Computer Science 1510

Lecture 19

Lecture QOutline

e Pointers

— (CS1510 Lecture 19 —

Pointers

e Consider an INTEGER variable a, declared using,
INTEGER: : a

The compiler allocates memory for the variable a,
to store an integer value.

e [he variable name can then be used to access this
location in memory, to either assign a value to that
variable, or retrieve the value stored there.

e The variable name a can only ever be used to refer
to the specific memory location assigned to it by
the compiler.

e A POINTER allows a program to reference a variable
by a different name. It acts as an alias.

e Whereas a variable name always refers to the same

location in memory, a pointer can be reassigned to
point to different locations.

— CS1510 Lecture 19 - 1

Pointers

e Syntax:

type,POINTER: :pointer-variable

where pointer-variable can be used to access a
memory location where a value of the specified type
can be stored.

e When a pointer variable is declared it is initially
undefined, ie. it does not point to any location in
memory.

e The ALLOCATE statement can be used to acquire
memory locations to associate with pointer
variables.

ptl —>

This memory location is referred to as a target.

e Example: ALLOCATE(pt1)

— CS1510 Lecture 19 - 2

Pointers

e Pointers variables are in one of three states:

— Undefined - As when they are declared.

— Associated - When pointing to a target.

— Disassociated - When the association is broken.
A pointer in this state is said to be null.

e The Fortran function ASSOCIATED can be used to
test if a pointer is associated with a target.

Syntax:
ASSOCIATED(pointer-variable)

This function returns true if pointer-variable is
associated with a target, and false otherwise.

e The status of a pointer variable can be changed to
null using the NULLIFY function.
Syntax:
NULLIFY (pointer-variable)

Once the association is broken, the memory location
pointed to by the pointer variable can no longer
be accessed unless pointed to by another pointer
variable.

— CS1510 Lecture 19 - 3

Pointers

e |f two pointer variables have the same type, then a
pointer assignment statement,

ptl => pt2

results in pt1 pointing to the same memory location
as pt2.

e Prior to the assignment:

ptL —>

pt2 —>

After the assignment:

N\

pt2 —>

ptl

— CS1510 Lecture 19 - 4

Pointers

e Pointer assignment may also be of the form,

pointer-variable => target-variable

where target-variable has the same type as
pointer-variable, but it is not a pointer.

e The target-variable must have the TARGET
attribute to allow a pointer to point to its memory
location:

INTEGER, TARGET :: target_variable

e [he ASSOCIATED function can also be used in the

form:
ASSOCIATED(pointer,target)

to check whether pointer points to target.
It can also be used in the form

ASSOCIATED(pointerl,pointer?2)

to check whether pointer1 and pointer2 point to
the same target.

— CS1510 Lecture 19 - 5

Pointers

e When pointers are used in expressions, they are
automatically dereferenced, ie. the value that is
stored in the location pointed to by the pointer is
used.

e Therefore, if a pointer is assigned a value, the value
in its associated memory location is changed.

e Consider the following:

INTEGER, TARGET :: i=5

INTEGER, POINTER :: j

j =i

WRITE(*,%*) i,j ! i is 5, what is j7

j=6

WRITE(*,%) i,j ! j is now 6, what is i?

What is the final value of i? of j? Why?

— CS1510 Lecture 19 - 6

Example: Pointers

PROGRAM Pt_example
IMPLICIT NONE

INTEGER,TARGET: :a,b
a=10

b=8

pti=>a

O N O Ol W N+

9 a=12

INTEGER,POINTER: :ptl1,pt2

WRITE(*,*) a,b,ptl ! Prints 10 8 10

10 WRITE(*,*) a,b,ptl ! Prints 12 8 12

11 pti=>b

12 WRITE(*,*) a,b,ptl ! Prints 12 8 8

13 pt2=>a

14 WRITE(*,*) pt2 ! Prints 12

15 pt1=5
16 WRITE(*,*) a,b,ptl,pt2
17 pt2=pt1l

18 WRITE(*,*) a,b,ptl,pt2
19 a=4

20 WRITE(*,*) a,b,ptl,pt2
21 pt2=>pt1

22 WRITE(*,*) a,b,ptl,pt2
23 NULLIFY(pt1)

24 WRITE(*,%*) ptl ! Prints
25 END PROGRAM Pt_example

Prints 12 5 5 12

Prints 5 5 56 5

Prints 4 5 5 4

Prints 4 5 56 5

Line numbers have been added to the program above
for referencing individual lines below.

Line 3:

e Both ptl and pt2 are declared as integer pointers,
and are thus not regular variables. They are

— CS1510 Lecture 19 -

currently not associated with a memory location.

e A pointer cannot store a value.

e A pointer can only reference a value of the same
type (ex. INTEGER).

Line 4:

e INTEGER,TARGET: :a,b creates variables that can
store integer values, but that also allows pointers to
reference (or point to) the memory locations where
those integers are stored.

e TARGET modifies a regular variable such that both
the variable name (a in this case), and a pointer
can access the value stored in memory.

Lines 5 and 6:

e The variable a is assigned a value of 10, and b is
assigned a value of 8.

Line 7:

e Here ptl is associated with the memory location
allocated for a.

e We say that pt1 points to a.

— CS1510 Lecture 19 - 8

Line 8:

e This WRITE statement prints out 10 8 10 since a
was set to 10 (line 5), b was set to 8 (line 6), and
ptl is pointing to the memory location where the
value of a is stored.

