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Problem Solving Agents
● Rational agents maximize performance
● Simplest Case: Satisfy a goal condition

● Reach the end of a maze
● Solve a puzzle

● Problem Solving Agent
● Type of Goal-Based Agent
● Find a sequence of actions that satisfies goal
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Example Scenario
● Tourist comes to NL

● Lands in St. John’s
● Wants to go to one of:

● Burgeo
● Deer Lake

● Extra constraints
● Example: Has 2 hours total
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Goal Formulation
● Goal is a set of states in the environment

● [ Burgeo, Deer Lake]
● Goal is satisfied if one of them is reached

● If a sequence of actions leads us to a goal 
state, the goal has been satisfied, and the 
problem is solved

● Goal Test can also be a function
● If enemy health <= 0, etc
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Problem Formulation
● What states to consider?

● Every square meter in Newfoundland
● Towns in Newfoundland

● What actions to consider?
● Move left by a meter
● Move from town X to town Y

● What information is stored in a node?
● Current town location
● Distance / time driven so far
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Well-Defined Problem
1. Initial State that the argent starts in
2. Actions possible from each State

● Transition / Successor Function
3. The set of goal states

● Goal test function
4. Action cost function

● Path cost = sum(cost(actions in path))
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Example Problem Definition
1. Initial State

● St. John’s
2. Actions

● Towns connected by roads
3. Goal

● [Burgeo, Deer Lake]
4. Action Cost Function

● Travel distance or time
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Problem Solution
● Path from start state to a goal state
● Solution cost = path cost

● Sum cost in actions
● Most problems assume costs > 0

● Optimal solution has lowest path cost 
among all possible solutions
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Example Graph Problem
● Initial State

● State A
● Actions

● (A,B) legal if edge
● Goal State

● State C
● Action Cost Function

● Edge label (A,B)=6
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Example Graph Problem
● Fully Observable
● Static
● Discrete
● Deterministic
● Single Agent
● Sequential
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Example Graph Problem
● Objective

● Path to goal possible?
● Shortest path to goal?

● Algorithm
● Which to use?

● Let’s try search
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What is Search?
● Agent has several available actions
● Agent can explore various sequences of 

those actions
● Agent chooses the best sequence found

● This process in general is called search



COMP 4752: Computational Intelligence
David Churchill

Search
● Search will explore the problem state space

● Searching this space generates a search tree

● The search tree has nodes and edges
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Search Tree
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Example: 15 Puzzle
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Example: 15 Puzzle
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Search Strategy
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Graph Nodes
● State: The state in the graph
● Parent Node: Tree node that generated this node
● Action: Action that produced this node
● Path Cost: Cost of path so far from start

● Traditionally denoted by g(n)
● Depth: Number of actions to this node
● Other: Can contain precomputed data (optimization)

● Legal actions, heuristics, etc
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Node vs. State
● Important distinction
● State

● Configuration of the environment 
● Node

● Bookkeeping data structure
● Exists only within the search tree
● Nodes are ‘on paths’ in the search tree
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The Fringe
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General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = strategy.select_node(fringe)
6. if (node.state is goal) return solution
7. else fringe.add(Expand(node, problem))



COMP 4752: Computational Intelligence
David Churchill

Node Expansion
1. Function Expand(node, problem)
2. successors = {}
3. for a : problem.actions(node)
4. s = Node(node.state.do_action(a))
5. s.parent = node
6. s.g = node.g + s.action.cost
7. s.action = a
8. s.depth = node.depth + 1
9. succesors.add(s)
10. return successors
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Problem Solving Performance
● Completeness

● Is it guaranteed to find a solution if it exists
● Optimality

● Does it find the optimal solution
● Time Complexity

● How long does it take to find a solution
● Space Complexity

● How much memory is needed to run the search
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Time + Space Complexity
● Measured on size of input problem / graph
● Time measures number of nodes generated
● Space measured by how much memory is 

needed to store the maximum number of nodes 
(worst case) needed at any given time

● Search / AI traditionally measures:
● Branching factor b (max successors at any node)
● Depth d (of the shallowest goal node)
● Tree size ~ b d
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Heuristic Search
● Improve upon uninformed tree search
● Incorporate knowledge (inform it)
● Large Search Trees

● How to make the tree smaller?
● How to choose a search strategy?
● How to choose an action to perform?

● Data structures + other optimizations
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Heuristic Search
● Apply ‘heuristic’ guesses 

of value of nodes
● Node selection strategy

● Move ordering
● Iterative deepening

● “Pruning” nodes
● Bounding solutions
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Heuristic Search Example
● Chess has ~40 moves at a state
● Most of them are bad
● Kasparov claimed to have only 

considered 2 moves per state
● Naïve search considers all 40
● Depth of search:

● 40: 40, 1600, 64000, 2560000
● 2: 2, 4, 8, 16, 32, …… depth 21
● Pruning = Exponential gains
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Recap
● Problems are defined by

● Initial + Goal States, Actions, Cost Function
● Optimal solution

● Has lowest cost function among all solutions
● Search

● Finds solution by exploring the search tree
● Search tree consists of Nodes, edges
● Nodes in search tree != states in problem

● Problem solving performance measured by
● Completeness, Optimality, Space + Time Complexity
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