Computer Science 1510

Lecture 2

Lecture QOutline

e Computer number systems and representation

— (CS1510 Lecture 2 —

Computer Number Systems

e We are accustomed to using the decimal number
system, which uses 10 digits: 0,1,2,3,4,5,6,7,8,
and 9. To count in decimal we simply add one to
get the next number (1+1=2, 2+ 1 = 3, etc.).

e When we reach the last digit, 9, to add one we
concatenate two digits to give 9 + 1 = 10.

e |f we consider a larger number, say 3025, we can
decompose that number into its concatenated parts:

3025 = (3 x 1000) + (0 x 100) + (2 x 10) + (5 x 1)
= (3 x10°%) + (0 x 10%) + (2 x 10") + (5 x 10°).

e The decimal number system uses base 10.

— CS1510 Lecture 2 — 1

Binary

e \We have already seen that computers use the binary
number system to store information.

e The binary number system uses base 2, with digits
0 and 1. Counting in binary we have,

0+1 = 1,
1+1 = 10,
10+1 = 11,
11+1 = 100,

and so on.

e Although computers use binary to store information,
arithmetic may be performed in number systems
such as hexadecimal, or octal.

— CS1510 Lecture 2 — 2

Hexadecimal and Octal

e The hexadecimal system uses base 16, with digits
0,1,2,3,4,5,6,7,8,9, A, B,C, D, E F'.

e Counting in hexadecimal:

0+1 = 1,
9+1 = A,
F+1 = 10,
19+1 = 1A,

and so on.
e Note that “10" in hexadecimal is 16 in decimal. To
avoid any confusion we write the base as a subscript,

1016.

e The octal system uses base 8, with digits
0,1,2,3,4,5,6,7.

— CS1510 Lecture 2 - 3

Conversion to decimal

e To convert a number d;d;_1...dydy from base
b to decimal we decompose the number into its
constituent parts,

(didi_1...dido)y = (di x b") + (dj—y x b*71) + -+

+(d1 x bY) + (dg x b%).

e Examples:

— Hexadecimal to decimal conversion (keeping in
mind that A16 = 1010, BlG = 1110, etc.):

14815 = (1 x 16°%) + (10 x 16") + (8 x 16")
= 256 + 160 + 8 = 4244,

— Binary to decimal conversion:

10115 = (1x2°%)+(1x2Y)+(1x2") = 84241 = 1144

— CS1510 Lecture 2 - 4

Conversion from decimal

e [o convert a decimal number to base b we divide
out successive powers of b.

e Example: Decimal to hexadecimal conversion:
Consider 5861.

— We can divide out 162 since 586/16%=2.289.
Thus there are 2, 16%'s in 586 plus some leftover
(0.289), that is, 58619 = (2 X 16%) +

— We are now left with
586 — (2 x 16%) = 586 — 512 = 74.

From 74 we can divide out 16! since 74/16% =
4.625, 58619 = (2 x 162) + (4 x 16%) +

— Finally, we have 74 — (4 x 161) = 10 remaining,
which can be expressed in hexadecimal as
(A x 16%), giving us the final hexadecimal
representation,

58610 = (2x16%)+(4x161)+(Ax16") = 24 A1s.

— CS1510 Lecture 2 - 5

Conversion from decimal

e Conversion from decimal to binary can be done very
quickly by using the remainders.

e Example:
Consider 157.

157 /2 = 78 R 1
78/2 = 39 R 0
39/2 = 19 R 1
19/2 = 9 R 1
9/2 = 4 R 1
4/2 2 R 0
2 /2 1 R 0
1/2 = 0 R 1

Reading the remainders from the bottom we have,

15710 = 100111015

— CS1510 Lecture 2 — 6

Binary to hexadecimal

e Binary numbers are difficult to read since even small
numbers require many bits (binary digits).

e Binary is often converted to hexadecimal since the
conversion can be done quickly and hex numbers
are much easier to read.

e Quick conversion between binary and hex is due to
the hex base being a multiple of the binary base
(2% = 16). Thus, every hex digit can be represented
by 4 bits.

e We only need to be able to count to 16 in binary.
e Consider 3A515.
Taking each digit: 314 = 00115, A1 = 1010,
516 = 01015,

3A516 = 0011101001015.

