
COMP 4752
Computational Intelligence

Lecture 5
Search Strategies

COMP 4752: Computational Intelligence
David Churchill

Search Strategies
● Uninformed (Blind) Search

● No info about states beyond problem desc.
● Limited to successor generation, goal test

● Informed (Heuristic) Search
● Can guess which states are ‘more promising’
● Hopefully leads to faster search episodes

COMP 4752: Computational Intelligence
David Churchill

Breadth-First Search (BFS)
● Root node expanded first
● Root successors expanded next
● Their successors next… etc
● BFS in general

● All nodes at a given depth are expanded
before any nodes in the next level

● Use a Queue for fringe

COMP 4752: Computational Intelligence
David Churchill

General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = strategy.select_node(fringe)
6. if (node.state is goal) return solution
7. else fringe.add(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

Breadth-First Search

1. Function Tree-Search(problem, BFS)
2. fringe = Queue{Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = fringe.pop()
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

BFS
A

D

B

E

C

6

2

1

2

5

5

A
1

COMP 4752: Computational Intelligence
David Churchill

BFS
A

D

B

E

C

6

2

1

2

5

5
D

A
1

COMP 4752: Computational Intelligence
David Churchill

BFS
A

D

B

E

C

6

2

1

2

5

5
D B

A
1

COMP 4752: Computational Intelligence
David Churchill

BFS
A

D

B

E

C

6

2

1

2

5

5
D B

B E

A

A

1

COMP 4752: Computational Intelligence
David Churchill

BFS
A

D

B

E

C

6

2

1

2

5

5
D B

B E D E

A

A A C

1

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

BFS

COMP 4752: Computational Intelligence
David Churchill

Problem Solving Performance
● Completeness

● Is it guaranteed to find a solution if it exists
● Optimality

● Does it find the optimal solution
● Time Complexity

● How many nodes must it generate to find a soluton
● Space Complexity

● How much memory is needed to run the search

COMP 4752: Computational Intelligence
David Churchill

BFS Performance
● BFS is Complete

● BFS explores entire tree, so it will find a goal node
● BFS will find the shallowest goal node, since it explores

all nodes at a given depth before the next depth
● BFS is not Optimal

● In general BFS does not produce optimal solutions,
since the shallowest node is not necessarily optimal

● BFS optimal if path cost is non-decreasing function on depth
● BFS is optimal if action costs are all the same

COMP 4752: Computational Intelligence
David Churchill

Example: BFS Not Optimal
A

D

B

E

C

6

2

1

2

5

5

D B

B E D E

A

A A

1

C

C

11
7

COMP 4752: Computational Intelligence
David Churchill

BFS Performance
● Time Complexity O(bd)

● Each state has b children
● Consider goal at depth d
● b * b * b…. = O(bd) nodes generated

● Space Complexity O(bd)
● Must store entire search tree in memory
● Space = nodes generated

COMP 4752: Computational Intelligence
David Churchill

BFS Performance Table
Depth Nodes Time Memory

2 1100 .11 seconds 1 MB
4 111,100 11 seconds 106 MB
6 107 19 minutes 10 GB
8 109 31 hours 1 TB
10 1011 129 days 101 TB
12 1013 35 years 10 PB
14 1015 3523 years 1 EB

b = 10, 10000 nodes/s, 1000bytes / node

COMP 4752: Computational Intelligence
David Churchill

Uniform-Cost Search
● BFS optimal when all action costs equal

because it expands the shallowest node
● Uniform cost search optimal for any cost
● UCS expands node with lowest path cost
● If all costs are equal, equivalent to BFS
● Works only if all costs > 0

● Can infinite loop if 0 or negative costs

COMP 4752: Computational Intelligence
David Churchill

Uniform Cost Search

1. Function Tree-Search(problem, UCS)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = min_g_value(fringe)
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

Uniform Cost Search Complexity
● UCS is Complete if b is finite
● UCS is Optimal if action costs > 0 (ε)
● Time Complexity

● Measured by path costs, not depth
● Can’t use b and d for complexity
● Let C* be the cost of optimal solution
● Complexity = O(b1+└C*/ ε ┘)
● Worst case this can be much bigger than bd

COMP 4752: Computational Intelligence
David Churchill

Depth-First Search (DFS)
● Expands the deepest node on fringe
● Search goes immediately to the deepest level of

the search tree to a leaf node
● Leaf = Node has no successors

● If a leaf is reached, it is discarded and the search
‘backs up’ to previous depth

● Implementation
● Use a Stack for fringe
● More often implemented as recursive function

COMP 4752: Computational Intelligence
David Churchill

Depth-First Search

1. Function Tree-Search(problem, DFS)
2. fringe = Stack{Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = pop(fringe)
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

Recall: BFS

1. Function Tree-Search(problem, BFS)
2. fringe = Queue{Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = pop(fringe)
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

Recursive DFS Implementation
1. Function DFS(node, problem)
2. if (node.state is goal) return solution
3. successors = Expand(node, problem)
4. for s in successors:
5. DFS(s, problem)

Call DFS(root_node, problem)

COMP 4752: Computational Intelligence
David Churchill

DFS Performance
● DFS is not Complete

● In general, DFS is not complete
● For example, can enter infinite loop
● (Enhancements can make it sort of complete)

