
Computer Science 1510

Lecture 28

Lecture Outline

• Dynamic memory allocation

– CS1510 Lecture 28 –



Dynamic Memory Allocation

• Recall that dynamic memory allocation refers to the
ability to request memory from the operating system
at run-time.

• The use of dynamic memory avoids having to declare
more memory than necessary to ensure that there is
sufficient space to store data.

• A program can determine how much memory is
required at run-time and allocate only that amount.

• As in Fortran, dynamic memory allocation in C
makes use of pointers.

• Two functions that are used for dynamic memory
allocation are called malloc and calloc.

• Both of these functions are declared in stdlib.h.

– CS1510 Lecture 28 – 1



C: malloc and calloc

• Syntax:

pt=(type_cast*)calloc(quantity,size_of_element);

pt=(type_cast*)malloc(size_of_memory_required);

where:

– pt is a pointer,
– type_cast is the type that the memory provided

by the operating system will be changed to
(calloc and malloc both return pointers of type
void* which must be changed to the required
type),

– quantity is the number of elements required,
each of a size equal to size_of_element,

– size_of_memory_required is the number of
bytes for the total amount of memory required.

• The difference between these two functions is that
calloc initializes the memory to zero, while malloc
does not initialize.

– CS1510 Lecture 28 – 2



C: malloc and calloc

• Example:

int *ptc,*ptm;

ptc=(int*) calloc(10,sizeof(int));

ptm=(int*) malloc(10*sizeof(int));

• Both examples allocate space for 10 ints.

• If there is not enough memory to fulfill the allocation
request, then both malloc and calloc will return
NULL (ie. a null pointer).

• Example:

int *pt;

pt=(int*) calloc(10,sizeof(int));

if(pt==NULL){

printf("Insufficient memory for calloc\n");

return -1;

}

– CS1510 Lecture 28 – 3



C: malloc and calloc

• Note that we have returned -1 to main rather than
0.

• A return value of 0 is generally used to indicate
that the program executed successfully. Alternative
return values could be used external to the main
function to determine where things went wrong.

• To free (or deallocate) memory that has been
allocated using malloc or calloc, we can use
the free function,

free(pt);

where pt is the pointer that references the memory
to be deallocated.

– CS1510 Lecture 28 – 4



Type casting

• A variable of a given data type can be converted
into another data type using an explicit cast.

• There is a possibility of losing information during
such a conversion, such as when a float is cast as
an int (the fractional portion is truncated).

• Type casting can be a useful technique. For
example, to obtain the whole number portion of
a real number.

– CS1510 Lecture 28 – 5



Example: Type casting

#include <stdio.h>

int main(int argc, char *argv[])

{

float f,frac;

int whole;

printf("Please enter some random real number");

printf(", include decimal part.\n");

scanf("%f",&f);

whole=(int)f; /* Cast f as an int */

frac=f-whole; /* Compute the fractional part of f */

printf("%f = %d + %f\n",f,whole,frac);

return 0;

}

Sample output:

Please enter some random real number, include decimal part.

3.6

3.600000 = 3 + 0.600000

– CS1510 Lecture 28 – 6



Example 1: calloc

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[]) {

int i;

int *array;

array=(int*)calloc(10,sizeof(int));

if (array==NULL){

printf("Insufficient memory for allocation\n");

return -1;

}

for(i=0;i<10;i++){

scanf("%d",&array[i]);

}

for(i=0;i<10;i++){

printf("%d\n",array[i]);

}

free(array);

return 0;

}

– CS1510 Lecture 28 – 7



Example 2: calloc

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int *top, *pt;

int i,sum=0;

top=(int*)calloc(10,sizeof(int));

if (top==NULL){

printf("Insufficient memory for allocation\n");

return -1;

}

pt=top; /* Set pt to beginning of allocated memory */

for(i=0;i<10;i++){

scanf("%d",pt); /* no & since pt is a pointer */

pt++; /* Move to the next element */

}

pt=top; /* Reset pt to beginning of allocated memory */

for(i=0;i<10;i++){

sum+=*pt;

pt++; /* Move to the next element */

}

printf("The sum of the elements is %d\n",sum);

free(top);

return 0;

}

– CS1510 Lecture 28 – 8



Example 1: Dynamic memory allocation

#include <stdio.h>

#include <stdlib.h>

/* The following program reads a list of failure times from a user

* specified file, calculates the mean time to failure, and then prints

* a list of failure times that are greater than the mean. */

int main(int argc, char *argv[])

{

float *failure;

int numtimes,i,ret;

float sum, mean;

char filename[20];

FILE *fp;

/* Get the filename from the user */

printf("Please enter the name of the file to be read: ");

scanf("%s",filename);

/* Open the file */

fp = fopen(filename,"r");

if (fp==NULL) {

printf("Unable to open file\n");

return -1;

