
COMP 4752
Computational Intelligence

Lecture 6
Heuristic Search / A*

COMP 4752: Computational Intelligence
David Churchill

Avoiding Repeated States
● One of the most important search ideas
● Most infinite loops / wasted time can be

avoided by returning to identical states
● We must remember nodes visited

● Don’t re-expand them
● Can lead to exponential savings in the

number of nodes generated

COMP 4752: Computational Intelligence
David Churchill

Open and Closed Lists
● Closed List stores expanded nodes

● Open List = fringe of unexpanded nodes

● Often implemented as a hash table

COMP 4752: Computational Intelligence
David Churchill

General Graph-Search
1. Function Graph-Search(problem)
2. closed = empty set
3. open = {Node(problem.initial_state)}
4. while (true)
5. if (open.empty) return fail
6. node = remove_first(open)
7. if (node.state is goal) return solution
8. if (node.state not in closed)
9. closed.add(node.state)
10. open.add(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

Graph-Search Complexity
● Open and Closed lists store states

● Can never re-visit a state once expanded (closed)

● In practice, time less than O(bd)
● Some problems still too large

● Graph-Search no longer optimal where Tree-
Search may have been

COMP 4752: Computational Intelligence
David Churchill

Informed (Heuristic) Search
● An informed search strategy uses

problem-specific knowledge beyond just
the problem description itself

● Speeds up search times to goal
● Uses guesses (heuristics) to guide search

toward the direction of the goal

COMP 4752: Computational Intelligence
David Churchill

Best-First Search (BeFS)
● Instance of general tree search
● Select a node for expansion based on an

evaluation function f(n)
● Typically, select the node with minimum value of

f(n), measures distance to goal
● “Best First” is slightly misleading

● Knowing the true best node = straight to goal
● More like “Best Guess First”

COMP 4752: Computational Intelligence
David Churchill

Best-First Search (BeFS)
● BeFS can be implemented with general

Tree-Search by using a priority queue for
the open list, sorted on f(n)

● Whole family of BeFS algorithms
● Have different evaluation functions
● Most have a heuristic function h(n)

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function h(n)
● Estimated cost of the optimal path from

node n to a goal node
● Heuristic functions are the most common

way that additional knowledge of a
problem is given to the search algorithm

● If n is a goal node, h(n) = 0
● Perfect heuristic = h*(n)

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

COMP 4752: Computational Intelligence
David Churchill

Greedy Best-First Search
● Expands the node that it thinks is closest

to the goal node
● This will hopefully lead us to the goal
● Thus, for GBeFS: f(n) = h(n)
● Resembles DFS

● Tries a single path all the way to a goal
● Backs up when it hits a dead-end

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

BeFS

COMP 4752: Computational Intelligence
David Churchill

GBeFS Performance
● Suffers similarly to DFS
● Incomplete in General

● May not find a goal
● May get lost in paths if heuristic is bad

● Not Optimal
● May find a higher cost path than optimal

● Time complexity O(bm), m = max depth

COMP 4752: Computational Intelligence
David Churchill

A* Search Algorithm
● Most well-known BeFS algorithm
● Evaluates nodes by using g(n) and h(n)

● Heuristic function f(n) = g(n) + h(n)
● f(n) = estimate of cheapest solution via n

● Select node from open list with min f(n)
● Performance depends on properties of the

heuristic function

COMP 4752: Computational Intelligence
David Churchill

General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = strategy.select_node(fringe)
6. if (node.state is goal) return solution
7. else fringe.add(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

A* Tree-Search

1. Function AStar(problem, h(n))
2. fringe = PriorityQueue(f(n)=g(n)+h(n))
3. fringe.add(problem.initial_state)
4. while (true)
5. if (fringe.empty) return fail
6. node = pop_min_f(fringe)
7. if (node.state is goal) return solution
8. else fringe.add(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

A* Performance
● A* using Tree-Search is complete

● Will eventually search the entire tree, it will just search
parts where the heuristic is lower first

● A* using the Tree-Search algorithm is optimal if
heuristic h(n) is admissible
● Using a heuristic that is not admissible can

(and usually does) produce non-optimal paths

COMP 4752: Computational Intelligence
David Churchill

Admissible Heuristic
● Never overestimates distance to goal
● Can be seen as ‘optimistic’ guesses
● h(n) <= h*(n)
● f(n) = g(n) + h(n) never overestimates

true cost of a path through n when h(n) is
admissible

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

Admissible?