● DFS is not Optimal
● In general, not optimal
● Returns the first goal found, could be anywhere in the

tree, not guaranteed to be optimal

COMP 4752: Computational Intelligence
David Churchill

DFS Performance
● Time Complexity O(bm)

● May go down long possibly infinite paths
● May have to generate the entire tree
● Generates bm nodes where m is max depth of a node

● Space Complexity O(bm)
● Only has to store the current path at any time
● Uses O(bm) memory where m is max node depth
● Stores successors of nodes in the path (b factor)

COMP 4752: Computational Intelligence
David Churchill

Depth-First Search

COMP 4752: Computational Intelligence
David Churchill

Depth-Limited Search (DLS)
● How to prevent DFS from ‘getting lost’
● Apply a depth limit to the search

● Choose a depth limit L
● Enforce nodes at depth L have no successors

● Solves the infinite path problem
● Will search entire tree up to depth L

● Introduces a new problem
● Incomplete if solution depth d > L

● Time Complexity O(bL)
● Space Complexity O(bL)

COMP 4752: Computational Intelligence
David Churchill

Recursive DLS
1. Function DLS(node, L, problem)
2. if (node.depth > L) return
3. if (node.state is goal) return solution
4. successors = Expand(node, problem)
5. for s in successors:
6. DFS(s, problem)
Call DFS(root_node, L, problem)

COMP 4752: Computational Intelligence
David Churchill

Choosing a Maximum Depth
● Analysis of maximum path length
● Known ‘diameter’ of a search space
● Number of states in problem

● Let the search figure it out!

COMP 4752: Computational Intelligence
David Churchill

Iterative Deepening DFS
● Main Idea: Gradually increase depth limit

● Try max depth 1, 2, 3, …. M
● Goal will be found at shallowest depth d

● No solution found at 1… d-1, d = shallowest
● Completeness + Optimality of BFS

● Guaranteed to find a solution
● Optimal iff action costs are the same

● Space Complexity of DFS O(bd)

COMP 4752: Computational Intelligence
David Churchill

ID-DFS Time Complexity
● May seem wasteful, some recomputation

COMP 4752: Computational Intelligence
David Churchill

ID-DFS Time Complexity
● Number of nodes searched

● (d)b + (d-1)b2 + … + 1(bd)
● Time Complexity O(bd)

● Same time complexity as BFS
● Same space complexity as DFS O(bd)
● In practice, generates ~ twice the nodes
● In general, ID-DFS is preferable to BFS

COMP 4752: Computational Intelligence
David Churchill

Recall: Recursive DLS
1. Function DLS(node, L, problem)
2. cutoff_occurred = false
3. if (node.state is goal) return solution
4. if (node.depth >= L) return cutoff
5. for s in Expand(node, problem):
6. result = DLS(s, L, problem)
7. if (result == cutoff) cutoff_occurred = true
8. else if (result != fail) return result
9. return (cutoff_occurred ? cutoff : failure)

Call DLS(root_node, L, problem)

COMP 4752: Computational Intelligence
David Churchill

Iterative Deepening DFS
1. Function ID-DFS(node, problem)
2. for d in (1, infty)
3. result = DLS(node, d, problem)
4. if (result != cutoff) return result

COMP 4752: Computational Intelligence
David Churchill

Comparing Search Strategies
Criterion BFS UCS DFS DLS ID-DFS

Complete YES a YES ab NO NO YES a

Optimal YES c YES NO NO YES c

Time O(bd) O(b1+└C*/ ε ┘) O(bm) O(bL) O(bd)

Space O(bd) O(b1+└C*/ ε ┘) O(bm) O(bL) O(bd)

(a) if b is finite (b) if action costs > 0 (c) if all costs equal

COMP 4752: Computational Intelligence
David Churchill

Comparing Search Strategies
Criterion BFS UCS DFS DLS ID-DFS

Complete YES a YES ab NO NO YES a

Optimal YES c YES NO NO YES c

Time O(bd) O(b1+└C*/ ε ┘) O(bm) O(bL) O(bd)

Space O(bd) O(b1+└C*/ ε ┘) O(bm) O(bL) O(bd)

(a) if b is finite (b) if action costs > 0 (c) if all costs equal

	�COMP 4752�Computational Intelligence���Lecture 5�Search Strategies�
	Search Strategies
	Breadth-First Search (BFS)
	General Uninformed Tree Search
	Breadth-First Search
	BFS
	BFS
	BFS
	BFS
	BFS
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Problem Solving Performance
	BFS Performance
	Example: BFS Not Optimal
	BFS Performance
	BFS Performance Table
	Uniform-Cost Search
	Uniform Cost Search
	Uniform Cost Search Complexity
	Depth-First Search (DFS)
	Depth-First Search
	Recall: BFS
	Recursive DFS Implementation
	DFS Performance
	DFS Performance
	Depth-First Search
	Depth-Limited Search (DLS)
	Recursive DLS
	Choosing a Maximum Depth
	Iterative Deepening DFS
	ID-DFS Time Complexity
	ID-DFS Time Complexity
	Recall: Recursive DLS
	Iterative Deepening DFS
	Comparing Search Strategies
	Comparing Search Strategies

