
Computer Science 1510

Lecture 21

Lecture Outline

• Introduction to C programming

• Data types and variables

• Arithmetic, relational, and logical operators

– CS1510 Lecture 21 –

The C Programming Language

• C was originally developed as a system programming
language for the UNIX operating system.

• However, it has since become one of the most
common programming languages for many different
applications.

• In this course we will follow a similar route through
C programming as we did for Fortran programming.

• Many of the programming ideas are the same in
both languages.

• For example, variables, data structures, assignment
statements, control constructs (selection and
repetition), subprograms, I/O, and dynamic
allocation are all present both languages

– CS1510 Lecture 21 – 1

Your First C Program

• The following simple C program will be used to
illustrate the structure of a C program.

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world\n");

return 0;

}

• The first line above is a pre-processor directive. We
will see more about the C pre-processor soon.

• Each C program must have a main function, the
beginning of which is indicated by the line

int main(int argc, char *argv[])

This is similar to the main PROGRAM in Fortran.

• The contents of the main function are enclosed in
curly brackets, also known as braces.

– CS1510 Lecture 21 – 2

Your First C Program

• The printf line is used to print the string “Hello,
world” to the screen. We will examine the syntax
of the printf statement in more detail.

• It is important to note that C is case sensitive.
Variables sum and Sum are different variables in C.

• Thus, unlike Fortran programs, which can be written
in any case (to be converted to uppercase during
compilation), keywords and standard library function
calls must be written in lowercase in C.

• Each statement in C must be terminated with a
semicolon. Thus, a single statement can run over
multiple lines.

– CS1510 Lecture 21 – 3

The C Library

• Unlike Fortran, C has very few built-in functions. It
instead uses a collection of library functions that are
accessible via header files.

• Header files (.h extension) define and include
information about what is contained in a given
library.

• For example, the stdio library contains all of the
functions that pertain to input and output.

• To use the functions contained within a given library,
we must include that library by using a #include

statement.

• For example, in our first program we had,

#include <stdio.h>

Note that the name of the library is contained within
angle brackets (indicating that it is found in the
standard C library directory), and that #include

lines do not have semicolons at the end.

– CS1510 Lecture 21 – 4

The C Compilation Process

• The compilation process in C is a little different
than what we have seen in Fortran.

• However, the goal of the compiler is the same: to
ensure that the source code is free of syntax errors,
and to translate the code into machine language.

• The C compilation process includes running through
the C pre-processor, whose job is to check for pre-
processor directives (such as #include statements),
and insert the indicated header files into the source
code to create an expanded source file.

• For example, in our first C program the pre-processor
would recognize the #include <stdio.h> line and
insert the stdio.h header file into the source file.

• This new, expanded source file, is sent to the
compiler.

– CS1510 Lecture 21 – 5

The C Compilation Process

Compiler

LinkerLibrary

Pre−processor

file
Executable

errors

Stop if
linker

file (.o)
Object

Stop if
syntax
errors

source file
Expanded

errors
pre−processor

Stop if

files (.h)
Header

code (.c)
Source

– CS1510 Lecture 21 – 6

The C Compiler

• We will be using the GNU C compiler, gcc.

• For example, to compile a program in source file
myprog.c we would have,

gcc myprog.c

• To specify the name of the executable, use the -o
flag,

gcc -o myprog myprog.c

The executable will be named myprog

• To view the results of the pre-processor we can use
the -E flag,

gcc -E myprog.c > myprog.s

The expanded source file is myprog.s.

• To compile to the object file, use the -c flag (defaults
to myprog.o).

– CS1510 Lecture 21 – 7

C: Source code comments

• There are two ways to add comments or comment

out code in C.

1. If a comment is a single line, a double slash //
can be used. For example,
// This is a comment.

Everything from the double slash to the end of
the line is a comment.

2. The standard C comment uses /* to begin the
comment and */ to end the comment. Thus
comments can span multiple lines without adding
a special symbol to each line. For example,
/* This is a comment */

/*

This is a

comment block.

*/

– CS1510 Lecture 21 – 8

Output in C: printf

• Syntax:

printf("description",variable-list);

where description is a formatted character string
to be printed to the screen.

• The order of the variables in the variable-list

must match the order in which they are referred to
in the description.

