Computer Science 1510

Lecture 8

Lecture QOutline

e Repetition:

- DO
— DO WHILE
- DO EXIT

— (CS1510 Lecture 8 —



Repetition

e With IF and SELECT-CASE statements we saw how
to execute portions of code only if some condition
Is satisfied.

e |In many other instances, we may want to repeatedly
execute a particular section of code.

e The Fortran construct that can accomplish this
repetition or iteration of statements is called a DO
loop.

e The DO loop has 3 different forms:

1. The counter-controlled DO loop which iterates
some specified number of times.

2. The DO WHILE loop which iterates while some
condition is true.

3. The DO EXIT loop which is a generalized version
of a DO WHILE loop.

— CS1510 Lecture 8 — 1



Counter-controlled DO loop

e Syntax:

DO control-variable=initial,limit,step-size
statements—-to-repeat
END DO

e Statements in between DO and END DO, referred to
as the body of the loop, are repeatedly executed.

e The integer control-variable is referred to as
the loop counter.

e Execution proceeds as follows:

1. Set the value of control-variable to initial.
2. Check to see if control-variable is
< limit if step-size > 0, or
> 1limit if step-size < 0.
3. If so, the body of the loop is executed, step-size
is added to control-variable and step [2 is
repeated. Otherwise, repetition terminates.

e If not specified, the value of step-size is one.

— CS1510 Lecture 8 — 2



Example 1: Counter-controlled DO

PROGRAM Squares
INTEGER: : i
DO i=1,10

WRITE(*,? (2I6)°) i, ix*i

END DO
END PROGRAM Squares

e This program prints a list of squares from 1 to 10.

e Execution proceeds as follows:

1.
2.

The loop counter i is initialized to 1.

Since this value is less than the 1imit of 10, the
WRITE statement is executed.

We go back to the DO statement where i is
increased by one (the default value).

This value is less than 10 so the WRITE

statement is executed.

. This iteration continues up to i=10, when the

WRITE statement is executed for the last time
since i is then increased to 11 which is greater
than 10, ending the loop.

Execution moves to the statement following the

END DO.

— CS1510 Lecture 8 — 3



Example 2: DO

PROGRAM 0dd
INTEGER: :i,n
READ(*,*) n
DO i=1,n,2

WRITE(*,%*) i
END DO
END PROGRAM 0dd

e Prints out the odd numbers less than or equal to n.

e The loop counter i is initialized to 1, and is
increased by 2 on each iteration of the loop. The
loop terminates when i is greater than n.

e If n is odd, say 7, then i will have the value 1 on
the first iteration of the loop, 3 on the second, 5
on the third, and 7 on the fourth, after which the
loop terminates. Thus, the WRITE statement was
executed 4 times.

e |f nis even, say 8, then the loop is again executed 4
times, with the same output as above since 74+2=9
(which is >8).

— CS1510 Lecture 8 — 4



After the loop

e What is the value of the loop counter at the end of
the loop execution?

e For example, if we were to print the value of i after
the loop in the first example:

PROGRAM Squares
INTEGER: : 1
DO i=1,10
WRITE(*,’(2I6)°) i, ix*i
END DO
END PROGRAM Squares

we would obtain i=11 since the counter is increased
prior to checking if it has exceeded the 1limit.

— CS1510 Lecture 8 — 5



Example 3: DO

e The only restriction on the value of step-size
Is that it be nonzero, therefore, we can have
a negative step-size such that the value of
control-variable is decremented.

e Repetition continues as long as the value of
control-variable is greater than or equal to
limit.

e Example:

PROGRAM Hello
INTEGER: : 1
DO i=10,1,-1
WRITE(*,%*) ’Hello’
END DO
WRITE(*,*) ’i = ’,i
END PROGRAM Hello

e Hello would be printed 10 times and the value of
i printed after the loop would be 0.

— CS1510 Lecture 8 — 6



Counter-controlled DO loop

e The number of repetitions of a counter-controlled
DO loop is determined prior to the start of repetition.

e This number depends on the values of init, 1imit,
and step-size.

e Although the values of variables init, 1imit, and
step-size can be changed within the body of the
loop, such a change does not affect the number
of repetitions. This is generally poor programming
practice.

e Attempting to change the wvalue of the
control-variable within the body of the loop
will result in a compile-time error.

