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Avoiding Repeated States
● One of the most important search ideas
● Most infinite loops / wasted time can be 

avoided by returning to identical states
● We must remember nodes visited

● Don’t re-expand them
● Can lead to exponential savings in the 

number of nodes generated
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Open and Closed Lists
● Closed List stores expanded nodes

● Open List = fringe of unexpanded nodes

● Often implemented as a hash table
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General Graph-Search
1. Function Graph-Search(problem)
2. closed = empty set
3. open = {Node(problem.initial_state)}
4. while (true)
5. if (open.empty) return fail   
6. node = remove_first(open)
7. if (node.state is goal) return solution
8. if (node.state not in closed)
9. closed.add(node.state)
10. open.add(Expand(node, problem))
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Graph-Search Complexity
● Open and Closed lists store states

● Can never re-visit a state once expanded (closed)

● In practice, time less than O(bd)
● Some problems still too large

● Graph-Search no longer optimal where Tree-
Search may have been
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Informed (Heuristic) Search
● An informed search strategy uses 

problem-specific knowledge beyond just 
the problem description itself

● Speeds up search times to goal
● Uses guesses (heuristics) to guide search 

toward the direction of the goal
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Best-First Search (BeFS)
● Instance of general tree search
● Select a node for expansion based on an 

evaluation function f(n)
● Typically, select the node with minimum value of 

f(n), measures distance to goal
● “Best First” is slightly misleading

● Knowing the true best node = straight to goal
● More like “Best Guess First”
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Best-First Search (BeFS)
● BeFS can be implemented with general 

Tree-Search by using a priority queue for 
the open list, sorted on f(n)

● Whole family of BeFS algorithms
● Have different evaluation functions
● Most have a heuristic function h(n)
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Heuristic Function h(n)
● Estimated cost of the optimal path from 

node n to a goal node
● Heuristic functions are the most common 

way that additional knowledge of a 
problem is given to the search algorithm

● If n is a goal node, h(n) = 0
● Perfect heuristic = h*(n)
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Greedy Best-First Search
● Expands the node that it thinks is closest 

to the goal node
● This will hopefully lead us to the goal
● Thus, for GBeFS: f(n) = h(n)
● Resembles DFS

● Tries a single path all the way to a goal
● Backs up when it hits a dead-end
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GBeFS Performance
● Suffers similarly to DFS
● Incomplete in General

● May not find a goal
● May get lost in paths if heuristic is bad

● Not Optimal
● May find a higher cost path than optimal

● Time complexity O(bm), m = max depth
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A* Search Algorithm
● Most well-known BeFS algorithm
● Evaluates nodes by using g(n) and h(n)

● Heuristic function f(n) = g(n) + h(n)
● f(n) = estimate of cheapest solution via n

● Select node from open list with min f(n)
● Performance depends on properties of the 

heuristic function
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General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = strategy.select_node(fringe)
6. if (node.state is goal) return solution
7. else fringe.add(Expand(node, problem))
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A* Tree-Search

1. Function AStar(problem, h(n))
2. fringe = PriorityQueue(f(n)=g(n)+h(n))
3. fringe.add(problem.initial_state)
4. while (true)
5. if (fringe.empty) return fail   
6. node = pop_min_f(fringe)
7. if (node.state is goal) return solution
8. else fringe.add(Expand(node, problem))



COMP 4752: Computational Intelligence
David Churchill

A* Performance
● A* using Tree-Search is complete

● Will eventually search the entire tree, it will just search 
parts where the heuristic is lower first

● A* using the Tree-Search algorithm is optimal if 
heuristic h(n) is admissible
● Using a heuristic that is not admissible can 

(and usually does) produce non-optimal paths
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Admissible Heuristic
● Never overestimates distance to goal
● Can be seen as ‘optimistic’ guesses
● h(n) <= h*(n) 
● f(n) = g(n) + h(n) never overestimates 

true cost of a path through n when h(n) is 
admissible
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A* Using Graph-Search
● Can return suboptimal solutions 

● A* Graph-Search using an admissible heuristic 
can discard an optimal path to a repeated state if 
it is not the first one that is generated during the 
search

● We can fix this by imposing a consistent heuristic
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Consistent Heuristic
● Also called monotone heuristic
● Consistent if h(n) < c(n,a,n’) + h(n’)

● h(n) = estimate path cost from n to goal
● c(n,a,n’) = cost of action a (transitions node n to n’)
● h(n’) = estimate path cost from n’ to goal

● “Estimate of reaching goal from n is no greater than the 
estimate of reaching the goal from n’ plus the cost of 
getting to n’ from n”
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Consistent Heuristic
● Every consistent heuristic is also admissible
● Hard to construct an admissible heuristic that isn’t 

consistent
● If h(n) is consistent, the values of f(n) along any path are 

non-decreasing
● The sequence of nodes expanded by A* using Graph-

Search is in non-decreasing order of f(n)
● Therefore, first goal node selected for expansion is 

optimal, since all later nodes are at least as expensive
● A* using Graph-Search is optimal if h(n) is consistent
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A* Graph-Search
1. Function AStar(problem, h(n))
2. closed = empty set
3. open = PriorityQueue(Node(problem.initial_state), f=g+h)
4. while (true)
5. if (open.empty) return fail
6. node = pop_min_f(open)
7. if (node.state is goal) return solution
8. closed.add(node.state)
9. for child in Expand(node, problem)
10. if (child.state in closed) continue
11. child.f = child.g + h(n)
12. open.add(child)
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A* Graph-Search Performance
● Let C* be optimal solution path cost
● A* expands all nodes with f(n) < C*
● A* expands no nodes with f(n) > C*
● A* is optimally efficient for a given h(n)

● No other optimal algorithm is guaranteed to expand 
fewer nodes than A*

● Any algorithm not expanding all nodes with f(n) < C* 
risks missing the optimal path
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A* Graph-Search Performance
● Pros

● A* is Complete
● A* is Optimal
● A* is Optimally Efficient for given h(n)

● Cons
● Number of nodes searched is still exponential in the 

length of the solution
● For many large problems, A* is much better than 

uninformed search, but still infeasible in time / memory
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