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Deep Neural Networks

Neural networks that have many hidden
ayers, and extra processing

Have been popular since 2012 (Hinton)

Rise of GPU computing power has made
them feasible (floating point calcs)
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Convolutions

o : 177
« Have some input image
« Have a neuron that looks El v
at say, a 10x10 pixel area ,, ;?Wf
and produces an output Vi v v
e« That area called a Kernel a LT
e Next neuron looks at a ///////

small shift of the area [T 777
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Max Pooling 12

o Output from convolution 8

produces another matrix
o« Now take maximums from

areas of that matrix il

e This forms another matrix,
the process is called pooling
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Repeating the Process

o Convolution -> Max Pooling is repeated
some number of times (say 100)

e We can then optionally run the result of
that output through another convolution,
and another pooling

e The final output is run through a fully
connected neural network
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Computing Required

e These techniques are only recently
possible due to massive computing power

« GPUs have become ubiquitous and very
cheap to manufacture

e Trade single processor speed for massive
parallelism

e Neural nets are inherently parallel
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GPU (Hundreds of Cores)

CPU (Multiple Cores)
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Autoencoding

e Inputs X, ... X, 4 e e

e Hidden layer which is : &
smaller than input N >-So

. Output layer size of input =~ & =

« Our target values are x; = o j =

e FINnding generalizations g o L

of patterns on input
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Autoencoding Example
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Autoencoding

o Autoencoding “generalizes” inputs
e« Can be seen as form of compression
e DNN use autoencoders frequently

o Unlike our demo example, due to these
generalizations it is often difficult to
understand what the DNN is doing and
what features it is extracting



COMP 4752: Computational Intelligence

David Churchill

Dropout

e The curse of the neural net is that It can
get stuck in a local maxima

e Dropout: If on every iteration we flip a
coin for each neuron, and depending on
the output we disable the neuron

o Next iteration, drop out a different set
e Prevents getting stuck in local maxima
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DropConnect (Dropout Generalized)




What do DNN see?
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Tricking DNN

correct +distort ostrich correct - +distort ostrich
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Tricking DNN
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Not Human

e« Deep Neural Networks are an amazing
feat of engineering that produce
spectacular results

e« They are not magic, they are math

e« They are easy to fool, If you try
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AlphaGo

« Combined Deep Learning with Heuristic
Search (MCTS)

e TwWo Networks were trained:
o Value Network (how good is state S)
o Policy Network (what move to do at state S)
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Learning from Replays

e DeepMind had thousands of professional human
games to learn from

e Policy Network

e Input = State
e Target = Move the expert human performed

e Value Network

e Input = State
e Target = Who won the game from that state
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Learning from Self Play

e« Once It had learned all it could from
humans, it played against itself

o Continued to learn, and get stronger

e Now It learns from a stronger player each
time it plays a new game

e Also key: throw in some random moves
to learn about states you may not visit



COMP 4752: Computational Intelligence

David Churchill

Heuristic Search

e Go has a large branching factor (300)

e Humans have good abstractions of what moves
to perform at a state

o AlphaGo learned a policy network

e« Now It can narrow the heuristic search to only
consider moves in the policy network

e Search also needs a heuristic function to
determine how good a state is (value network)
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