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Search Strategies

o Uninformed (Blind) Search

o« No info about states beyond problem desc.
e Limited to successor generation, goal test

o Informed (Heuristic) Search
o Can guess which states are ‘more promising’
o Hopefully leads to faster search episodes
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Breadth-First Search (BFS)

e« Root node expanded first
e Root successors expanded next
e Theilr successors next... etc

e BFS In general

o All nodes at a given depth are expanded
before any nodes in the next level

e Use a Queue for fringe
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General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2 fringe = {Node(problem.initial_state)}

3 while (true)

4. If (fringe.empty) return falil

5 node = strategy.select node(fringe)

6 IT (node.state is goal) return solution

7 else fringe.add(Expand(node, problem))
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Breadth-First Search

1. Function Tree-Search(problem, BFS)
2 fringe = Queue{Node(problem.initial _state)}
3 while (true)

4. If (fringe.empty) return fail

5 node = fringe.pop()

6 If (node.state is goal) return solution

7 else fringe.push(Expand(node, problem))
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Problem Solving Performance

o Completeness

e Is it guaranteed to find a solution if it exists
e Optimality

e Does it find the optimal solution

e Time Complexity
« How many nodes must it generate to find a soluton

o Space Complexity
e How much memory is needed to run the search



BFS Performance

e BFS is Complete
e BFS explores entire tree, so it will find a goal node

o« BFS will find the shallowest goal node, since it explores
all nodes at a given depth before the next depth

e BFS Is not Optimal

e In general BFS does not produce optimal solutions,
since the shallowest node is not necessarily optimal

e BFS optimal if path cost is non-decreasing function on depth
e BFS is optimal if action costs are all the same
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Example: BFS Not Optimal
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BFS Performance

e Time Complexity O(b9)
e Each state has b children
o Consider goal at depth d
e b*b*Db..=0(b% nodes generated
e Space Complexity O(b9)
e Must store entire search tree in memory
e Space = nodes generated
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BFS Performance Table

Depth Nodes Time Memory
2 1100 .11 seconds 1 MB
4 111,100 11 seconds 106 MB
6 107 19 minutes 10 GB
8 10° 31 hours 1TB
10 10t 129 days 101 TB
12 1013 35 years 10 PB
14 101 3523 years 1 EB

b = 10, 10000 nodes/s, 1000bytes / node
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Uniform-Cost Search

e« BFS optimal when all action costs equal
because it expands the shallowest node

o Uniform cost search optimal for any cost
e UCS expands node with lowest path cost
o If all costs are equal, equivalent to BFS

e Works only if all costs = 0O
o Can infinite loop if O or negative costs
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Uniform Cost Search

1. Function Tree-Search(problem, UCS)
2 fringe = {Node(problem.initial_state)}

3 while (true)

4. If (fringe.empty) return falil

5 node = min_g_Vvalue(fringe)

6 IT (node.state is goal) return solution

7 else fringe.push(Expand(node, problem))



Uniform Cost Search Complexity

e UCS is Complete if b is finite
e UCS is Optimal if action costs > 0 (g)

e« Time Complexity
e Measured by path costs, not depth
e Can’t use b and d for complexity
e Let C* be the cost of optimal solution
o Complexity = O(bt+Lc7ed)
o Worst case this can be much bigger than bd
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Depth-First Search (DFS)

e EXpands the deepest node on fringe

e Search goes immediately to the deepest level of
the search tree to a leaf node
e Leaf = Node has no successors
e If a leaf is reached, it is discarded and the search
‘backs up’ to previous depth

e Implementation

e Use a Stack for fringe
o« More often implemented as recursive function
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Depth-First Search

1. Function Tree-Search(problem, DFS)

2 fringe = Stack{Node(problem.initial _state)}
3 while (true)

4. If (fringe.empty) return falil

5 node = pop(fringe)

6 IT (node.state is goal) return solution

7 else fringe.push(Expand(node, problem))
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Recall: BFS

