
COMP 4752
Computational Intelligence

Lecture 9
Heuristic Search Improvements
Depth-First Branch and Bound
Starcraft AI

COMP 4752: Computational Intelligence
David Churchill

A* Search – Memory
● A* search stores nodes in the search tree,

so the memory required may far exceed
the number of states in the problem

● Worst-Case Memory Required: O(bm)
● Heuristic may guide us to bad parts of tree

● A* not used in practice for large problems
● How can we reduce memory usage?

COMP 4752: Computational Intelligence
David Churchill

Iterative Deepening A* (IDA*)
● Iterative deepening used in DFS to ensure

the search was complete
● Instead of using a depth limit like DFS,

IDA* uses an increasing f-value cutoff
● But memory / CPU usage still high due to

storing and sorting the entire open list

COMP 4752: Computational Intelligence
David Churchill

Recursive Best-First Search (RBFS)

● Recall DFS can be implemented using the Tree-
Search algorithm with a fringe stack

● However, a better implementation of DFS was
using a recursive function

● Similarly, we can implement Best-First Search
algorithms as recursive functions

● Mimics the operations of standard BeFS, but only
uses linear space

COMP 4752: Computational Intelligence
David Churchill

Recursive Best-First Search (RBFS)
● Keeps track of the f-value of the best alternative path from

any ancestor of the current node
● If the current node exceeds this limit, recursion unwinds

back to the alternative path
● As recursion unwinds, RBFS replaces the f value of each

node along the path with the best f-value of its children
● RBGS retains the f-value of the best leaf in the forgotten

subtree and can decide whether it should reexpand that
subtree at a later time

COMP 4752: Computational Intelligence
David Churchill

Recursive Best-First Search (RBFS)
1. Function RBFS(problem, node, f_limit)
2. if (node.state == goal) return node
3. successors = Expand(node, problem)
4. if (successors.empty()) return (failure, infinity)
5. for s in successors:
6. s.f = max(s.g + h(s), node.f)
7. repeat:
8. best_node = min_f_node(successors)
9. if (best_node.f > f_limit) return (falure, best.f)
10. alt_node = second_lowest_f(successors)
11. result, best_node.f = RBFS(problem, best_node, min(f_limit, alt_node))
12. if (result != failure) return result

COMP 4752: Computational Intelligence
David Churchill

RBFS Performance
● Like A*, RBFS is optimal if the heuristic

function h(n) is admissible
● Memory usage is linear in search depth O(d)
● Time complexity is difficult to analyze

● Accuracy of heuristics?
● How often does the best path change?

COMP 4752: Computational Intelligence
David Churchill

Memory-Bounded A*
● Simple Memory-Bounded A* (SMA*)
● Use all available system memory
● When all memory used and we need to add a node, erase the

highest f-value node
● SMA* then backs up the value of the forgotten node to its parent
● The ancestor of a forgotten subtree knows the quality of the best

path in that subtree
● In case of ties, SMA* selects the newest node generated, and

deletes the oldest node generated
● SMA* is complete/optimal only if depth of shallowest goal < memory

COMP 4752: Computational Intelligence
David Churchill

Branch and Bound

COMP 4752: Computational Intelligence
David Churchill

Branch & Bound Algorithms
● “Any-time” search algorithm

● Will continue to find increasingly better
solutions until the you stop the algorithm

● If run to completion, will find optimal solution
● Choose an initial search cutoff bound and

search all solutions up to that bound,
when a solution is found, update the
bound to the cost of that solution

COMP 4752: Computational Intelligence
David Churchill

Depth-First Branch and Bound (DFBB)
best_path = []
bound = infinity
Function DFBB(problem, node, bound)

if (node.state == goal)
best_path = reconstruct_path(node)
bound = path_cost(best_path)

children = Expand(node, problem)
sort(children, h()) # optional move-ordering
for child in Expand(node, problem):

if (child.g + h(child) > bound) continue # h must be admissible
DFBB(problem, child, bound)

COMP 4752: Computational Intelligence
David Churchill

DFBB Example: Starcraft

COMP 4752: Computational Intelligence
David Churchill

Real-Time Strategy
● War-like Simulation
● Single / Multiplayer Games

● Most RTS Games:
● Gather Resources
● Build Town / Army
● Combat With Enemies

COMP 4752: Computational Intelligence
David Churchill

Properties of RTS

● Real-Time
● Simultaneous Move
● Non-Deterministic
● Imperfect Information
● Multi-Unit Control
● Unknown Game Engine
● Action / State Space