}

/* Get the number of failure times (located on first line of file) */

ret = fscanf(fp,"%d",&numtimes);

/* Check that the correct number of input items were

* successfully assigned */

if (ret != 1){

printf("Error on read\n");

return -2;

}

– CS1510 Lecture 28 – 9



/* Allocate an array with numtimes elements to store the failure times */

failure=(float*)calloc(numtimes,sizeof(float));

if (failure==NULL) {

printf("Unable to allocate memory\n");

return -3;

}

/* Read the failure times and store them in array failure */

for (i=0;i<numtimes;i++){

ret = fscanf(fp,"%f",&failure[i]);

/* Check that the correct number of input items were

* successfully assigned */

if (ret != 1){

printf("Error on read\n");

return -2;

}

}

/* Calculate the mean time to failure */

sum = 0.0;

for (i=0;i<numtimes;i++){

sum = sum + failure[i];

}

mean = sum/numtimes;

printf("Mean time to failure = %f\n",mean);

/* Print list of failure times greater than the mean */

printf("List of failure times greater than the mean:\n");

for (i=0;i<numtimes;i++){

if (failure[i] > mean) printf("%f\n",failure[i]);

}

/* Deallocate the array of failure times */

free(failure);

return 0;

}

– CS1510 Lecture 28 – 10



Example 2: Dynamic memory allocation

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

double failure, bin_size;

int i, j, num_bins, num_pts, *bins, ret=0;

FILE *fp;

/* Check that the user entered the filename */

if (argc!=2){

printf("USAGE: %s filename\n",argv[0]);

return -1;

}

/* Open the specified file */

fp = fopen(argv[1],"r");

if (fp==NULL){

printf("Unable to open file %s\n",argv[1]);

return -2;

}

/* Determine size of each bin */

printf("How many bins would you like?\n");

scanf("%d",&num_bins);

printf("What should the bin size be?\n");

scanf("%lf",&bin_size);

/* Allocate space for the bins and initialize */

bins = (int*)calloc(num_bins,sizeof(int));

if (bins==NULL) {

printf("Unable to allocate memory\n");

return -3;

}

num_pts = 0;

– CS1510 Lecture 28 – 11



/* Read failure time and increment appropriate bin */

ret = fscanf(fp,"%lf",&failure);

while (ret != EOF) { /* Read to end of file */

num_pts++;

for (i=num_bins-1;i>=0;i--) {

if (failure >= i*bin_size) {

bins[i]++;

break;

}

}

ret = fscanf(fp,"%lf",&failure);

}

/* Draw histogram */

for (i=0;i<num_bins;i++) {

if (i != num_bins-1) {

printf("[%lf, %lf): ",i*bin_size,(i+1)*bin_size);

} else {

printf("[%lf, infinity): ",i*bin_size);

}

for (j=0;j<bins[i];j++){

printf("*");

}

printf("\n");

}

free(bins); /* Deallocate memory */

fclose(fp);

return 0;

}

– CS1510 Lecture 28 – 12



Resizing dynamic memory

• C has a function which changes (usually increases)
the amount of memory that was dynamically
allocated.

• The function

(type_cast*) realloc(ptr, size)

resizes the memory block pointed to by ptr to size.

• It returns a pointer to the resized block (which could
be ptr or a new pointer if it succeeds, and the null
pointer if it fails. If it fails, the original memory
block is unchanged.

• If possible, it allocates the new memory “in place”
using adjacent unallocated memory. If this is not
possible, since the dynamically allocated memory
locations should be contiguous, a new block of the
requested size is allocated, and the contents of the
previous block copied to the new block.

– CS1510 Lecture 28 – 13



Using realloc properly

• Consider the following code:

char *buffer;

.

.

buffer = (char*)malloc(buffer_size);

.

.

buffer = realloc(buffer, buffer_size*2);

This will actually work “most of the time” but if
realloc fails, the original structure would be lost.
The correct thing to do is to is:

temp = realloc(buffer, buffer_size*2);

if (temp==NULL)

reportError();

buffer_size *= 2;

buffer = temp;

– CS1510 Lecture 28 – 14



realloc continued

• If realloc succeeds, and has to actually move data
to another block of memory, then the original block
is freed by the realloc function.

• The reallocated block is usually given the same name
as the original block (after testing for success), but
this is not necessarily the case.

• If realloc is called with the NULL pointer as
argument, it behaves exactly like malloc().

• If the size is zero, and the pointer is not NULL then
it behaves like free.

• If size is less than the original, the new memory
block only holds size bytes of the original block.

• For non-character data types, the sizeof(type)

operator is used to help determine the amount of
memory allocated, in exactly the same was as the
function malloc().

– CS1510 Lecture 28 – 15


