
COMP 4752
Computational Intelligence

Lecture 12
Two-Player Games
Mini-Max / Alpha-Beta Search

COMP 4752: Computational Intelligence
David Churchill

Multi-Player Games
● So far we have only looked at problems

with a single agent (single agent search)
● Heuristic search can also be applied to

environments (and games) with multiple
agents (or players)

● Games can have a number of properties,
similar to single agent environments

COMP 4752: Computational Intelligence
David Churchill

Fully vs. Partially Observable

COMP 4752: Computational Intelligence
David Churchill

Deterministic vs. Stochastic

COMP 4752: Computational Intelligence
David Churchill

Episodic vs. Sequential

COMP 4752: Computational Intelligence
David Churchill

Dynamic vs. Static

COMP 4752: Computational Intelligence
David Churchill

Discrete vs. Continuous

COMP 4752: Computational Intelligence
David Churchill

Game Properties: Players
● How many players are in the game?
● Examples of Game Players:

● Chess, Go: 2 Players
● Baseball: 18 Players, 2 Teams
● Starcraft: 1v1, 2v2, 8 Person FFA
● Poker: 10 People at a table

COMP 4752: Computational Intelligence
David Churchill

Game Properties: Payoffs
● What does each player hope to achieve?
● Game Payoff Examples:

● Prisoner’s Dilemma: Maximize Reward
● Poker: Maximize Profits
● Chess: Win the game

● Zero Sum Game:
● Each player’s gain or loss of payoff/utility is equally

balanced by the utility of the other players
● Win / Lose games are zero sum

COMP 4752: Computational Intelligence
David Churchill

Games in this Course
● Two-Player
● Zero Sum
● Alternating Move
● Fully Observable (Perfect Information)
● Deterministic
● Discrete

COMP 4752: Computational Intelligence
David Churchill

The Chess-Playing Computer

COMP 4752: Computational Intelligence
David Churchill

Game-Playing Computer
● How can we design an algorithm to play a

two-player alternating move game?
1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate

COMP 4752: Computational Intelligence
David Churchill

Look-Ahead and Evaluate
● Generate a list of actions

from a given state
● Evaluate those actions

based on features of the
resulting states

● Do the action which has
the highest evaluation

COMP 4752: Computational Intelligence
David Churchill

Tic-Tac-Toe Example

COMP 4752: Computational Intelligence
David Churchill

Game-Playing Computer
● How can we design an algorithm to play a

two-player alternating move game?
1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate
4. Search the Entire Game Tree

COMP 4752: Computational Intelligence
David Churchill

How big is the game tree?
● Some number of actions at each state

● b = “Branching Factor”
● Game ends after some number of moves

● d = Search Depth
● Game tree = bd

● Chess = 10120

COMP 4752: Computational Intelligence
David Churchill

Game-Playing Computer
● How can we design an algorithm to play a

two-player alternating move game?
1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate
4. Search the Entire Game Tree
5. Look-Ahead as Far as Possible

COMP 4752: Computational Intelligence
David Churchill

Look Ahead as Far as Possible

COMP 4752: Computational Intelligence
David Churchill

Competing Players

COMP 4752: Computational Intelligence
David Churchill

Competing Players

2 6 1 8

COMP 4752: Computational Intelligence
David Churchill

Competing Players

2 6 1 8

Max Player

Min Player

COMP 4752: Computational Intelligence
David Churchill

Competing Players

2

2 6 1 8

Max Player

Min Player

COMP 4752: Computational Intelligence
David Churchill

Competing Players

2

2 6 1 8

1

Max Player

Min Player

COMP 4752: Computational Intelligence
David Churchill

Competing Players

2

2

2 6 1 8

1

Max Player

Min Player

COMP 4752: Computational Intelligence
David Churchill

Minimax Algorithm
1. Function MiniMax(node, depth, maxPlayer)
2. if (depth > maxDepth or node.terminal)
3. return eval(node)
4. if (node.playerToMove == maxPlayer)
5. bestValue = -infinity
6. for each child of node
7. value = MiniMax(child, depth+1, maxPlayer)
8. bestValue = max(bestValue, value)
9. else
10. bestValue = infinity
11. for each child of node
12. value = MiniMax(child, depth+1, maxPlayer)
13. bestValue = min(bestValue, value)
14. Initial Call: MiniMax(rootNode, 0, maxPlayer)

COMP 4752: Computational Intelligence
David Churchill

Negamax Algorithm
Function NegaMax(node, depth, player)

if (depth > maxDepth or node.terminal)
return eval(node)

bestValue = -infinity
for each child of node

value = -NegaMax(child, depth+1, opponent(player))
bestValue = max(bestValue, value)

Initial Call: NegaMax(root, 0, player)