— CS1510 Lecture 2 — 7

Character representation

e Recall that 8 binary bits make up a byte.

e An encoding method such as ASCIl or Unicode is
used to store characters. The ASCII representation

of the letter ‘A’ is 01000001.

e Each letter requires 1 byte, therefore each location
in memory can store one character.

e The ASCIl table includes the alphabet in both
upper and lower case, digits 0-9, symbols (;, &,
©, etc.), white spaces (blank space, tab, new line),
unprintable symbols such as CTRL-A, and some
graphic shapes.

— CS1510 Lecture 2 - 8

Ascii Table

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

78
79
80
84
85
86
87
88
89
90
91
92
93
95
96
97
98
99
100
101
102
103

52
53
54
55
56
57
58
59
60
68
69
70
73
74
75
76
77

71
72

26
07
28
29
30
32
33
34
35
36
43
44
46
45
47
48
49
50
51

O = AN M T O O N~ O O M < w0
— o= = = = = =~ N AN AN AN

AN AN AN AN~
—_ — —_ e1243knbn

SO 38 o0 c0© n oo a0~ 00UV 0UWmSPE & £

C 0 nW VUV VOV O O CcCc cCc > C U N nw T T T T T C n 0 VO

N N S N N e e N e e N e N N e N N N N N N N N N N N

A~ -\~ —

|hXX..qu\.4u/

— CS1510 Lecture 2 -

Integer representation

e Bits are grouped into bytes for memory organization.

e Bits (or bytes) are grouped together into words for
number storage and processing.

e The number of bits in a word (the word size) varies
between computers.

e |ntegers are usually stored in 16 or 32 bit words, the
most commonly used being 32 bits.

e For example, using a 16-bit word, the value 10 could
be stored as:

0000000000001010

e But what about —1077

— CS1510 Lecture 2 — 10

Integers: Sign-magnitude notation

e One way to store negative numbers is to use 1 bit
as a sign bit and the remaining 15 (or 31) bits for
the value.

e The sign bit would be 1 for negative numbers and
0 for positive numbers.

e So —10 would be stored as:
1000000000001010

e The largest positive number that can be stored in a
sign-magnitude 16-bit word is,

0111111111111111 = 2%° — 1 = 32767

e The largest negative number that can be stored in
a sign-magnitude 16-bit word is,

1111111111111111 = —(2%5 — 1) = —32767

— CS1510 Lecture 2 — 11

Integers: Sign-magnitude notation

e Any number outside of the range [-32767,32767]
results in an overflow.

e \What about zero?

e |n sign-magnitude notation, zero has two different
representations,

1000000000000000 = -0
0000000000000000 = 0

e Operations involving negative and positive numbers
does not work properly in all cases.

e One method that is used to overcome these issues
is called 2's complement notation.

— CS1510 Lecture 2 - 12

Integers: 2’s complement notation

e In 2's complement notation, the leftmost bit still
represents the sign.

e Positive numbers are stored the same as in sign-
magnitude, allowing representation of values in the
range [1,2!° — 1] (in the case of a 16-bit word).

e Negative numbers in the range —z € [-2'°, —1] are
stored as the binary representation of 216 — z.

e Example:

10 = 0000000000001010
—10 = I1111111111110110

e To see that this does represent —10 we can add the
two binary numbers together and the result should
be zero. Try this!

— CS1510 Lecture 2 - 13

Integers: 2’s complement notation

e Given a negative integer, we can find its 2's
complement representation by:

1. Start with the binary representation of the
positive value.

2. Complement (reverse) each of the bits (1's
complement).

3. Add one (2's complement).

e Example: 10000111 in sign-magnitude (= —71¢) is
11111001 in 2's complement.