• This function is similar to WRITE(*,*) in Fortran
in that it prints to the screen.

• However, printf has formatting built into the
string, rather than using a separate format
statement.

• The description can consist of character strings
to be printed as is, escape sequences for special
formatting, and conversion codes which indicate
the type and format of variables that are to be
printed.

– CS1510 Lecture 21 – 9

Output in C: printf

• For example, in the case of

printf("Hello, world\n");

the \n is an escape sequence indicating that a
newline should occur after printing Hello, world.

• The backslash of escape sequences indicates that the
following character signifies formatting information.

• Conversion codes begin with a % symbol, followed
by a series of letters and digits similar to that used
in Fortran FORMAT statements.

– CS1510 Lecture 21 – 10

Output in C: printf

• For example,

printf("Today is March %d",day);

The d indicates that an integer will be printed in
that position. The value that will be printed in place
of the %d is the value contained in the variable day.

• The number and type of conversion codes must
match the number and type of variables and/or
constants in the variable-list.

• The more common conversion codes include:

%d Converts to integer notation.
%c Converts to a single character.
%s Converts to single characters until reaching a \0.
%f Converts to signed real number notation.

• Each conversion code takes an optional number
after the % (ex. %5.2f or %3d).

– CS1510 Lecture 21 – 11

C: Assignment statement

• An assignment statement in C is similar to that in
Fortran.

• In its general form we have,

variable=expression;

where expression is some valid arithmetic or
logical expression, or function call.

• Note the semicolon, indicating the end of the line.

– CS1510 Lecture 21 – 12

The main function

• The main function in C has the following form:

int main(int argc, char *argv[])

{

/* body of the main function */

return 0;

}

• main has two arguments, argc and argv.

• The first argument is an integer (argc) which
contains the number of command line arguments
passed to the program.

• The second argument is a pointer to an array of
pointers to the individual command line arguments.
We will revisit these two arguments later.

• The main function returns an integer, as indicated
by the int before main. Thus, a return value is
required. Above, we have returned a value of 0,
traditionally used to tell the operating system that
the program has completed successfully.

– CS1510 Lecture 21 – 13

Data types in C

• Like Fortran, C has several intrinsic data types. The
basic types include:

char Character and/or integer in [−128, 127].
int Integer with range depending on

the architecture, often [-2147483648,
2147483647], ie. 32 bits.

float Single precision real numbers in
[−3.40282× 1038, 3.40282× 1038].

double Double precision real numbers in
[−1.79769× 10308, 1.79769× 10308].

• Qualifiers short and long can also be applied
to integer variables (often 16 bits and 32 bits
respectively). For example, short int i. Often,
the int is omitted.

• The long qualifier can also be used with double.

• Qualifiers signed and unsigned can also be applied
to chars or any integer. In the unsigned case, only
positive values can be stored.

– CS1510 Lecture 21 – 14

Variable declarations

• Syntax:

type identifier-list;

where type is any valid C data type (int, float,
etc.), and identifier-list is one or more valid
identifiers separated by commas.

• Examples:

int num1;

float xval,yval;

char grade;

• It is also possible to initialize variables on the
declaration line. For example:

int num1=0;

float xval=1.5,yval;

char grade=’A’;

– CS1510 Lecture 21 – 15

Identifiers in C

• The following rules must be followed when choosing
identifiers:

1. Less than 32 characters.
2. No white space.
3. First character must be a letter or an underscore

().
4. Variable names are case sensitive (ie. sum is not

the same as Sum).
5. C keywords cannot be used as variable names.
6. Can consist of uppercase and lowercase letters

(A-Z, a-z), digits (0-9), and an underscore ().

• The qualifier const can be applied to the
declaration of a variable to specify that the value is
not to be changed. For example,

const double pi = 3.141592654;

– CS1510 Lecture 21 – 16

Logical data in C

• Unlike Fortran, C does not have a logical data type.

• Instead, an integer or a character can be used.

• A variable evaluates to false if its value is zero, and
true if its value is nonzero.

• For example, we could have the following:

#include <stdio.h>

int main(int argc, char *argv[])

{

int a,b;

a=0; b=1;

if (a) printf("a\n");

if (b) printf("b\n");

if (-5) printf("c\n");

return 0;

}

which will print b and c on separate lines.