COMP 4752: Computational Intelligence
David Churchill

Mini-Max Properties
● Complete and Optimal: Will find the

optimal solution to a given max depth
● Each player plays a best response to the

possible actions of the other player
● Mini-Max plays the Nash Equilibrium

COMP 4752: Computational Intelligence
David Churchill

Nash Equilibrium (NE)
● For two-player, finite, zero-sum games, a

Nash Equilibrium exists
● Recall that in a NE:

● Each player is best responding to the other
● Neither player can gain by deviating
● Neither player has any regrets

● Playing a NE is a very strong strategy

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

Max

Min

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

Max

Min

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

Max

Min ≤2

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2 7

Max

Min ≤2

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2 7

Max

Min

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2 7

Max

Min

≥2

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2 7 1

Max

Min

≥2

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2 7 1

Max

Min

≥2

≤1

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2 7 1

Max

Min

≥2

≤1

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2

2 7 1

Max

Min ≤1

COMP 4752: Computational Intelligence
David Churchill

Improving MiniMax

2

2

2 7 1

Max

Min ≤1

Alpha-Beta
Pruning

COMP 4752: Computational Intelligence
David Churchill

Alpha-Beta Pruning
● Alpha-Beta is not a different algorithm

than MiniMax, it is an optimization
● Maintains all of the properties of minimax

but is strictly better
● Cutting off branches of the search tree

yields exponential savings

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min ≤8

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

≥7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

≥7

≤3

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

≥7

≤3

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

≤3

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

≤7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

≤9

≤7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

≤7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

≤7

≥8

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

≤7

≥8

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

≤1

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

≤8

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

≤8

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

≤8

≤9

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

≤8

9

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

≤8

9

≥9

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

≤8

9

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

≥7

8

8

8

9

COMP 4752: Computational Intelligence
David Churchill

8 7 3 9 9 8 2 4 1 8 8 9 9 9 3 4

Max

Min

Max

Min 7

7

8

7

8

8

8

8

9

COMP 4752: Computational Intelligence
David Churchill

Computational Savings
● MiniMax Tree Search

● Nodes searched = bd
● Alpha-Beta Search

● Nodes searched ~ 2bd/2 (optimal savings)
● Depth 7 search becomes depth 14

● Bad program beats world champion

COMP 4752: Computational Intelligence
David Churchill

Alpha-Beta Algorithm
Function AlphaBeta(node, depth, alpha, beta, maxPlayer)

if (depth > maxDepth or node.terminal)
return eval(node)

if (maxPlayer)
value = -infinity
for each child of node

value = max(value, AlphaBeta(child, depth+1, alpha, beta, false))
if (depth == 0 and value > alpha) best_action = child.action
alpha = max(alpha, value)
if (alpha >= beta) break

return value
else

value = infinity
for each child of node

value = min(value, AlphaBeta(child, depth+1, alpha, beta, true))
beta = min(beta, value)
if (beta <= alpha) break

return value
Initial Call: AlphaBeta(root, 0, -infinity, +infinity, true)

COMP 4752: Computational Intelligence
David Churchill

Alpha-Beta Algorithm (shorter)
Function AlphaBeta(node, depth, alpha, beta, maxPlayer)

if (depth > maxDepth or node.terminal)
return eval(node)

for each child of node
value = AlphaBeta(child, depth+1, alpha, beta, !maxPlayer)
if (maxPlayer and (value > alpha))

if (depth == 0) best_action = child.action
alpha = value

if (!maxPlayer and (value < beta)) beta = value
if (alpha >= beta) break

return alpha if maxPlayer else beta
Initial Call: AlphaBeta(root, 0, -infinity, +infinity, true)

	�COMP 4752�Computational Intelligence���Lecture 12�Two-Player Games�Mini-Max / Alpha-Beta Search
	Multi-Player Games
	Fully vs. Partially Observable
	Deterministic vs. Stochastic
	Episodic vs. Sequential
	Dynamic vs. Static
	Discrete vs. Continuous
	Game Properties: Players
	Game Properties: Payoffs
	Games in this Course
	The Chess-Playing Computer
	Game-Playing Computer
	Look-Ahead and Evaluate
	Tic-Tac-Toe Example
	Game-Playing Computer
	How big is the game tree?
	Game-Playing Computer
	Look Ahead as Far as Possible
	Competing Players
	Competing Players
	Competing Players
	Competing Players
	Competing Players
	Competing Players
	Minimax Algorithm
	Negamax Algorithm
	Mini-Max Properties
	Nash Equilibrium (NE)
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Improving MiniMax
	Alpha-Beta Pruning
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Computational Savings
	Alpha-Beta Algorithm
	Alpha-Beta Algorithm (shorter)

