Computer Science 1510

Lecture 28

Lecture QOutline

e Dynamic memory allocation

— (CS1510 Lecture 28 —

Dynamic Memory Allocation

e Recall that dynamic memory allocation refers to the
ability to request memory from the operating system
at run-time.

e The use of dynamic memory avoids having to declare
more memory than necessary to ensure that there is
sufficient space to store data.

e A program can determine how much memory is
required at run-time and allocate only that amount.

e As in Fortran, dynamic memory allocation in C
makes use of pointers.

e Two functions that are used for dynamic memory
allocation are called malloc and calloc.

e Both of these functions are declared in stdlib.h.

— CS1510 Lecture 28 - 1

C: malloc and calloc

e Syntax:

pt=(type_cast*)calloc(quantity,size_of_element) ;
pt=(type_cast*)malloc(size_of_memory_required) ;

where:

— pt Is a pointer,

— type_cast is the type that the memory provided
by the operating system will be changed to
(calloc and malloc both return pointers of type
void* which must be changed to the required
type),

— quantity is the number of elements required,
each of a size equal to size_of_element,

— size_of_memory_required is the number of
bytes for the total amount of memory required.

e [he difference between these two functions is that
calloc initializes the memory to zero, whilemalloc
does not initialize.

— CS1510 Lecture 28 — 2

C: malloc and calloc

e Example:

int *ptc,*ptm;
ptc=(int*) calloc(10,sizeof (int));
ptm=(int*) malloc(10*sizeof (int));

e Both examples allocate space for 10 ints.

e |f there is not enough memory to fulfill the allocation
request, then both malloc and calloc will return
NULL (ie. a null pointer).

e Example:

int *pt;

pt=(int*) calloc(10,sizeof(int));

if (pt==NULL){
printf ("Insufficient memory for calloc\n");
return -1;

+

— CS1510 Lecture 28 — 3

C: malloc and calloc

e Note that we have returned -1 to main rather than
0.

e A return value of 0 is generally used to indicate
that the program executed successfully. Alternative
return values could be used external to the main
function to determine where things went wrong.

e To free (or deallocate) memory that has been
allocated using malloc or calloc, we can use
the free function,

free(pt);

where pt is the pointer that references the memory
to be deallocated.

— CS1510 Lecture 28 — 4

Type casting

e A variable of a given data type can be converted
into another data type using an explicit cast.

e There is a possibility of losing information during
such a conversion, such as when a float is cast as
an int (the fractional portion is truncated).

e Type casting can be a useful technique. For
example, to obtain the whole number portion of
a real number.

— CS1510 Lecture 28 - 5

Example: Type casting

#include <stdio.h>
int main(int argc, char *argv[])

{
float f,frac;
int whole;
printf ("Please enter some random real number");
printf (", include decimal part.\n");
scanf ("Y%f",&f) ;
whole=(int)f; /* Cast f as an int */
frac=f-whole; /* Compute the fractional part of f */
printf ("%f = %d + %f\n",f,whole,frac);
return 0;

+

Sample output:

Please enter some random real number, include decimal part.
3.6
3.600000 = 3 + 0.600000

— CS1510 Lecture 28 — 6

Example 1: calloc

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int 1i;
int *array;
array=(int*)calloc(10,sizeof (int));
if (array==NULL){
printf ("Insufficient memory for allocation\n");
return -1;
}
for(i=0;i<10;i++){
scanf ("%d" ,&array[i]);
}
for(i=0;i<10;i++){
printf ("%d\n",arrayl[i]);
}
free(array) ;
return O;

— CS1510 Lecture 28 —

Example 2: calloc

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])

{
int *top, *pt;
int i,sum=0;
top=(int*)calloc(10,sizeof (int));
if (top==NULL){
printf("Insufficient memory for allocation\n");
return -1;
}
pt=top; /* Set pt to beginning of allocated memory */
for(i=0;i<10;i++){
scanf ("%d",pt); /* no & since pt is a pointer */
pt++; /* Move to the next element */
}
pt=top; /* Reset pt to beginning of allocated memory */
for(i=0;i<10;i++){
sum+=*pt;
pt++; /* Move to the next element */
}
printf("The sum of the elements is %d\n",sum);
free(top);
return O;
}

— CS1510 Lecture 28 —

Example 1: Dynamic memory allocation

#include <stdio.h>
#include <stdlib.h>

/* The following program reads a list of failure times from a user
* specified file, calculates the mean time to failure, and then prints
* a list of failure times that are greater than the mean. */

int main(int argc, char *argv[])
{

float *failure;

int numtimes,i,ret;

float sum, mean;

char filename[20];

FILE xfp;

/* Get the filename from the user */
printf("Please enter the name of the file to be read: ");
scanf ("%s",filename) ;

