Computer Science 1510

Lecture 20

Lecture QOutline

e Linked lists

— (CS1510 Lecture 20 —

Linked List

e A linked list is a data structure consisting of a list
of elements arranged one after another, with each
element connected to the next via a /ink.

= ; 5 5» 12)/‘ 15
PS o— o—— ©)

e The link is a pointer that points to the memory
location of the next element.

e An additional pointer TOP points to the top of the
list (the first node).

— CS1510 Lecture 20 - 1

Example: Linked List

e In the following example we will create a linked list
consisting of values (integers) entered by the user.

e The list will grow by one node each time that we
read in a value.

e We will read values until the user stops entering
them.

e Nodes of the linked list can be defined as follows:

TYPE List_Node
INTEGER :: data
TYPE(List_Node), POINTER :: next
END TYPE List_Node

— CS1510 Lecture 20 - 2

Constructing a Linked List

e As an illustration of the basic steps in the
construction of a linked list, assume that we have
already stored two integers (1996 and 1723) in a
linked list:

data next data next

—
top — | 1723 1996 | 5
pZd

e Suppose that we want to add a new element, say
1550, to the list. To do this we would use two
pointers, top to point to the first node in the list,
and temp_ptr as a temporary pointer. We declare
these pointers by
TYPE(List_Node), POINTER :: top, temp_ptr

e We first acquire a new node temporarily pointed to
by temp_ptr:

ALLOCATE (temp_ptr)
and store the data there
temp_ptridata = 1550

— CS1510 Lecture 20 - 3

e So now we have:
data next

temp_ptr ——>| 1550

data next data next

-

top — =| 1723 1996 | 3
zZ

e This node can then be joined to the list by setting
its link component to point to the first node:

temp_ptrinext => top

\\ data next data next

-

top > 1723 1996 3
pd

data next

temp _ptr ——| 1550

e The pointer top is then updated to point to this

new node:
top => temp_ptr

data next

temp_ptr ——| 1550

/ \\ data next data next

top 1723 1996

NULL

— CS1510 Lecture 20 - 4

Example: Linked List

PROGRAM Linkedlist
IMPLICIT NONE
TYPE Node
INTEGER: :value
TYPE (Node) ,POINTER: :next
END TYPE
INTEGER: :i,InputStatus,AllocateStatus
TYPE(Node) ,POINTER: : top, cur

NULLIFY(top) ! Initialize top to point to no target
' Read in node values
WRITE(*,*) ’Please enter a value (CTRL"D to stop)’
READ (*,*,I0STAT=InputStatus) i
DO WHILE(InputStatus==0) ! Read from the user until "END-OF-FILE"
IF (.NOT.ASSOCIATED(top)) THEN ! The list has not been started
ALLOCATE(top,STAT=AllocateStatus) ! Allocate first node
IF (AllocateStatus /= 0) STOP
NULLIFY (top’%next) ! next does not yet point to anything
cur=>top ! Let cur point to the start of the list
cur/value=i ! set the first element’s value to i
ELSE ! Append the value to those already in the list
ALLOCATE(cur’next,STAT=AllocateStatus) ! Allocate a new node
IF (AllocateStatus /= 0) STOP
NULLIFY(cur’next¥next) ! Nullify the new node’s next member
cur=>cur/next ! Make cur point to the next node in the list.
cur)value=i ! Set the value of this node to i
END IF
WRITE(*,*) ’Please enter a value (CTRL"D to stop)’
READ (*,*,I0STAT=InputStatus) i
END DO

IF (.NOT.ASSOCIATED(top)) THEN
WRITE(*,*) ’No data read’
STOP

END IF

— CS1510 Lecture 20 -

WRITE(*,*) °’The values are:’
cur=>top ! Start at the first node in the list
DO WHILE (ASSOCIATED(cur))
WRITE(*,*) curlvalue
cur=>curjnext ! Move to the next node in the list
END DO
END PROGRAM Linkedlist

— CS1510 Lecture 20 -

