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Search Strategies
● Uninformed (Blind) Search

● No info about states beyond problem desc.
● Limited to successor generation, goal test

● Informed (Heuristic) Search
● Can guess which states are ‘more promising’
● Hopefully leads to faster search episodes
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Breadth-First Search (BFS)
● Root node expanded first
● Root successors expanded next
● Their successors next… etc
● BFS in general

● All nodes at a given depth are expanded 
before any nodes in the next level

● Use a Queue for fringe
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General Uninformed Tree Search

1. Function Tree-Search(problem, strategy)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = strategy.select_node(fringe)
6. if (node.state is goal) return solution
7. else fringe.add(Expand(node, problem))



COMP 4752: Computational Intelligence
David Churchill

Breadth-First Search

1. Function Tree-Search(problem, BFS)
2. fringe = Queue{Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = fringe.pop()
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))
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Problem Solving Performance
● Completeness

● Is it guaranteed to find a solution if it exists
● Optimality

● Does it find the optimal solution
● Time Complexity

● How many nodes must it generate to find a soluton
● Space Complexity

● How much memory is needed to run the search
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BFS Performance
● BFS is Complete

● BFS explores entire tree, so it will find a goal node
● BFS will find the shallowest goal node, since it explores 

all nodes at a given depth before the next depth
● BFS is not Optimal

● In general BFS does not produce optimal solutions, 
since the shallowest node is not necessarily optimal

● BFS optimal if path cost is non-decreasing function on depth
● BFS is optimal if action costs are all the same
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Example: BFS Not Optimal
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BFS Performance
● Time Complexity O(bd)

● Each state has b children
● Consider goal at depth d
● b * b * b…. = O(bd) nodes generated

● Space Complexity O(bd)
● Must store entire search tree in memory
● Space = nodes generated
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BFS Performance Table
Depth Nodes Time Memory

2 1100 .11 seconds 1 MB
4 111,100 11 seconds 106 MB
6 107 19 minutes 10 GB
8 109 31 hours 1 TB
10 1011 129 days 101 TB
12 1013 35 years 10 PB
14 1015 3523 years 1 EB

b = 10, 10000 nodes/s, 1000bytes / node
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Uniform-Cost Search
● BFS optimal when all action costs equal 

because it expands the shallowest node
● Uniform cost search optimal for any cost
● UCS expands node with lowest path cost
● If all costs are equal, equivalent to BFS
● Works only if all costs > 0

● Can infinite loop if 0 or negative costs
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Uniform Cost Search

1. Function Tree-Search(problem, UCS)
2. fringe = {Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = min_g_value(fringe)
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))
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Uniform Cost Search Complexity
● UCS is Complete if b is finite
● UCS is Optimal if action costs > 0 (ε)
● Time Complexity

● Measured by path costs, not depth
● Can’t use b and d for complexity
● Let C* be the cost of optimal solution
● Complexity = O(b1+└C*/ ε ┘)
● Worst case this can be much bigger than bd
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Depth-First Search (DFS)
● Expands the deepest node on fringe
● Search goes immediately to the deepest level of 

the search tree to a leaf node
● Leaf = Node has no successors

● If a leaf is reached, it is discarded and the search 
‘backs up’ to previous depth

● Implementation
● Use a Stack for fringe
● More often implemented as recursive function
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Depth-First Search

1. Function Tree-Search(problem, DFS)
2. fringe = Stack{Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = pop(fringe)
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))
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Recall: BFS

1. Function Tree-Search(problem, BFS)
2. fringe = Queue{Node(problem.initial_state)}
3. while (true)
4. if (fringe.empty) return fail   
5. node = pop(fringe)
6. if (node.state is goal) return solution
7. else fringe.push(Expand(node, problem))
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Recursive DFS Implementation
1. Function DFS(node, problem)
2. if (node.state is goal) return solution
3. successors = Expand(node, problem)
4. for s in successors:
5. DFS(s, problem)

Call DFS(root_node, problem)
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DFS Performance
● DFS is not Complete

● In general, DFS is not complete
● For example, can enter infinite loop
● (Enhancements can make it sort of complete)

● DFS is not Optimal
● In general, not optimal
● Returns the first goal found, could be anywhere in the 

tree, not guaranteed to be optimal
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DFS Performance
● Time Complexity O(bm)

● May go down long possibly infinite paths
● May have to generate the entire tree
● Generates bm nodes where m is max depth of a node

● Space Complexity O(bm)
● Only has to store the current path at any time
● Uses O(bm) memory where m is max node depth
● Stores successors of nodes in the path (b factor)
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Depth-First Search
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Depth-Limited Search (DLS)
● How to prevent DFS from ‘getting lost’
● Apply a depth limit to the search

● Choose a depth limit L
● Enforce nodes at depth L have no successors

● Solves the infinite path problem
● Will search entire tree up to depth L

● Introduces a new problem
● Incomplete if solution depth d > L

● Time Complexity O(bL)
● Space Complexity O(bL)
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Recursive DLS
1. Function DLS(node, L, problem)
2. if (node.depth > L) return
3. if (node.state is goal) return solution
4. successors = Expand(node, problem)
5. for s in successors:
6. DFS(s, problem)
Call DFS(root_node, L, problem)



COMP 4752: Computational Intelligence
David Churchill

Choosing a Maximum Depth 
● Analysis of maximum path length
● Known ‘diameter’ of a search space
● Number of states in problem

● Let the search figure it out!
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Iterative Deepening DFS
● Main Idea: Gradually increase depth limit

● Try max depth 1, 2, 3, …. M
● Goal will be found at shallowest depth d

● No solution found at 1… d-1, d = shallowest
● Completeness + Optimality of BFS

● Guaranteed to find a solution
● Optimal iff action costs are the same

● Space Complexity of DFS O(bd)
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ID-DFS Time Complexity
● May seem wasteful, some recomputation
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ID-DFS Time Complexity
● Number of nodes searched

● (d)b + (d-1)b2 + … + 1(bd)
● Time Complexity O(bd)

● Same time complexity as BFS
● Same space complexity as DFS O(bd)
● In practice, generates ~ twice the nodes
● In general, ID-DFS is preferable to BFS
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Recall: Recursive DLS
1. Function DLS(node, L, problem)
2. cutoff_occurred = false
3. if (node.state is goal) return solution
4. if (node.depth >= L) return cutoff
5. for s in Expand(node, problem):
6. result = DLS(s, L, problem)
7. if (result == cutoff) cutoff_occurred = true
8. else if (result != fail) return result
9. return (cutoff_occurred ? cutoff : failure)

Call DLS(root_node, L, problem)
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Iterative Deepening DFS
1. Function ID-DFS(node, problem)
2. for d in (1, infty)
3. result = DLS(node, d, problem)
4. if (result != cutoff) return result
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Comparing Search Strategies
Criterion BFS UCS DFS DLS ID-DFS

Complete YES a YES ab NO NO YES a

Optimal YES c YES NO NO YES c

Time O(bd) O(b1+└C*/ ε ┘) O(bm) O(bL) O(bd)

Space O(bd) O(b1+└C*/ ε ┘) O(bm) O(bL) O(bd)

(a) if b is finite             (b) if action costs > 0            (c) if all costs equal
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