Computer Science 1510

Lecture 3

Lecture QOutline

e Problem solving

e Flowcharts

— (CS1510 Lecture 3 —

Programming and Problem solving

e When presented with a problem that you wish to
use a computer to solve, there are four main steps
that should be followed:

1. Problem analysis and specification.

2. Data organization and algorithm design.
3. Program coding. (Implementation)

4. Execution and testing.

— CS1510 Lecture 3 - 1

Problem analysis and specification

e The main step in the analysis of a problem is
to formulate a precise specification, for which we
have to identify and describe the input and output
required.

— Input - the information you already know, or
need to know, to start solving the problem.
— QOutput - what you want to know or determine.

e Jo allow a program to be used to solve related
problems, it should be designed in general terms.

e |f a problem is large or complex, it is best to break
it into smaller problems and solve the individual
simpler problems first.

— CS1510 Lecture 3 - 2

Data organization and algorithm design

e To organize the data for a particular problem, we
must determine the type of data involved (integer
numbers, real numbers, characters) and assign
labels or variables to the quantities.

e An algorithm is an ordered list of steps, that
describes in a complete and detailed manner, a
method by which we can solve a particular problem.

e To ensure that an algorithm is correct, it should
be tested using sample input to confirm that the
correct solution is obtained.

e To help with algorithm design, a combination
of natural language and programming language
constructs, referred to as pseudocode, is often used.

e Pseudocode has no fixed rules.

e Once you have developed and tested an algorithm,
the next stage is to translate that algorithm into a
program.

— CS1510 Lecture 3 - 3

Example: Radioactive decay

Suppose you are conducting research on a radioactive
element. The half-life of the element is 140 days, which
means that because of radioactive decay, the amount
of the element remaining after 140 days is one-half of
the original amount. You would like to know how much
of the element will remain after running an experiment
for 180 days if 10 milligrams are present initially.

1. Problem Analysis and Specification
First we have to identify the important pieces of
information, and extract the input and output.

Input: Initial amount, Half-life, Time period.
Output: Amount remaining.

Note that although we know the amounts of the
input quantities in this case, it is best to develop an
algorithm for the problem in general so that it can
be used for further instances of the same problem.

— CS1510 Lecture 3 - 4

2. Data organization and Algorithm design
To organize the data, we can assignh names to each
of the input and output quantities. For example:

e init for the Initial amount.
e halflife for the Half-life.
e time for the Time period.
e amt_remaining for the Amount remaining.

To design an algorithm we first begin with a very
general breakdown of what needs to be done, and
then refine any steps that need to be considered in
more detail.

For example, we could start with the following steps:

1. Obtain values for init, halflife, and time.

2. Compute the value of amt_remaining for the given
time.

3. Display amt_remaining.

Clearly, step 2 requires further refinement to explain
how amt_remaining is computed.

— CS1510 Lecture 3 - 5

If we start with 10 milligrams, then after 140 days we
have

10(0.5)
milligrams remaining. After 280 days we have

10(0.5)(0.5) = 10(0.5)?
remaining. After 420 days we have
10(0.5)(0.5)(0.5) = 10(0.5)*
remaining. In general, after time days we have

milligrams remaining.
In pseudocode we could write this algorithm as:

1. Get values for init, halflife, and time.

2. Compute
amt_remaining=init*(0.5)**(time/halflife).

3. Print amt_remaining.

— CS1510 Lecture 3 - 6

When writing an algorithm, it is best to include a
description of the problem that is being solved, a list
of the input and output variables, followed by the
algorithm steps.

For the above example we would have:

This algorithm calculates the amount of a radioactive
substance that remains after a specified time for a
given initial amount and a given half-life.

Input: An initial amount of the radioactive substance
(init), the half-life of the substance (halflife), and
the time period in days (time).

Output: The amount remaining (amt_remaining).

1. Get values for init, halflife, and time.

2. Compute
amt_remaining=init*(0.5)**(time/halflife).

3. Print amt_remaining.

— CS1510 Lecture 3 - 7

Flowcharts

e A flowchart is a graphical representation of an
algorithm.

e Special symbols (blocks) are used for each type of
Instruction.

e Arrows between blocks indicate the order of
execution.

e Each block must have at least one arrow pointing
to it and at least one arrow pointing away from
it. Except Start (no input) and Stop (no output)
blocks.

— CS1510 Lecture 3 - 8

Flowchart symbols

Start / Stop

Input / Output

Assignment (calculation)

Conditional

Beginning of loop

— CS1510 Lecture 3 -

Flowchart Example: Radioactive Decay

Input values for
init, halflife, and
time

Y

amt_remaining =
init*(0.5)**(time/halflife)

Output
amt_remaining

— CS1510 Lecture 3 -

Example: Radioactive decay

3. Program coding (Implementation)

PROGRAM Radioactive_decay

I This program calculates the amount of a radioactive

| substance that remains after a specified time, given

! an initial amount and its half-life.

! Input:

! init - initial amount of the substance (mg)

! time - time at which amt_remaining is calculated (days)
! halflife - half-life of the substance (days)

' Output:

! amt_remaining - amount of the substance remaining

IMPLICIT NONE
REAL::init,time,halflife,amt_remaining

! Prompt the user for the values of init, halflife, and time
WRITE(*,*) ’Enter the the amount of the substance (mg),’
WRITE(*,*) ’its halflife (days), and the time at which’
WRITE(*,*) ’to find the amount remaining (days)’

I Get the values for init, halflife, and time
READ(*,*) init, halflife, time

I Compute the amount remaining at the specified time
amt_remaining = init*0.5%*(time/halflife)

! Display the amount remaining
WRITE(*,*) ’There are ’,amt_remaining,’ mg remaining’

END PROGRAM Radioactive_decay

— CS1510 Lecture 3 -

11

Example: Radioactive decay

4. Execution and Testing

e One way to test an algorithm is to trace through
the steps with input values for which the correct
output values are known.

e Note that it is important to test an algorithm (and
program) on several different sets of input data,
especially cases that may represent uncommon input
(ex. negative values, zero, etc.).

e Once you are confident that your algorithm is
correct, and have translated it into source code,
then the same test procedure can be used on the
executable file created by compiling the code.

— CS1510 Lecture 3 - 12

Example: Product of x and y

Given two positive integers, x and y, compute the
product = X y by adding x +x + x + --- (y times).

The following algorithm could be used:

get values for x and y

set counter=0

set sum=0

add x to sum (sum=sum+x)

add 1 to counter (counter=counter+1)
if (counter!=y) jump to step 4

print sum

stop

00 NO Ok WN -

Note that line numbers have been added for reference
purposes.

— CS1510 Lecture 3 - 13

Flowchart example: Product of x and y

— CS1510 Lecture 3 -

Input values
forxandy

Y

counter=0
sum=0

Y

sum=sum+x \‘

<€

Y

counter=counter+1

S

YES

Output sum

'

14

