Computer Science 1510

Lecture 4

Lecture QOutline

e Introduction to programming

— (CS1510 Lecture 4 —

From hardware to software

e The different types of memory (hard disk, RAM,
and cache/registers) all have different roles when
executing a program.

e A program that is currently in use, as well as all of
the data that it is using, is stored in RAM.

e When a program is executed it is loaded from disk
to RAM. There are now two copies of the program,

an inactive copy on hard disk, and an active copy in
RAM.

e |f the results from a program need to be saved, they
must be copied (written) to hard disk.

e Cache and registers are used to store frequently used
portions of a program or its data, since this is the
fastest type of memory.

— CS1510 Lecture 4 — 1

Ordered instruction execution

e A program is a sequence of instructions that must
be followed to solve a particular problem.

e Recall that the CPU uses a Fetch-Decode-Execute
cycle, where it obtains one instruction, performs the
instructed task, and repeats the cycle for the next
instruction. 1

e Structured algorithms/programs use three methods
of control:

1. Sequential - Steps are performed in order,
beginning to end (this is the default control
mechanism).

2. Selection - One of a number of alternative actions
is selected and executed.

3. Repetition - One or more steps are performed
repeatedly.

LIn modern day computers it is possible to have more than one instruction
executed at the same time.

— CS1510 Lecture 4 - 2

Machine language

e The CPU and ROM have built-in commands that
allow execution of simple instructions. These
commands are in machine language.

e Machine language is in the form of binary
instructions containing an operation code (opcode)
and an operand on which the given operation is
performed.

e Example: To compute Ax B+ C, where A is stored
in memory address 1024, B is stored in memory
address 1025, and C' is stored in memory address
1026, the following steps are required:

1. Fetch the contents of memory location 1024 (A)
and load it into a CPU register.

2. Fetch the contents of memory location 1025 (B)
and compute the product of this value and the
value in the register.

3. Fetch the contents of memory location 1026 (C)
and add this value to the value in the register.

4. Store the contents of the register in memory (in
location 1027 for example).

— CS1510 Lecture 4 — 3

e |f the opcodes for load, store, add, and multiply are
16, 17, 35, and 36 respectively, then the machine
language translation of the above could be:

00010000 000000000000010000000000
00100100 000000000000010000000001
00100011 000000000000010000000010
00010001 000000000000010000000011

=

e Early computers required that programs be written
in machine language.

e Later, it became possible to write programs in
assembly language.

e Assembly language uses names in place of numeric
codes.

e The assembler is a program that translates assembly
language into machine language.

e For example, in assembly language, ADD X,Y adds
X and Y and stores the result in X.

— (CS1510 Lecture 4 - 4

Programming languages

A programming language is the language used by
a programmer to instruct a computer to perform
certain tasks.

Today, programs are written in high-level languages
(e.g., Fortran, C, Java, Python) which allow
programmers to write programs in a more user-
readable form.

Each programming language consists of a unique
syntax — a vocabulary and a grammar, to which all
programs must adhere.

Computers are logical, not intelligent! The
programmer must convey to the computer exactly
what needs to be done and how to do it.

Small changes in syntax can produce completely
different results!

— CS1510 Lecture 4 - 5

Compilers

e Programs written in high-level languages such as
Fortran must be translated into machine/assembly
language in order to be executed on a computer.

e For languages like Fortran and C, this is performed
using a compiler.

e Compilers are specific to the given programming
language, and also to a given architecture and
operating system.

e A compiler is itself a program that performs the
following tasks:

— Reads the contents of a text file containing a
program (the source code).

— Checks to ensure that all syntax rules for the
given language have been followed (if not the
compiler produces an error).

— Generates a binary version of the program
(machine language).

— CS1510 Lecture 4 - 6

Steps in the creation of a program

1. Write the program:
Use a text editor to write the algorithm to solve the
problem using some programming language.

2. Compilation:
Use a compiler to convert the source code into
machine language. The compiler performs the
following line-by-line:

e Check that the line has correct syntax.

e If there are no syntax errors convert the line to
assembly language and proceed to the next line.

e |f there are syntax errors, print an error message
and stop compiling. The programmer must then
go back and edit the source code to correct the
error and begin the compilation process again.

3. Object file:
When the source code is free of syntax errors the
compiler converts the assembly code into an object
file containing the machine code version of the
source code.

— CS1510 Lecture 4 - 7

Steps in the creation of a program

4. Linking:
Following the creation of an object file, the compiler
automatically sends this file to the linker which
attaches special operating system run and load
routines to the program, to make it capable of
being executed.

5. Executable file:
If there are no linking errors an executable file
Is created. In Linux, the default name of the
executable is a.out. If there are linking errors then
the programmer must go back and edit the source
code to correct the error and begin the compilation
process again.

6. Running the program:
Once an executable file has been created, a user
can run the program by typing the name of the
executable. For example:

userQgarfield[1] $ a.out

— CS1510 Lecture 4 - 8

Compilation process (Fortran)

Source code Combiler . Executable
(.f08 file) P Linker (a.out)

A A A
yes no
Errors?
yes
no
Object code
(.o file)

— CS1510 Lecture 4 -

Architecture dependence

e In addition to different programming languages
requiring different compilers, different computer
architectures (i686, alpha, etc.) also require
different compilers.

e Once a program has been compiled for a given
architecture and operating system, then the
resulting executable file can ONLY be run on that
particular architecture and operating system.

e Each architecture has its own version of machine
language.

e During the compilation process the source code is
compiled for the particular architecture and linked
for the particular operating system.

e Source code written in a standard language can be

compiled on any computer that has a compiler for
the language used.

— CS1510 Lecture 4 - 10

Errors!

e When you first begin writing programs you will most
likely receive a long list of errors when you try to
compile your code (often dozens!).

e Don't be discouraged! Many of the errors that are
reported are often due to earlier errors.

e The best approach is to first fix a few errors (even
just 1 or 2) and try recompiling. You will likely find
that the number of errors drops dramatically.

e Errors in source code are usually referred to as bugs,
and the process of removing errors from your code
is called debugging.

— CS1510 Lecture 4 - 11

Types of programming errors

e Logic errors

No error messages are printed by the compiler.
An executable is created.
An incorrect solution is produced.

e Syntax errors

The rules of the programming language have not
been followed.

An error is displayed during compile-time

The compiler prints error messages describing
the error(s) and indicating the location(s) of the
error(s).

No object file or executable is created.
Understanding the terminology used in error
messages requires practice!!

— CS1510 Lecture 4 - 12

Types of programming errors

e Linker errors

— Error messages are displayed during linking.

— No executable is created.

— Can be caused by trying to use a library that
doesn’t exist, or incorrectly specifying the location
of a file.

— Since the linker uses the object file and not the
source file, linker errors do not indicate where in
the source code the error occurred.

e Run-time errors

— No error messages are displayed during
compilation.

— An executable is created.

— An error is displayed during execution (run-time).

— Example: division by zero.

— CS1510 Lecture 4 - 13