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

Admissible?

COMP 4752: Computational Intelligence
David Churchill

A* Using Graph-Search
● Can return suboptimal solutions

● A* Graph-Search using an admissible heuristic
can discard an optimal path to a repeated state if
it is not the first one that is generated during the
search

● We can fix this by imposing a consistent heuristic

COMP 4752: Computational Intelligence
David Churchill

Consistent Heuristic
● Also called monotone heuristic
● Consistent if h(n) < c(n,a,n’) + h(n’)

● h(n) = estimate path cost from n to goal
● c(n,a,n’) = cost of action a (transitions node n to n’)
● h(n’) = estimate path cost from n’ to goal

● “Estimate of reaching goal from n is no greater than the
estimate of reaching the goal from n’ plus the cost of
getting to n’ from n”

COMP 4752: Computational Intelligence
David Churchill

Heuristic Function

Consistent?

COMP 4752: Computational Intelligence
David Churchill

Consistent Heuristic
● Every consistent heuristic is also admissible
● Hard to construct an admissible heuristic that isn’t

consistent
● If h(n) is consistent, the values of f(n) along any path are

non-decreasing
● The sequence of nodes expanded by A* using Graph-

Search is in non-decreasing order of f(n)
● Therefore, first goal node selected for expansion is

optimal, since all later nodes are at least as expensive
● A* using Graph-Search is optimal if h(n) is consistent

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search
1. Function AStar(problem, h(n))
2. closed = empty set
3. open = PriorityQueue(Node(problem.initial_state), f=g+h)
4. while (true)
5. if (open.empty) return fail
6. node = pop_min_f(open)
7. if (node.state is goal) return solution
8. closed.add(node.state)
9. for child in Expand(node, problem)
10. if (child.state in closed) continue
11. child.f = child.g + h(n)
12. open.add(child)

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search Performance
● Let C* be optimal solution path cost
● A* expands all nodes with f(n) < C*
● A* expands no nodes with f(n) > C*
● A* is optimally efficient for a given h(n)

● No other optimal algorithm is guaranteed to expand
fewer nodes than A*

● Any algorithm not expanding all nodes with f(n) < C*
risks missing the optimal path

COMP 4752: Computational Intelligence
David Churchill

A* Graph-Search Performance
● Pros

● A* is Complete
● A* is Optimal
● A* is Optimally Efficient for given h(n)

● Cons
● Number of nodes searched is still exponential in the

length of the solution
● For many large problems, A* is much better than

uninformed search, but still infeasible in time / memory

	�COMP 4752�Computational Intelligence���Lecture 6�Heuristic Search / A*
	Avoiding Repeated States
	Open and Closed Lists
	General Graph-Search
	Graph-Search Complexity
	Informed (Heuristic) Search
	Best-First Search (BeFS)
	Best-First Search (BeFS)
	Heuristic Function h(n)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Greedy Best-First Search
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	GBeFS Performance
	A* Search Algorithm
	General Uninformed Tree Search
	A* Tree-Search
	A* Performance
	Admissible Heuristic
	Slide Number 37
	Slide Number 38
	Slide Number 39
	A* Using Graph-Search
	Consistent Heuristic
	Slide Number 42
	Consistent Heuristic
	A* Graph-Search
	A* Graph-Search Performance
	A* Graph-Search Performance