/* Open the file */

fp = fopen(filename,"r");

if (fp==NULL) A{
printf ("Unable to open file\n");
return -1;

/* Get the number of failure times (located on first line of file) */
ret = fscanf (fp,"%d",&numtimes) ;
/* Check that the correct number of input items were
* successfully assigned */
if (ret != 1){
printf ("Error on read\n");
return -2;

— CS1510 Lecture 28 —

/* Allocate an array with numtimes elements to store the failure times */
failure=(float*)calloc(numtimes,sizeof (float));
if (failure==NULL) {

printf ("Unable to allocate memory\n");

return -3;

/* Read the failure times and store them in array failure */
for (i=0;i<numtimes;i++){
ret = fscanf(fp,"%f",&failureli]);
/* Check that the correct number of input items were
*x successfully assigned */
if (ret !'= 1){
printf ("Error on read\n");
return -2;

/* Calculate the mean time to failure */
sum = 0.0;
for (i=0;i<numtimes;i++){
sum = sum + failurel[il];
}
mean = sum/numtimes;
printf ("Mean time to failure = %f\n",mean);

/* Print list of failure times greater than the mean */
printf("List of failure times greater than the mean:\n");
for (i=0;i<numtimes;i++){

if (failure[i] > mean) printf("%f\n",failurel[i]);

}

/* Deallocate the array of failure times */
free(failure);

return O;

— CS1510 Lecture 28 - 10

Example 2: Dynamic memory allocation

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){
double failure, bin_size;
int i, j, num_bins, num_pts, *bins, ret=0;
FILE *fp;

/* Check that the user entered the filename */
if (argc!=2){
printf ("USAGE: %s filename\n",argv[0]);
return -1;

/* Open the specified file */

fp = fopen(argv([1],"r");

if (fp==NULL){
printf ("Unable to open file %s\n",argv([1]);
return -2;

/* Determine size of each bin */

printf ("How many bins would you like?\n");
scanf ("%d",&num_bins) ;

printf("What should the bin size be?\n");
scanf ("%41f",&bin_size);

/* Allocate space for the bins and initialize */
bins = (int*)calloc(num_bins,sizeof(int));
if (bins==NULL) {
printf("Unable to allocate memory\n");
return -3;

num_pts = 0;

— CS1510 Lecture 28 — 11

/* Read failure time and increment appropriate bin */
ret = fscanf(fp,"%1lf",&failure);
while (ret != EOF) { /* Read to end of file %/
num_pts++;
for (i=num_bins-1;i>=0;i--) {
if (failure >= i*bin_size) {
bins[i]++;
break;

}
ret = fscanf (fp,"%1f",&failure);

/* Draw histogram */
for (i=0;i<num_bins;i++) {

if (i '= num_bins-1) {
printf (" [%1f, %1f): ",ixbin_size, (i+1)*bin_size);
} else {
printf (" [%1f, infinity): ",i*bin_size);
}
for (j=0;j<bins[i];j++){
printf ("*");
}
printf("\n");
+
free(bins); /* Deallocate memory */
fclose(fp);
return O;

— CS1510 Lecture 28 —

12

Resizing dynamic memory

e C has a function which changes (usually increases)
the amount of memory that was dynamically
allocated.

e The function
(type_cast*) realloc(ptr, size)
resizes the memory block pointed to by ptr to size.

e |t returns a pointer to the resized block (which could
be ptr or a new pointer if it succeeds, and the null
pointer if it fails. If it fails, the original memory
block is unchanged.

o |f possible, it allocates the new memory “in place”
using adjacent unallocated memory. If this is not
possible, since the dynamically allocated memory
locations should be contiguous, a new block of the
requested size is allocated, and the contents of the
previous block copied to the new block.

— CS1510 Lecture 28 — 13

Using realloc properly

e Consider the following code:

char *xbuffer;
buffer = (char*)malloc(buffer_size);

buffer realloc(buffer, buffer_sizex2);

This will actually work “most of the time” but if
realloc fails, the original structure would be lost.
The correct thing to do is to is:

temp = realloc(buffer, buffer_sizex*2);
if (temp==NULL)
reportError () ;
buffer_size *x= 2;
buffer = temp;

— CS1510 Lecture 28 — 14

realloc continued

e |f realloc succeeds, and has to actually move data
to another block of memory, then the original block
is freed by the realloc function.

e Thereallocated block is usually given the same name
as the original block (after testing for success), but
this is not necessarily the case.

e If realloc is called with the NULL pointer as
argument, it behaves exactly like malloc().

e |f the size is zero, and the pointer is not NULL then
it behaves like free.

o If size is less than the original, the new memory
block only holds size bytes of the original block.

e For non-character data types, the sizeof (type)
operator is used to help determine the amount of
memory allocated, in exactly the same was as the
function malloc().

— CS1510 Lecture 28 — 15

