
COMP 4752
Computational Intelligence

Lecture 3
Problem Solving and Search

COMP 4752: Computational Intelligence
David Churchill

Problem Solving Agents
● Rational agents maximize performance
● Simplest Case: Satisfy a goal condition

● Reach the end of a maze
● Solve a puzzle

● Problem Solving Agent
● Type of Goal-Based Agent
● Find a sequence of actions that satisfies goal

COMP 4752: Computational Intelligence
David Churchill

Example Scenario
● Tourist comes to NL

● Lands in St. John’s
● Wants to go to one of:

● Burgeo
● Deer Lake

● Extra constraints
● Example: Has 2 hours total

COMP 4752: Computational Intelligence
David Churchill

Goal Formulation
● Goal is a set of states in the environment

● [Burgeo, Deer Lake]
● Goal is satisfied if one of them is reached

● If a sequence of actions leads us to a goal
state, the goal has been satisfied, and the
problem is solved

● Goal Test can also be a function
● If enemy health <= 0, etc

COMP 4752: Computational Intelligence
David Churchill

Problem Formulation
● What states to consider?

● Every square meter in Newfoundland
● Towns in Newfoundland

● What actions to consider?
● Move left by a meter
● Move from town X to town Y

● What information is stored in a node?
● Current town location
● Distance / time driven so far

COMP 4752: Computational Intelligence
David Churchill

Well-Defined Problem
1. Initial State that the argent starts in
2. Actions possible from each State

● Transition / Successor Function
3. The set of goal states

● Goal test function
4. Action cost function

● Path cost = sum(cost(actions in path))

COMP 4752: Computational Intelligence
David Churchill

Example Problem Definition
1. Initial State

● St. John’s
2. Actions

● Towns connected by roads
3. Goal

● [Burgeo, Deer Lake]
4. Action Cost Function

● Travel distance or time

COMP 4752: Computational Intelligence
David Churchill

Problem Solution
● Path from start state to a goal state
● Solution cost = path cost

● Sum cost in actions
● Most problems assume costs > 0

● Optimal solution has lowest path cost
among all possible solutions

COMP 4752: Computational Intelligence
David Churchill

Example Graph Problem
● Initial State

● State A
● Actions

● (A,B) legal if edge
● Goal State

● State C
● Action Cost Function

● Edge label (A,B)=6

A

D

B

E

C

6

1 2

1

2

5

5

COMP 4752: Computational Intelligence
David Churchill

Example Graph Problem
● Fully Observable
● Static
● Discrete
● Deterministic
● Single Agent
● Sequential

A

D

B

E

C

6

1 2

1

2

5

5

COMP 4752: Computational Intelligence
David Churchill

Example Graph Problem
● Objective

● Path to goal possible?
● Shortest path to goal?

● Algorithm
● Which to use?

● Let’s try search

A

D

B

E

C

6

1 2

1

2

5

5

COMP 4752: Computational Intelligence
David Churchill

What is Search?
● Agent has several available actions
● Agent can explore various sequences of

those actions
● Agent chooses the best sequence found

● This process in general is called search

COMP 4752: Computational Intelligence
David Churchill

Search
● Search will explore the problem state space

● Searching this space generates a search tree

● The search tree has nodes and edges

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5

A
1

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5

A
1

Expand

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

A
1

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

A
1Expand

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E

A

A

1

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E

A

A

1
Expand

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E D E

A

A A C

1

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E D E

A

A A C

1

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E D E

A

A A C

1

Continue Until
Goal Found

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E D E

A

A A C

1

State Space: Finite

COMP 4752: Computational Intelligence
David Churchill

Search Tree
A

D

B

E

C

6

2

1

2

5

5
D B

B E D E

A

A A C

1

State Space: Finite
Search Tree: Infinite

COMP 4752: Computational Intelligence
David Churchill

Example: 15 Puzzle

COMP 4752: Computational Intelligence
David Churchill

Example: 15 Puzzle

COMP 4752: Computational Intelligence
David Churchill

Search Strategy
A

D

B

E

C

6

2

1

2

5

5
D B

A
1

Expand
? ?