— CS1510 Lecture 8 — 7



Example 4: DO

e The initial value, the limit, and the step-size can be
variables or expressions in addition to constants.

e Example:

PROGRAM Sum_of_integers

IMPLICIT NONE

INTEGER :: num, i, sum=0

WRITE(*,*) ’This program prints the sum &

&1+ 2+ 3 +...+ num’

WRITE(*,*) ’Enter a value for num’

READ (*,*) num

DO i=1,num

sum = sum + 1

END DO

WRITE(*,*) ’1 + 2 + 3 +...+ ’,num,’ = ’,sum
END PROGRAM Sum_of_integers

— CS1510 Lecture 8 — 8



Example 5: DO

e DO loops can be nested.
e Example:

PROGRAM Mult_table
IMPLICIT NONE
INTEGER :: m, n, lastm, lastn, prod
WRITE(*,*) ’Calculating m*n up to some limit’
WRITE(*,*) ’Enter the limit of m and n’
READ(*,%*) lastm, lastn
WRITE(*,%) *M N M*N’
WRITE (% ,%) ’--——--—--———= ’
DO m=1,lastm
DO n=1,lastn
prod = m*n
WRITE(*,2) m,n,prod
END DO
END DO
2 FORMAT(I2,2X,I2,2X,I3)
END PROGRAM Mult_table

— CS1510 Lecture 8 —



Fortran statements: DO-WHILE

A DO-WHILE loop combines the iteration of a
DO loop with the conditional execution of an IF
statement.

This is useful when the number of repetitions is not
known in advance.

Syntax:

DO WHILE (logical-expression)
statements—-to-repeat
END DO

logical-expression is any expression that
evaluates to true or false.

The loop iterates as long as logical-expression
Is true.

— CS1510 Lecture 8 — 10



Example 6: DO WHILE

PROGRAM While
IMPLICIT NONE

INTEGER: :n,m
n=0
m=5
DO WHILE((m-n)>0)
n=n+1
WRITE(*,90) m,n
END DO
90 FORMAT(’m = ’,I2,> n = ’,I2)

END PROGRAM While

Output:

B B B B B
I

or 01 O O1 O

B B BB B
I

O > WD -

— CS1510 Lecture 8 —

11



Example 7: DO WHILE

PROGRAM While_odd
INTEGER: :1,n
i=1
READ(*,*) n
DO WHILE (i<=n)
WRITE(*,*x) i
1=1+2
END DO
END PROGRAM While_odd

e Like PROGRAM 0dd, the above program prints the
odd numbers less than or equal to n, but uses a
DO WHILE loop instead of a counter-controlled DO

loop.

— CS1510 Lecture 8 — 12



Fortran statements: DO EXIT

e Syntax:

DO
statement-sequence-1
IF (logical-expression) EXIT
statement-sequence-2

END DO

e [F logical-expression is true, the EXIT
command causes the execution to break out of
the loop, that is, execution is immediately moved
to the statement following the END DO.

e A DO EXIT loop behaves similar to a DO WHILE

loop in the case where statement-sequence-1 is
not present.

e One has to be careful to not introduce an infinite
loop (ie. a loop that never stops iterating)
since termination of a DO EXIT loop requires
logical-expression to be true at some point.

— CS1510 Lecture 8 — 13



Example 8: DO EXIT

PROGRAM Summation
IMPLICIT NONE
INTEGER :: num, sum, limit

WRITE(*,*) ’Finding smallest value of n such that &
& 1+2+...+n exceeds limit’
WRITE(*,*) ’Enter value for limit’
READ(*,*) limit
num = O
sum = 0
DO
IF (sum > limit) EXIT
num = num + 1
sum = sum + num
END DO
WRITE(*,*) ’1+...+’,num,’=’,sum,’>’,limit
END PROGRAM Summation

— CS1510 Lecture 8 — 14



Fortran statements: CYCLE

e In some cases we may want to terminate the current
iteration of a loop and return to the beginning of
the loop for the next iteration.

e This can be accomplished by using a CYCLE
statement.

e Syntax:

DO i=1,N
statement-sequence-1
IF (logical-expression-1) CYCLE
statement-sequence-2

END DO

e If logical-expression-1 is true on any given
iteration, statement-sequence-2 is skipped, and
execution returns to the top of the loop.

e A CYCLE statement can be used in any type of DO
loop.

— CS1510 Lecture 8 — 15



A few more points about loops

e The statements within each loop should be indented
for clarity.

e |t is possible for the body of a loop to never be
executed. For example, in a counter-controlled DO
loop, If initial exceeds 1imit on the first check,

then control jumps to the statement following the
END DO.

e EXIT and CYCLE can also be used in counter-
controlled DO and DO WHILE loops.

— CS1510 Lecture 8 — 16