1. Function Tree-Search(problem, BFS)

2 fringe = Queue{Node(problem.initial state)}
3 while (true)

4. If (fringe.empty) return falil

5 node = pop(fringe)

6 IT (node.state is goal) return solution

7 else fringe.push(Expand(node, problem))



COMP 4752: Computational Intelligence

David Churchill

Recursive DFS Implementation

1. Function DFS(nhode, problem)

2 IT (node.state Is goal) return solution
3. successors = Expand(node, problem)
4 for s In successors:

5 DFS(s, problem)

Call DFS(root_node, problem)



DFS Performance

e DFS is not Complete
e In general, DFS is not complete
o« For example, can enter infinite loop
e (Enhancements can make it sort of complete)

e DFS Is not Optimal
e In general, not optimal

e« Returns the first goal found, could be anywhere in the
tree, not guaranteed to be optimal



DFS Performance

e Time Complexity O(b™)
e May go down long possibly infinite paths
e May have to generate the entire tree
e Generates b™ nodes where m is max depth of a node

e Space Complexity O(bm)
e« Only has to store the current path at any time
e Uses O(bm) memory where m is max node depth
e Stores successors of nodes in the path (b factor)
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Depth-First Search
¥




Depth-Limited Search (DLS)

e How to prevent DFS from ‘getting lost’

e Apply a depth limit to the search
e Choose a depth limit L
e Enforce nodes at depth L have no successors

Solves the infinite path problem
o Will search entire tree up to depth L

Introduces a new problem
e« Incomplete if solution depth d = L

Time Complexity O(bl)
Space Complexity O(bL)
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Recursive DLS

Function DLS(nhode, L, problem)
ITf (node.depth > L) return
IT (node.state Is goal) return solution
successors = Expand(node, problem)
for s In successors:
DFS(s, problem)
CaII DFS(root_node, L, problem)

o a0 s> W NPk
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Choosing a Maximum Depth

o Analysis of maximum path length
« Known ‘diameter’ of a search space
« Number of states in problem

e Let the search figure it out!
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Iterative Deepening DFS

e Main Idea: Gradually increase depth limit
e Try max depth 1, 2, 3, .... M

o Goal will be found at shallowest depth d
e NoO solution found at 1... d-1, d = shallowest

o Completeness + Optimality of BFS
e« Guaranteed to find a solution
o« Optimal iff action costs are the same

e Space Complexity of DFS O(bd)
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ID-DFS Time Complexity

« May seem wasteful, some recomputation
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ID-DFS Time Complexity

« Number of nodes searched
o (d)b + (d-1)b2+ ... + 1(bd)
e Time Complexity O(b9)
e Same time complexity as BFS
e Same space complexity as DFS O(bd)
e IN practice, generates — twice the nodes

e INn general, ID-DFS is preferable to BFS



Recall: Recursive DLS

1. Function DLS(node, L, problem)

2 cutoff occurred = false

3 If (node.state is goal) return solution

4 If (node.depth >= L) return cutoff

5. for s in Expand(node, problem):

6 result = DLS(s, L, problem)

7 If (result == cutoff) cutoff occurred = true
8 else if (result !'= fail) return result

9 return (cutoff occurred ? cutoff : failure)

Call DLS(root_node, L, problem)
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Iterative Deepening DFS

1
2
3.
4

. Function ID-DFS(node, problem)

for d in (1, infty)
result = DLS(node, d, problem)
IT (result '= cutoff) return result
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Comparing Search Strategies

Criterion BFS UCS DFS DLS ID-DFS

Complete YES 2 YES ab NO NO YES 2

Optimal YES ¢ YES NO NO YES ¢
Time O(b9) O(bt+Leved) O(b™) O(bh O(b9)
Space O(b9%) O(bt+Leved) O(bm) O(bL) O(bd)

(a) if b is finite (b) if action costs > 0O (c) if all costs equal
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