
Computer Science 1510

Lecture 2

Lecture Outline

• Computer number systems and representation

– CS1510 Lecture 2 –

Computer Number Systems

• We are accustomed to using the decimal number
system, which uses 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. To count in decimal we simply add one to
get the next number (1 + 1 = 2, 2 + 1 = 3, etc.).

• When we reach the last digit, 9, to add one we
concatenate two digits to give 9 + 1 = 10.

• If we consider a larger number, say 3025, we can
decompose that number into its concatenated parts:

3025 = (3× 1000) + (0× 100) + (2× 10) + (5× 1)

= (3× 103) + (0× 102) + (2× 101) + (5× 100).

• The decimal number system uses base 10.

– CS1510 Lecture 2 – 1

Binary

• We have already seen that computers use the binary
number system to store information.

• The binary number system uses base 2, with digits
0 and 1. Counting in binary we have,

0 + 1 = 1,

1 + 1 = 10,

10 + 1 = 11,

11 + 1 = 100,

and so on.

• Although computers use binary to store information,
arithmetic may be performed in number systems
such as hexadecimal, or octal.

– CS1510 Lecture 2 – 2

Hexadecimal and Octal

• The hexadecimal system uses base 16, with digits
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F .

• Counting in hexadecimal:

0 + 1 = 1,

9 + 1 = A,

F + 1 = 10,

19 + 1 = 1A,

and so on.

• Note that “10” in hexadecimal is 16 in decimal. To
avoid any confusion we write the base as a subscript,
1016.

• The octal system uses base 8, with digits
0, 1, 2, 3, 4, 5, 6, 7.

– CS1510 Lecture 2 – 3

Conversion to decimal

• To convert a number didi−1 . . . d1d0 from base
b to decimal we decompose the number into its
constituent parts,

(didi−1 . . . d1d0)b = (di × bi) + (di−1 × bi−1) + · · ·

+(d1 × b1) + (d0 × b0).

• Examples:

– Hexadecimal to decimal conversion (keeping in
mind that A16 = 1010, B16 = 1110, etc.):

1A816 = (1× 162) + (10× 161) + (8× 160)

= 256 + 160 + 8 = 42410.

– Binary to decimal conversion:

10112 = (1×23)+(1×21)+(1×20) = 8+2+1 = 1110

– CS1510 Lecture 2 – 4

Conversion from decimal

• To convert a decimal number to base b we divide
out successive powers of b.

• Example: Decimal to hexadecimal conversion:
Consider 58610.

– We can divide out 162 since 586/162=2.289.
Thus there are 2, 162’s in 586 plus some leftover
(0.289), that is, 58610 = (2× 162) +

– We are now left with
586− (2× 162) = 586− 512 = 74.
From 74 we can divide out 161 since 74/161 =
4.625, 58610 = (2× 162) + (4× 161) +

– Finally, we have 74 − (4 × 161) = 10 remaining,
which can be expressed in hexadecimal as
(A × 160), giving us the final hexadecimal
representation,

58610 = (2×162)+(4×161)+(A×160) = 24A16.

– CS1510 Lecture 2 – 5

Conversion from decimal

• Conversion from decimal to binary can be done very
quickly by using the remainders.

• Example:
Consider 157.

157 / 2 = 78 R 1
78 / 2 = 39 R 0
39 / 2 = 19 R 1
19 / 2 = 9 R 1
9 / 2 = 4 R 1
4 / 2 = 2 R 0
2 / 2 = 1 R 0
1 / 2 = 0 R 1

Reading the remainders from the bottom we have,

15710 = 100111012

– CS1510 Lecture 2 – 6

Binary to hexadecimal

• Binary numbers are difficult to read since even small
numbers require many bits (binary digits).

• Binary is often converted to hexadecimal since the
conversion can be done quickly and hex numbers
are much easier to read.

• Quick conversion between binary and hex is due to
the hex base being a multiple of the binary base
(24 = 16). Thus, every hex digit can be represented
by 4 bits.

• We only need to be able to count to 16 in binary.

• Consider 3A516.
Taking each digit: 316 = 00112, A16 = 10102,
516 = 01012,

3A516 = 0011101001012.

– CS1510 Lecture 2 – 7

Character representation

• Recall that 8 binary bits make up a byte.