COMP 4752: Computational Intelligence
David Churchill

Benefits of RTS AI
● Better In-Game AI

● More intelligent NPCs
● Better single player

● Create Offline Tools
● Game balancing
● Reduce human testing

● Apply to any game

COMP 4752: Computational Intelligence
David ChurchilleSports

COMP 4752: Computational Intelligence
David Churchill

Human Professionals

300-500 Actions Per Minute (APM)

COMP 4752: Computational Intelligence
David Churchill

Human vs. Machine

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence
David Churchill

Build-Order Planning
and Optimization

COMP 4752: Computational Intelligence
David Churchill

What is a Build-Order?
● Sequence of economic actions
● List of buildings / units to build in order
● Players memorize ‘opening books’

COMP 4752: Computational Intelligence
David Churchill

Goal = Current Game State

Build-Order Search

Build Order Sequence: A1, A2, …

COMP 4752: Computational Intelligence
David Churchill

Algorithm - DFBB

● Depth-First Branch and Bound
● Optimize: Build-Order Makespan

COMP 4752: Computational Intelligence
David Churchill

Algorithm - DFBB

● Depth-First Branch and Bound
● Optimize: Build-Order Makespan

● Low Memory Usage
● Any-Time
● Save / Load Search
● Upper + Lower Bound Heuristics

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
Build-Order Search

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
Build-Order Search

First
Solution

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
Build-Order Search

First
Solution

Increasing Quality

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
Build-Order Search

Best
SolutionFirst

Solution

Increasing Quality

COMP 4752: Computational Intelligence
David Churchill

Example DFBB
Build-Order Search

Best
SolutionFirst

Solution

Increasing Quality

Timeout?

COMP 4752: Computational Intelligence
David Churchill

Pro Human Results
● Extract Pro Build-Orders
● Re-plan with BOSS
● Compare to original

● Results:
● 100% of build orders solved
● Faster than humans
● Solve Time: 4% of makespan

COMP 4752: Computational Intelligence
David Churchill

Build-Order Heuristics
● Resource Gathering Bound
● Landmark Heuristic

● Macro Actions
● Repeat actions common in pro build orders

COMP 4752: Computational Intelligence
David Churchill

Landmark Heuristic
● How long do we need to build the

sequential prerequisites of an action

COMP 4752: Computational Intelligence
David Churchill

Macro Actions
● Some problems have common sequences

of actions that appear in optimal paths
● These commonly repeated action

sequences are called “macro actions”
● Adding macro actions to the search can

sometimes help us “shortcut” to better
nodes further down the optimal path

COMP 4752: Computational Intelligence
David Churchill





COMP 4752: Computational Intelligence
David Churchill

Macro Actions
● Macro actions are built of atomic actions
● They have cost equal to the sum of the

actions contained within them
● Example: > > ^

● Built From: Right Right Up
● Cost: 100 + 100 + 141 = 341

COMP 4752: Computational Intelligence
David Churchill

Macro Actions
● Trade-off: branching factor vs. depth
● We must keep all atomic actions to ensure that

the optimal solution is still found
● Macro actions search deeper into the tree with a

single transition, but increase the branching
factor of a given node

● They may speed up the search, but a poor choice
of macro action can also slow down the search

COMP 4752: Computational Intelligence
David Churchill

No Macro Actions

Macro Actions

COMP 4752: Computational Intelligence
David Churchill

Build-Order Planning Impact
● Implemented into UAlbertaBot

● Used in other bots in past few years
● All build-orders planned in real-time

● First real-time planning solution
● Ran in real time with no time-outs
● UAlbertaBot placed 2nd when implemented

COMP 4752: Computational Intelligence
David Churchill

COMP 4752: Computational Intelligence
David Churchill

	�COMP 4752�Computational Intelligence���Lecture 9�Heuristic Search Improvements�Depth-First Branch and Bound�Starcraft AI
	A* Search – Memory
	Iterative Deepening A* (IDA*)
	Recursive Best-First Search (RBFS)
	Recursive Best-First Search (RBFS)
	Recursive Best-First Search (RBFS)
	RBFS Performance
	Memory-Bounded A*
	Branch and Bound
	Branch & Bound Algorithms
	Depth-First Branch and Bound (DFBB)
	DFBB Example: Starcraft
	Real-Time Strategy
	Properties of RTS
	Benefits of RTS AI
	Slide Number 16
	Slide Number 17
	Human vs. Machine
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Build-Order Planning�and Optimization
	What is a Build-Order?
	Slide Number 24
	Algorithm - DFBB
	Algorithm - DFBB
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Pro Human Results
	Build-Order Heuristics
	Landmark Heuristic
	Macro Actions
	Slide Number 36
	Macro Actions
	Macro Actions
	Slide Number 39
	Build-Order Planning Impact
	Slide Number 41
	Slide Number 42