– CS1510 Lecture 21 – 17

Arithmetic expressions

• The following are legal arithmetic operators in C:

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus (remainder)
= Assignment

• Note that arithmetic expressions can also be used
within function calls. For example,

printf("%d\n",a+b);

– CS1510 Lecture 21 – 18

What about exponentiation?

• There is no exponentiation operator in C.

• There is a function called pow that is contained in
the math library, (accessible via math.h).

• For example, to compute ab we would have
pow(a,b).

• We would also require #include <math.h> at the
beginning of the source file.

• The math library is separate from the standard
C library. Therefore, when compiling code that
requires functions from the math library we must
explicitly link to that library.

• We add the -lm flag to our compile command:

gcc filename.c -lm

– CS1510 Lecture 21 – 19

The math library

The following is a partial list of functions contained in
the math library:

sin(x) sine of x.

cos(x) cosine of x.

tan(x) tangent of x.

asin(x) inverse sine of x.

acos(x) inverse cosine of x.

atan(x) inverse tangent of x.

sinh(x) hyperbolic sine of x.

cosh(x) hyperbolic cosine of x.

tanh(x) hyperbolic tangent of x.

exp(x) exponential function ex.

log(x) natural logarithm ln(x).

log10(x) base 10 logarithm log10(x).

pow(x,y) xy.

sqrt(x)
√
x.

fabs(x) absolute value |x|.

– CS1510 Lecture 21 – 20

Arithmetic expressions

• In C, it is possible to shorten certain expressions.
For example, i++ is equivalent to saying i=i+1.

• The following is a list of common short-cut
operators:

Expression Meaning
x+=y x = x+ y
x-=y x = x− y
x*=y x = x ∗ y
x/=y x = x/y
x%=y x = x%y
x++ x = x+ 1
x-- x = x− 1

– CS1510 Lecture 21 – 21

Increment and decrement operators

• The increment and decrement operators (++ and
--) can be added as either prefix operators (ie.
before the variable), or postfix operators (ie. after
the variable).

• Example:

#include <stdio.h>

int main(int argc, char *argv[]){

int x,n;

n=5;

x=n++;

printf("x=%d, n=%d\n",x,n);

n=5;

x=++n;

printf("x=%d, n=%d\n",x,n);

return 0;

}

• Output:

x=5, n=6

x=6, n=6

– CS1510 Lecture 21 – 22

Arithmetic expressions and assignment

• In the case of mixed-mode operations, where we
have variables of different types on each side of an
operator, the variables are converted to the type
with the highest precedence.

• The order of precedence from highest to lowest is:
double, float, long, int, short, char.

• For example, double op int produces a double,
where op is an arithmetic operator.

– CS1510 Lecture 21 – 23

Relational and Logical operators

• The following relational and logical operators can
be used in C to build a logical expression:

Operator Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
&& And
|| Or

• Recall that, in C, a value of zero is treated as false,
while a nonzero value is treated as true.

• The default value for true is 1.

– CS1510 Lecture 21 – 24

Logical expressions

• The following are examples of valid logical
expressions in C:

weight > 90

x>=2 && y<4

initial==’a’

a+b!=0 || b+c!=0

• An additional operator that can be used in C is the
?.

• This operator has the following syntax:

logical_exp ? if_true : if_false

where logical_exp is some logical expression
that evaluates to true or false (non-zero or zero),
if_true is executed if the logical_exp is true,
while if_false is executed if the logical_exp is
false.

– CS1510 Lecture 21 – 25

Operator precedence

• The order of precedence for evaluating arithmetic
expressions is as follows:

1. Parentheses from inside outwards.
2. Function calls.
3. Unary operators (ex. ++), evaluated right to left.
4. Multiplication, division, and modulus, evaluated

left to right.
5. Addition and subtraction, evaluated left to right.
6. Relational operators <, <=, >, and >=, evaluated

left to right.
7. Relational operators == and !=, evaluated left to

right.
8. Logical operator &&, evaluated left to right.
9. Logical operator ||, evaluated left to right.

10. Assignment operators (ex. =, +=, -=), evaluated
right to left.

– CS1510 Lecture 21 – 26