• An encoding method such as ASCII or Unicode is
used to store characters. The ASCII representation
of the letter ‘A’ is 01000001.

• Each letter requires 1 byte, therefore each location
in memory can store one character.

• The ASCII table includes the alphabet in both
upper and lower case, digits 0–9, symbols (;, &,
@, etc.), white spaces (blank space, tab, new line),
unprintable symbols such as CTRL-A, and some
graphic shapes.

– CS1510 Lecture 2 – 8

Ascii Table

(nul) 0 (sub) 26 4 52 N 78 h 104

(soh) 1 (esc) 27 5 53 O 79 i 105
(stx) 2 (fs) 28 6 54 P 80 j 106

(etx) 3 (gs) 29 7 55 Q 81 k 107
(eot) 4 (rs) 30 8 56 R 82 l 108
(enq) 5 (us) 31 9 57 S 83 m 109

(ack) 6 (sp) 32 : 58 T 84 n 110
(bel) 7 ! 33 ; 59 U 85 o 111

(bs) 8 ” 34 ¡ 60 V 86 p 112
(ht) 9 # 35 = 61 W 87 q 113

(nl) 10 $ 36 ¿ 62 X 88 r 114
(vt) 11 % 37 ? 63 Y 89 s 115
(np) 12 & 38 @ 64 Z 90 t 116

(cr) 13 ’ 39 A 65 [91 u 117
(so) 14 (40 B 66 \ 92 v 118

(si) 15) 41 C 67] 93 w 119
(dle) 16 * 42 D 68 ∧ 94 x 120

(dc1) 17 + 43 E 69 95 y 121
(dc2) 18 , 44 F 70 ‘ 96 z 122

(dc4) 20 . 46 G 71 a 97 { 123
(dc3) 19 - 45 H 72 b 98 — 124
(nak) 21 / 47 I 73 c 99 } 125

(syn) 22 0 48 J 74 d 100 ∼ 126
(etb) 23 1 49 K 75 e 101 (del) 127

(can) 24 2 50 L 76 f 102
(em) 25 3 51 M 77 g 103

– CS1510 Lecture 2 – 9

Integer representation

• Bits are grouped into bytes for memory organization.

• Bits (or bytes) are grouped together into words for
number storage and processing.

• The number of bits in a word (the word size) varies
between computers.

• Integers are usually stored in 16 or 32 bit words, the
most commonly used being 32 bits.

• For example, using a 16-bit word, the value 10 could
be stored as:

0000000000001010

• But what about −10??

– CS1510 Lecture 2 – 10

Integers: Sign-magnitude notation

• One way to store negative numbers is to use 1 bit
as a sign bit and the remaining 15 (or 31) bits for
the value.

• The sign bit would be 1 for negative numbers and
0 for positive numbers.

• So −10 would be stored as:

1000000000001010

• The largest positive number that can be stored in a
sign-magnitude 16-bit word is,

0111111111111111 = 215 − 1 = 32767

• The largest negative number that can be stored in
a sign-magnitude 16-bit word is,

1111111111111111 = −(215 − 1) = −32767

– CS1510 Lecture 2 – 11

Integers: Sign-magnitude notation

• Any number outside of the range [-32767,32767]
results in an overflow.

• What about zero?

• In sign-magnitude notation, zero has two different
representations,

1000000000000000 = -0
0000000000000000 = 0

• Operations involving negative and positive numbers
does not work properly in all cases.

• One method that is used to overcome these issues
is called 2’s complement notation.

– CS1510 Lecture 2 – 12

Integers: 2’s complement notation

• In 2’s complement notation, the leftmost bit still
represents the sign.

• Positive numbers are stored the same as in sign-
magnitude, allowing representation of values in the
range [1, 215 − 1] (in the case of a 16-bit word).

• Negative numbers in the range −x ∈ [−215,−1] are
stored as the binary representation of 216 − x.

• Example:

10 = 0000000000001010

−10 = 1111111111110110

• To see that this does represent −10 we can add the
two binary numbers together and the result should
be zero. Try this!

– CS1510 Lecture 2 – 13

Integers: 2’s complement notation

• Given a negative integer, we can find its 2’s
complement representation by:

1. Start with the binary representation of the
positive value.

2. Complement (reverse) each of the bits (1’s
complement).

3. Add one (2’s complement).

• Example: 10000111 in sign-magnitude (= −710) is
11111001 in 2’s complement.

