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Multi-Player Games

e SO far we have only looked at problems
with a single agent (single agent search)

e Heuristic search can also be applied to
environments (and games) with multiple
agents (or players)

« Games can have a number of properties,
similar to single agent environments
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Fully vs. Partially Observable




Deterministic vs. Stochastic
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Episodic vs. Sequential
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Dynamic vs. Static
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Discrete vs. Continuous
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Game Properties: Players

« HOw many players are in the game?

« Examples of Game Players:
e Chess, Go: 2 Players
o Baseball: 18 Players, 2 Teams
e Starcraft: 1v1, 2v2, 8 Person FFA
e Poker: 10 People at a table



Game Properties: Payoffs

« What does each player hope to achieve?

« Game Payoff Examples:
e Prisoner’s Dilemma: Maximize Reward
e Poker: Maximize Profits
e Chess: Win the game

e Zero Sum Game:

o« Each player’s gain or loss of payoff/utility is equally
balanced by the utility of the other players

e Win / Lose games are zero sum
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Games In this Course

e TWo-Player
e ZEIO SUM
o Alternating Move

~ully Observable (Perfect Information)
Deterministic

Discrete



The Chess-Playing Computer
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Game-Playing Computer

« HOw can we design an algorithm to play a
two-player alternating move game?

1. Analysis / Strategy / Tactics
2. Thousands of If-Then Statements
3. Look-Ahead and Evaluate



COMP 4752: Computational Intelligence

David Churchill

Look-Ahead and Evaluate

e Generate a list of actions
from a given state

e Evaluate those actions
based on features of the
resulting states

e Do the action which has Q
the highest evaluation




Tic-Tac-Toe Example
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Game-Playing Computer

« HOw can we design an algorithm to play a
two-player alternating move game?

Analysis / Strategy / Tactics
Thousands of If-Then Statements
Look-Ahead and Evaluate

Search the Entire Game Tree

> W bk
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How Dbig Is the game tree?

e Some number of actions at each state
e b = “Branching Factor”

e Game ends after some number of moves
e d = Search Depth

e Game tree = bd
e Chess = 10120
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Game-Playing Computer

« HOw can we design an algorithm to play a
two-player alternating move game?

Analysis / Strategy / Tactics
Thousands of If-Then Statements
Look-Ahead and Evaluate

Search the Entire Game Tree
Look-Ahead as Far as Possible

a & L K
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Look Ahead as Far as Possible

O
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Competing Players
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Competing Players
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Competing Players
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Competing Players

Mln Player a ‘
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Competing Players
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Competing Players
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Minimax Algorithm

1. Function MiniMax(node, depth, maxPlayer)

2. If (depth > maxDepth or node.terminal)

3. return eval(node)

4. If (node.playerToMove == maxPlayer)

5. bestValue = -infinity

6. for each child of node

7. value = MiniMax(child, depth+1, maxPlayer)
8. bestValue = max(bestValue, value)

9. else

10. bestValue = infinity

11. for each child of node

12. value = MiniMax(child, depth+1, maxPlayer)
13. bestValue = min(bestValue, value)

14. Initial Call: MiniMax(rootNode, O, maxPlayer)



Negamax Algorithm

Function NegaMax(nhode, depth, player)
If (depth > maxDepth or node.terminal)
return eval(node)
bestValue = -infinity
for each child of node
value = -NegaMax(child, depth+1, opponent(player))
bestValue = max(bestValue, value)

Initial Call: NegaMax(root, O, player)
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Mini-Max Properties

« Complete and Optimal: Will find the
optimal solution to a given max depth

o Each player plays a best response to the
possible actions of the other player

o Mini-Max plays the Nash Equilibrium
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Nash Equilibrium (NE)

e For two-player, finite, zero-sum games, a
Nash Equilibrium exists

e Recall that in a NE:
e Each player is best responding to the other
e Neither player can gain by deviating
e Neither player has any regrets

e Playing a NE Is a very strong strategy
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Improving MiniMax

Min
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Improving MiniMax

Min
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Improving MiniMax

Min <2
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Improving MiniMax
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Improving MiniMax
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Improving MiniMax
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Improving MiniMax

Min a <1
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Improving MiniMax
Alpha-Beta
a Pruning
Min a <1
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Alpha-Beta Pruning

o Alpha-Beta Is not a different algorithm
than MiniMax, It Is an optimization

o Maintains all of the properties of minimax
but is strictly better

o Cutting off branches of the search tree
yields exponential savings
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Computational Savings

e MiNnIMax Tree Search
e Nodes searched = bd

o Alpha-Beta Search
o Nodes searched — 2bd%/2 (optimal savings)

e Depth 7 search becomes depth 14
o Bad program beats world champion



Alpha-Beta Algorithm

Function AlphaBeta(node, depth, alpha, beta, maxPlayer)
if (depth > maxDepth or node.terminal)
return eval(node)
if (maxPlayer)
value = -infinity
for each child of node
value = max(value, AlphaBeta(child, depth+1, alpha, beta, false))
if (depth == 0 and value > alpha) best_action = child.action
alpha = max(alpha, value)
if (alpha >= beta) break
return value
else
value = infinity
for each child of node
value = min(value, AlphaBeta(child, depth+1, alpha, beta, true))
beta = min(beta, value)
if (beta <= alpha) break
return value
Initial Call: AlphaBeta(root, 0, -infinity, +infinity, true)



Alpha-Beta Algorithm (shorter)

Function AlphaBeta(nhode, depth, alpha, beta, maxPlayer)
If (depth > maxDepth or node.terminal)
return eval(node)
for each child of node
value = AlphaBeta(child, depth+1, alpha, beta, ImaxPlayer)
If (maxPlayer and (value > alpha))
If (depth == 0) best_action = child.action
alpha = value
If (!maxPlayer and (value < beta)) beta = value
If (alpha >= beta) break
return alpha if maxPlayer else beta
Initial Call: AlphaBeta(root, O, -infinity, +infinity, true)
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