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Motivation for GP

o« Automatic Programming
e Computers learn to program themselves

e Machine Learning

o Study of computer algorithms that improve
automatically through experience

o Classification / Regression, Function Approximation

e Genetic Programming

e Induce a population of computer programs that
Improve automatically as they experience the data on
which thev are trained
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Machine Learning

e Training, testing, and cross validation

e Supervised Learning
e Each training instance is given correct output

e Unsupervised Learning
e NO correct inputs given, it discovers patterns

e Reinforcement Learning
e General reward signal used for quality



Machine Learning

o Classification :
e Supervised, discrete output

e Regression
e Supervised, continuous output

e Clustering
e Unsupervised

o« Dimensionality Reduction / Function Approx.

e Mapping high-dimensional inputs into a lower-
dimensional space
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GP Overview

e Developed in USA in 1990’s
e John Khoza
o Typically applied to machine learning tasks

o Attributed Features:
e Competes with neural nets and alike
e« Needs huge populations, and is slow
e« Non-linear chromosomes (trees / graphs)
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GP Technical Summary

e Representation: Tree structures

« Recombination: Exchange of subtrees
o« Mutation: Random change In trees

e Parent Selection: Fithess proportional

e Survivor Selection: Generational
replacement



Example: Credit Scoring

e Distinguish good from bad loan applicants
e Model needed that matches known data

ID No of Salary | Marital OK?
children status
ID-1 2 45000 | Married 0
ID-2 0 30000 Single 1

ID-3 1 40000 | Divorced 1




Example: Credit Scoring

e A possible model:
e IF (NOC=2) AND (S>80000) THEN good ELSE bad

e In general
e IF formula THEN good ELSE bad

e Only unknown is the right formula, hence
e Our search space (phenotypes) is the set of formulas

o Fitness: percentage of well classified cases of the model it
stands for

o Representation of formulas: Parse Trees



Parse Tree Example

« IF (NOC=2) AND (S>80000) THEN good ELSE bad

N /N

80000
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Tree-Based GP Representation

e Trees are a universal form i=1:
while (1 <20)
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GP Representation

e IN GA, chromosomes are linear structures
(vectors, integer strings, permutations)

e Tree shaped chromosomes are non-linear
e IN GA, size of chromosomes is fixed
e Tress In GP may vary In depth and width



GP Terminals and Functions

e Symbolic expressions defined by
e Terminal set T
e Function set F

e Terminals provide a value to the system

e Comprised of the inputs to the GP program, the
constants, and the zero-arg functions

e Functions process a value already in system

o Comprised of the statements, operators, and functions
available to the BP system (Boolean, arith, conditional,
control. loop, etc)



Initialization of GP Trees

« Maximal initial depth of trees D, ., set

e Full method (each branch has depth = D,.,)
e Nodes at d<D randomly chosen from function set F
e Nodes at d=D,,, randomly chosen from terminal set T

e Grow method (each branch has depth <= D)
e Nodes at d<D randomly chosen from F U T
« Nodes at d=D,, randomly chosen from T

e Common GP Iinit: Half-and Half, where grow and
null each deliver half the population

max

max



Mutation Operator

e Common: Replace randomly chosen subtree by
randomly generated tree
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Mutation Operator

o Mutation has two parameters:
e Probability p,,, to choose mutate vs. recombination
o Probability to choose a the given subtree to replace

« Remarkably, pm is advised to be O, or very very
small like 0.05 (Banzahf et al ‘98)

e Size of the child can exceed size of the parent
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e Common: exchange two randomly chosen
subtrees among the parents

e Recombination has two parameters:

e Probability pc to choose recombination vs. mutation

e Probability to choose an internal point within each
parent as the crossover point

e The size of offspring can exceed that of parents
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Fithess Evaluation

o The measure to choose parents

e Fitness: How well a program has learned to
predict the outputs from given inputs

e Designed to give continuous feedback about how
well a program performs on the training set

e Error-Based fitness functions, squared errors, or
square root errors
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Fitness Examples

« Number of matching pixels in image matching

« Number of walls hit for a robot controlled by GP
to learn obstacle avoidance

e Number of correctly classified examples

o Deviation between prediction and reality

« Money won by agent in betting game

« Amount of food found and eaten in life sim
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Generational GP

INITIALIZE population w/ random individuals
REPEAT UNTIL (termination condition)

EVALUTE population / individual fithess

SELECT parents with high fithess

COMBINE parents to form offspring

MUTATE resulting offspring

NEXT POP = select from [pop,offspring,parents]

N o o bk WD RE



Steady-State GP

1. Initialize the population

2. while (termination condition not met)

3 Randomly choose subset of pop for a tournament

4. Evaluate fithess of each individual in tournament

5 Select winners of tournament via selection algorithm
6 Apply genetic operators to winners of tournament

7 Replace losers of tournament with offspring

8. Return the best individual from the population
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GP Example: Symbolic Regression

e Target Function: y= f(z) = —

o« GP Configutation:
e Terminal set: Variable x, int constants [-5,5]
e Function set: +, -, *, % (protected /)
e Fitness: RMSE over 10 training cases

e Parameters: pop size, initialization, crossover
rate, mutation rate, selection methods



GP Example: Symbolic Regression

e Training Set

i Input | Output

Fitness Case 1 | 0.000 | 0.000
Fitness Case 2 | 0.100 | 0.005
Fitness Case 3 | 0.200 | 0.020
Fitness Case 4 | 0.300 [ 0.045
Fitness Case 5 | 0.400 | 0.080
| Fitness Case 6 | 0.500 | 0.125
| Fitness Case 7 | 0.600 | 0.180
Fitness Case 8 | 0.700 | 0.245
Fitness Case 9 | 0.800 | 0.320
Fitness Case 10 | 0.900 | 0.405




GP Example: Symbolic Regression

e Best individual from e
generation O
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GP Example: Symbolic Regression

e Best individual from generation 1
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GP Example: Symbolic Regression

e Best individual from generation 2
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GP Example: Symbolic Regression

e Best individual from
generation 3 o
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