– CS1510 Lecture 2 – 14

Real numbers: IEEE standard

• The sign-magnitude and 2’s complement notations
above are used to represent integers. What about
real numbers?

• In general, a real number x can be written in the
form

x = ±d0.d1d2d3 . . . dt × βe

where

β is the base,
e is the exponent (or characteristic),
di ∈ 0, 1, 2, . . . , β − 1, and
m = d0.d1d2 . . . dt is called the mantissa.

• If d0 6= 0, then x is said to be in normalized form.
From this point on we will consider only numbers in
normalized form.

• In the case of binary, d0 can only be 1 for normalized
numbers.

– CS1510 Lecture 2 – 15

Real numbers: IEEE standard

• A 32-bit IEEE standard floating point number has
the following layout:

exponent mantissaS

1 bit 8 bits 23 bits

where S is the sign bit for the number.

• Note that the exponent does not have a sign bit.
How do we store negative exponents?

• To allow for negative exponents we use a biased
exponent, where an offset is added to all exponents
to ensure that only positive numbers are stored.

• If we have 8 bits for the exponent and e is the
(signed) value of the exponent, we would store the
value n = e+ 127

• With a biased exponent these stored values would
represent exponents in the range [−126, 127].

• Exponents of -127 (n = 0) and 128 (n = 255) are
reserved for special cases.

– CS1510 Lecture 2 – 16

Real numbers: IEEE standard

• A floating point number x can be represented as:

– If n ∈ (0, 255),

x = (−1)s(1.m)2 × 2n−127.

– If n = 255 and
∗ m = 0 then x = ±∞ depending on s.
∗ m 6= 0 then x=NaN (“not a number”).

– If n = 0 and
∗ m = 0 then x = ±0 depending on s.
∗ m 6= 0 then

x = (−1)s(0.m)2 × 2−126

These are “unnormalized” values.

• Given a finite number of bits that can be used to
represent a real number, there is a finite set of
real numbers that a computer can represent. This
set of real numbers is referred to as floating point

numbers.

– CS1510 Lecture 2 – 17

Example: Storing 19.25

• To determine how the real number 19.25 is stored
in memory we first convert the number to binary.

19 = 10011

0.25 = 0.01

Therefore, 19.25 = 10011.01.

• In normalized form: 10011.01 = 1.001101× 24.

• Since we store a biased characteristic we note that
4 = 131− 127. Thus the value 131 is stored as the
exponent. In binary 131 = 10000011

• Putting the pieces together we have,

19.25 = 0 10000011 00110100000000000000000

– CS1510 Lecture 2 – 18

Example: Storing -118.625

• Since the number to be stored is negative we set
the sign bit to 1.

• In binary we have 118.625 = 1110110.101.

• Normalizing gives 118.625 = 1.110110101× 26.

• Since we store a biased characteristic we note that
6 = 133− 127. Thus the value 133 is stored as the
exponent. In binary 133 = 10000101

• Putting the pieces together we have,

−118.625 = 1 10000101 11011010100000000000000

– CS1510 Lecture 2 – 19

Example: Storing 0.3

• Unlike the previous examples, 0.3 does not have an
obvious representation using negative powers of 2.

• One easy way to convert fractional values to binary
is to successively multiply by 2 as follows:

0.3× 2 = 0.6 → 0
0.6× 2 = 1.2 → 1
0.2× 2 = 0.4 → 0
0.4× 2 = 0.8 → 0
0.8× 2 = 1.6 → 1
0.6× 2 = 1.2 → 1 (repeat from above)

• Thus we have 0.3 = 0.0100110011

• Normalizing gives 0.3 = 1.00110011 · · · × 2−2.

• Putting the pieces together we have,

0.3 = 0 01111101 00110011001100110011001

– CS1510 Lecture 2 – 20

Single vs. double precision

• A single precision (binary) floating point number is
stored in a 32-bit word.

• A double precision (binary) floating point number is
stored in a 64-bit word.

In IEEE standard a double precision floating point
number uses 1 bit for the sign, 11 bits for the biased
exponent, and 52 bits for the mantissa. The bias is
1023.

• A quadruple precision (binary) floating point
number is stored in a 128-bit word.

It has a mantissa of 112 bits, and a 15-bit exponent.

– CS1510 Lecture 2 – 21