COMP 4752: Computational Intelligence
David Churchill

Graph Nodes
● State: The state in the graph
● Parent Node: Tree node that generated this node
● Action: Action that produced this node
● Path Cost: Cost of path so far from start

● Traditionally denoted by g(n)
● Depth: Number of actions to this node
● Other: Can contain precomputed data (optimization)

● Legal actions, heuristics, etc

COMP 4752: Computational Intelligence
David Churchill

Node vs. State
● Important distinction
● State

● Configuration of the environment
● Node

● Bookkeeping data structure
● Exists only within the search tree
● Nodes are ‘on paths’ in the search tree

COMP 4752: Computational Intelligence
David Churchill

The Fringe
A

D

B

E

C

6

2

1

2

5

5
D B

B E

A

A

1

Nodes that have
been generated but
not yet expanded

Leaf Nodes

COMP 4752: Computational Intelligence
David Churchill

General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail
5. node = strategy.select_node(fringe)
6. if (node.state is goal) return solution
7. else fringe.add(Expand(node, problem))

COMP 4752: Computational Intelligence
David Churchill

Node Expansion
1. Function Expand(node, problem)
2. successors = {}
3. for a : problem.actions(node)
4. s = Node(node.state.do_action(a))
5. s.parent = node
6. s.g = node.g + s.action.cost
7. s.action = a
8. s.depth = node.depth + 1
9. succesors.add(s)
10. return successors

COMP 4752: Computational Intelligence
David Churchill

Problem Solving Performance
● Completeness

● Is it guaranteed to find a solution if it exists
● Optimality

● Does it find the optimal solution
● Time Complexity

● How long does it take to find a solution
● Space Complexity

● How much memory is needed to run the search

COMP 4752: Computational Intelligence
David Churchill

Time + Space Complexity
● Measured on size of input problem / graph
● Time measures number of nodes generated
● Space measured by how much memory is

needed to store the maximum number of nodes
(worst case) needed at any given time

● Search / AI traditionally measures:
● Branching factor b (max successors at any node)
● Depth d (of the shallowest goal node)
● Tree size ~ b d

COMP 4752: Computational Intelligence
David Churchill

Heuristic Search
● Improve upon uninformed tree search
● Incorporate knowledge (inform it)
● Large Search Trees

● How to make the tree smaller?
● How to choose a search strategy?
● How to choose an action to perform?

● Data structures + other optimizations

COMP 4752: Computational Intelligence
David Churchill

Heuristic Search
● Apply ‘heuristic’ guesses

of value of nodes
● Node selection strategy

● Move ordering
● Iterative deepening

● “Pruning” nodes
● Bounding solutions

B

D EA C

COMP 4752: Computational Intelligence
David Churchill

Heuristic Search Example
● Chess has ~40 moves at a state
● Most of them are bad
● Kasparov claimed to have only

considered 2 moves per state
● Naïve search considers all 40
● Depth of search:

● 40: 40, 1600, 64000, 2560000
● 2: 2, 4, 8, 16, 32, …… depth 21
● Pruning = Exponential gains

COMP 4752: Computational Intelligence
David Churchill

Recap
● Problems are defined by

● Initial + Goal States, Actions, Cost Function
● Optimal solution

● Has lowest cost function among all solutions
● Search

● Finds solution by exploring the search tree
● Search tree consists of Nodes, edges
● Nodes in search tree != states in problem

● Problem solving performance measured by
● Completeness, Optimality, Space + Time Complexity

	�COMP 4752�Computational Intelligence���Lecture 3�Problem Solving and Search�
	Problem Solving Agents
	Example Scenario
	Goal Formulation
	Problem Formulation
	Well-Defined Problem
	Example Problem Definition
	Problem Solution
	Example Graph Problem
	Example Graph Problem
	Example Graph Problem
	What is Search?
	Search
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Search Tree
	Example: 15 Puzzle
	Example: 15 Puzzle
	Search Strategy
	Graph Nodes
	Node vs. State
	The Fringe
	General Uninformed Tree Search
	Node Expansion
	Problem Solving Performance
	Time + Space Complexity
	Heuristic Search
	Heuristic Search
	Heuristic Search Example
	Recap