Line 9:

e The variable a is reassigned a value of 12.
Line 10:

e This WRITE statement prints out 12 8 12 since a
was set to 12 (line 9), b was set to 8 (line 6), and
ptl is still pointing to the memory location where
the value of a is stored.

e Recall that a pointer never stores a value, and will
therefore print the value currently stored in the
memory location that it is pointing to.

Line 11:

e ptl is set to point to the value of b.

— CS1510 Lecture 19 - 9

Line 12:

e This WRITE statement prints out 12 8 8 since a
was set to 12 (line 9), b was set to 8 (line 6), and
ptl is pointing to the memory location where the
value of b is stored.

Line 13:
e pt2 is set to point to the value of a.
Line 14:

e This WRITE statement prints out 12 since pt2 is
pointing to the memory location where the value of
a is stored.

Line 15:

e The value in the memory location referenced by pt1
(which is b) is set to 5.

Line 16:

e This WRITE statement prints out 12 5 5 12 since
a was set to 12 (line 9), b was set to 5 (line 15), pt1

— CS1510 Lecture 19 - 10

Is pointing to the memory location where the value
of b is stored, and pt2 is pointing to the memory
location where the value of a is stored.

Line 17:

e The value referenced by pt2 (which is a) is assigned
the value referenced by pt1 (which is b), ie. a is
assigned a value of 5.

Line 18:

e This WRITE statement prints out 5 5 5 5 since a
was set to 5 (line 17), b was set to 5 (line 15), pt1
is pointing to the memory location where the value
of b is stored, and pt2 is pointing to the memory
location where the value of a is stored.

Line 19:
e a is assigned a value of 4.
Line 20:

e This WRITE statement prints out 4 5 5 4 since a
was set to 4 (line 19), b was set to 5 (line 15), pt1

— CS1510 Lecture 19 - 11

Is pointing to the memory location where the value
of b is stored, and pt2 is pointing to the memory
location where the value of a is stored.

Line 21:

e pt2 is set to point to the same location in memory
as pt1, that is, to the b variable.

Line 22:

e This WRITE statement printsout 4 5 5 5 since a
was set to 4 (line 19), b was set to 5 (line 15),
and both pt1 and pt2 are pointing to the memory
location where the value of b is stored.

Line 23:
e ptl is set to null, ie. it does not point to anything.

Line 24:

e This WRITE statement prints out O since the pointer
was nullified on line 23.

— CS1510 Lecture 19 - 12

Pointers to data structures

e Recall that a pointer variable can be used to access a
memory location where a value having the specified
type (and attributes) can be stored.

e Previously we have seen pointers for integer
numbers.

e A declaration like
CHARACTER(8), POINTER :: StringPtr

can be used only to access memory locations in
which character strings of length 8 reside.

e TYPE Inventory_Info
INTEGER :: Number
REAL :: Price
END TYPE Inventory_Info

TYPE(Inventory_Info), POINTER :: InvPtr

declares that InvPtr is a pointer variable that can
be used to point to locations where structures of
type Inventory_Info are stored.

— CS1510 Lecture 19 - 13

Example: Memory allocation

e Suppose that we would like to be able to increase
the size of an array as necessary during run-time.

e Consider the case where we allocate an array of a
certain size and double the size if and when we run

out of space.

e In this example, we will allocate an array with 5
elements.

e The user will be asked to enter positive integers
which will be stored in the array.

e If the user enters a sixth integer then the array will
be increased in size to 10 elements.

e |f the user enters an 11th element then the array
will be increased in size to 20 elements, and so on.

e The program will stop and print out the values
entered when the user enters a value of -1.

— CS1510 Lecture 19 - 14

Example: ALLOCATE

PROGRAM Infinite_array
IMPLICIT NONE
INTEGER,DIMENSION(:) ,POINTER: :array,newarray
INTEGER: :1, j,value,AllocateStatus

ALLOCATE(array(1:5) ,STAT=AllocateStatus)
IF (AllocateStatus/=0) THEN
WRITE(*,*) ’Unable to allocate necessary memory’
STOP
END IF
WRITE(*,*) ’Please enter a positive integer, enter -1 to stop’
READ (*x,*) value

i=1
DO WHILE (value/=-1)
IF (i>SIZE(array)) THEN ! The array is too small
I Allocate a new array that is twice the size of the old one.
ALLOCATE (newarray (1:2+*SIZE(array)),STAT=AllocateStatus)
IF (AllocateStatus/=0) THEN
WRITE(*,*) ’Unable to allocate necessary memory’
STOP
END IF
WRITE(*,*) ’New memory allocated of size ’,SIZE(newarray)
I Copy the elements from the old array to the new one.
DO j=1,SIZE(array)
newarray (j)=array(j)
END DO
! Deallocate the old array
DEALLOCATE(array,STAT=AllocateStatus)
IF (AllocateStatus/=0) THEN
WRITE(*,*) ’Unable to free memory’
STOP
END IF
! Point the old array pointer to the new array.
array=>newarray

— CS1510 Lecture 19 - 15

END IF
! Add the current value to the array.
array(i)=value
i=i+l
WRITE(*,*) ’Please enter a positive integer, enter -1 to stop’
READ(*,*) value

END DO

WRITE(*,*) (array(i),i=1,SIZE(array))

END PROGRAM Infinite_array

— CS1510 Lecture 19 -

16