— CS1510 Lecture 2 — 14

Real numbers: IEEE standard

e The sign-magnitude and 2's complement notations
above are used to represent integers. What about
real numbers?

e In general, a real number x can be written in the
form

r = ﬂ:do.dldgdg co dt X 66

where

5 is the base,

e is the exponent (or characteristic),

d; €0,1,2,...,8—1, and

m = dg.d1ds . . . d; is called the mantissa.

o If dy # 0, then x is said to be in normalized form.

From this point on we will consider only numbers in
normalized form.

e |n the case of binary, dy can only be 1 for normalized
numbers.

— CS1510 Lecture 2 - 15

Real numbers: IEEE standard

A 32-bit |IEEE standard floating point number has
the following layout:

S| exponent | mantissa |
1 bit 8 bits 23 bits

where S is the sign bit for the number.

Note that the exponent does not have a sign bit.
How do we store negative exponents?

To allow for negative exponents we use a biased
exponent, where an offset is added to all exponents
to ensure that only positive numbers are stored.

If we have 8 bits for the exponent and e is the
(signed) value of the exponent, we would store the
value n = e + 127

With a biased exponent these stored values would
represent exponents in the range [—126, 127].

Exponents of -127 (n = 0) and 128 (n = 255) are
reserved for special cases.

— CS1510 Lecture 2 - 16

Real numbers: IEEE standard

e A floating point number = can be represented as:

— If n € (0, 255),
r = (=1)%(1.m)y x 2" 17,
— If n = 255 and

x m = 0 then x = *00 depending on s.
* m # 0 then z=NaN (“not a number").

— If n =0 and
x m = 0 then x = =0 depending on s.
x m % 0 then

r = (—1)%(0.m)y x 27120
These are “unnormalized” values.

e Given a finite number of bits that can be used to
represent a real number, there is a finite set of
real numbers that a computer can represent. This
set of real numbers is referred to as floating point
numbers.

— CS1510 Lecture 2 — 17

Example: Storing 19.25

e To determine how the real number 19.25 is stored
in memory we first convert the number to binary.

19 = 10011
0.20 = 0.01

Therefore, 19.25 = 10011.01.
e In normalized form: 10011.01 = 1.001101 x 2%.

e Since we store a biased characteristic we note that
4 =131 — 127. Thus the value 131 is stored as the
exponent. In binary 131 = 10000011

e Putting the pieces together we have,

19.25 =0 10000011 00110100000000000000000

— CS1510 Lecture 2 — 18

Example: Storing -118.625

e Since the number to be stored is negative we set
the sign bit to 1.

e In binary we have 118.625 = 1110110.101.
e Normalizing gives 118.625 = 1.110110101 x 2.

e Since we store a biased characteristic we note that
6 = 133 — 127. Thus the value 133 is stored as the
exponent. In binary 133 = 10000101

e Putting the pieces together we have,

—118.625 =1 10000101 11011010100000000000000

— CS1510 Lecture 2 - 19

Example: Storing 0.3

e Unlike the previous examples, 0.3 does not have an
obvious representation using negative powers of 2.

e One easy way to convert fractional values to binary
Is to successively multiply by 2 as follows:

03x2 = 06 — 0
06x2 = 12 — 1
02x2 = 04 — O
04x2 = 08 — 0
0.8x2 = 16 — 1
06 x2 = 12 — 1 (repeat from above)

e Thus we have 0.3 = 0.0100110011....
e Normalizing gives 0.3 = 1.00110011 - -- x 272,

e Putting the pieces together we have,

0.3=0 01111101 00110011001100110011001

— CS1510 Lecture 2 - 20

Single vs. double precision

e A single precision (binary) floating point number is
stored in a 32-bit word.

e A double precision (binary) floating point number is
stored in a 64-bit word.

In IEEE standard a double precision floating point
number uses 1 bit for the sign, 11 bits for the biased

exponent, and 52 bits for the mantissa. The bias is
1023.

e A quadruple precision (binary) floating point
number is stored in a 128-bit word.

It has a mantissa of 112 bits, and a 15-bit exponent.

— CS1510 Lecture 2 — 21

