

@ Cybernetics Core @ Cybernetics Core

G G Commrema> ()
D T D D G o> G G o> G
D G > e
& G Bl Ge=> Bl

First

Cybernetics Core
Cybernetics Core

Solution

COMP 4752: Computational Intelligence

David Churchill

Cored
& e G © & S
«<=»| Increasing Quality P
G Crsmier> Cepemetescars > (o)
= O O & @& &
OERCICEIICN - |
CICEDY - |
First

Example DFBB

Build-Order Search

Solution

COMP 4752: Computational Intelligence

David Churchill

Cored

& e G © & <G

«<=»| Increasing Quality P

G s> eppamatcscars > (rren)

= O O & @& &
OERCICEIICN
\
Cred G

Example DFBB

Build-Order Search

Best

Solution

COMP 4752: Computational Intelligence

David Churchill

Coren
@ Cybernetics Core w @ Cybernetics Core
«<=»| Increasing Quality P S con
G . > B
[Imeout”
> G =
\
First 5040 4820 4686 4596 SOI utlon
4688

Example DFBB

Build-Order Search

Cybernetic:

Dragoon

Best

Solution

Pro Human Results

e Extract Pro Build-Orders
e Re-plan with BOSS
e Compare to original

e Results:
e 100% of build orders solved
e Faster than humans
e Solve Time: 4% of makespan

COMP 4752: Computational Intelligence

David Churchill

Build-Order Heuristics

e Resource Gathering Bound
e Landmark Heuristic

e« Macro Actions
e Repeat actions common in pro build orders

Landmark Heuristic

« How long do we need to build the
seguential prerequisites of an action

T T T T T T T T
Pylon
Assimilator PyI:0n Probe Prohe:
Pylon Probe Probe Probe Probe Gateway Darl%gTempIar Dark_TempIa%r
Probe Probe Probe Probe Probe G ateway Cyb;ern etics_Core Citzadel_of_Adun Te;mplar_Archives Dark;_TempIar Dark_TempIazr

i i i i i i i
0 1000 2000 3000 4000 5000 6000 7000

COMP 4752: Computational Intelligence

David Churchill

Macro Actions

e Some problems have common sequences
of actions that appear in optimal paths

e These commonly repeated action
seguences are called “macro actions”

o Adding macro actions to the search can
sometimes help us “shortcut” to better
nodes further down the optimal path

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence

David Churchill

Macro Actions

e Macro actions are built of atomic actions

e They have cost equal to the sum of the
actions contained within them

e EXample: = >
o Built From: Right Right Up
e Cost: 100 + 100 + 141 = 341

COMP 4752: Computational Intelligence

David Churchill

Macro Actions

e Trade-off: branching factor vs. depth

e We must keep all atomic actions to ensure that
the optimal solution is still found

e« Macro actions search deeper into the tree with a
single transition, but increase the branching
factor of a given node

e They may speed up the search, but a poor choice
of macro action can also slow down the search

makespan (seconds)

500
480
460
440
420
400
380
360
340

COMP 4752: Computational Intelligence
David Churchill

N |

!

2 3 4 5 6 7 8 9
log(number of nodes expanded) [base 10]

COMP 4752: Computational Intelligence

David Churchill

Build-Order Planning Impact

o Implemented into UAlbertaBot
e Used in other bots in past few years

e All build-orders planned in real-time
e First real-time planning solution

e« Ran In real time with no time-outs
o UAlbertaBot placed 2"9 when implemented

COMP 4752: Computational Intelligence

David Churchill

A StarCraft Build-Order Visualization

Help
Select Race | # Protoss -
A Protoss_Probe b

Add to Build Order Add to Initial State

Build-Order

A Protoss_Probe
A Protoss_Probe
A Protoss_Probe
A Protoss_Probe
&% Protoss_Pylon
A Protozs_Probe
A Protozs_Probe
#% Protoss_Gateway

View Details

Clear Selected Clear Al

Load Build-Order Save Build-Order

Protoss_Probe

Producer: Protoss_Mexus
Minerals: 50

Gas: 0

Initial State

A Protoss_Probe
A Protoss_Probe
A Protoss_Probe
A Protoss_Probe
B¢ Protoss_Mexus

Clear Selected

Load State

Build Time: 300
HP f Shield:

View Details

Clear All

Save State

20,20

H

Starting Minerals

50

A

Starting Gas

o -

View Final State

Generate Graphs
Army Value Graph
Resource Graphs

Build-Crder Graph

COMP 4752: Computational Intelligence

David Churchill

Mutalisk

Mutalisk

Mutalisk

Mutalisk :

Mutalisk

Drone : Zergling : : : Mutalisk

Drone Zergling || Drone : : : Mutalisk:

Drone Drone Drone Drone Drone Mutalisk

Drone Extractor Drone || Zergling | overord Drone : Mutalisk:

Drone : Hatchery : Drone Overlord Drone || Drone : Mutalisk :

Drone Drone Drone Drone | | Hatchery : Extractor Drone || Drone : Spire : Mutalisk:

Drone Drone Overlord Drone Drone ESpawmng_PnnI Overlord Lair Overlord Drone Mutallskg

0 1000 2000 3000 4000 5000 6000 7000 8000 2000

	�COMP 4752�Computational Intelligence���Lecture 9�Heuristic Search Improvements�Depth-First Branch and Bound�Starcraft AI
	A* Search – Memory
	Iterative Deepening A* (IDA*)
	Recursive Best-First Search (RBFS)
	Recursive Best-First Search (RBFS)
	Recursive Best-First Search (RBFS)
	RBFS Performance
	Memory-Bounded A*
	Branch and Bound
	Branch & Bound Algorithms
	Depth-First Branch and Bound (DFBB)
	DFBB Example: Starcraft
	Real-Time Strategy
	Properties of RTS
	Benefits of RTS AI
	Slide Number 16
	Slide Number 17
	Human vs. Machine
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Build-Order Planning�and Optimization
	What is a Build-Order?
	Slide Number 24
	Algorithm - DFBB
	Algorithm - DFBB
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Pro Human Results
	Build-Order Heuristics
	Landmark Heuristic
	Macro Actions
	Slide Number 36
	Macro Actions
	Macro Actions
	Slide Number 39
	Build-Order Planning Impact
	Slide Number 41
	Slide Number 42

