
Computer Science 1510

Lecture 5

Lecture Outline

• Fortran data types

• Fortran variables

• Fortran arithmetic operations

• Fortran assignment statements

– CS1510 Lecture 5 –

Fortran

• Fortran, originally written FORTRAN, is short for
FORmula TRANslation.

• Fortran has evolved significantly since its first form
in 1957.

• Changes and updates to programming languages
result in new versions or standards.

• For example, Fortran 90 is a Fortran standard.

• The rules that specify the behaviour of a
programming language standard are set out by a
board such as the American National Standards
Institute (ANSI).

– CS1510 Lecture 5 – 1

Basic program structure

• The majority of programming languages have a
similar basic structure:

– A line indicating the start of the program.
– Declaration statements.
– Algorithm statements.
– A line indicating the end of the program.

• Example (Fortran):

PROGRAM Print_CS

WRITE (*,*) ’Computer Science 1510 Lecture notes’

END PROGRAM Print_CS

• In the above example we have a Fortran program
called Print_CS that prints the line

Computer Science 1510 Lecture notes

to the screen.

– CS1510 Lecture 5 – 2

Fortran formatting rules

• Comments

It is very important to explain each line or block of
code within your source code file. This will allow
other users (or even yourself at a later date) to
understand your algorithm.

– All text written after an exclamation mark (!) in
a Fortran source file is treated as a comment.

– Comments are not executed. The compiler knows
that it should ignore these portions of the code.

– A comment can start at the beginning of a line
or following a command on a given line.

Example:

PROGRAM Print_CS2

! This program prints a string.

WRITE (*,*) ’CS 1510’ ! String to print

END PROGRAM Print_CS2

– CS1510 Lecture 5 – 3

Fortran formatting rules

• Line continuation

– There is no restriction on the length of a line in
a Fortran program.

– However, it is a good idea to limit the length of
the lines to some reasonable value.

– To continue a long command onto subsequent
lines the ampersand character (&) is used at the
end of the line to be continued.

– Can also be used at the beginning of the next
line in the case of strings.

Example:

PROGRAM Print_CS3

WRITE (*,*) ’A string is a series &

&of characters’ ! String to print

END PROGRAM Print_CS3

– CS1510 Lecture 5 – 4

Fortran formatting rules

• Multiple statements

More than one statement can be typed on a single
line in a Fortran source file provided that they are
separated by semi-colons (;).

WRITE (*,*) ’CS’; WRITE (*,*) ’1510’

• White space

Blank spaces (ie. white space) are ignored except
when they occur in the middle of keywords (ex.
WRITE). All keywords must NOT contain spaces!

– CS1510 Lecture 5 – 5

Programming Style

• It is very important to write programs that are
readable and understandable.

• Doing so involves adopting a programming style,
which may include:

– Including comments to explain the algorithm
where necessary (too many comments can make
a program difficult to read).

– Using meaningful variable names.
– Indenting blocks of code.
– Using spaces and blank lines.

• Programs should include a specification block at the
beginning of the code which may include:

– What the program does and how.
– An explanation of the variables used.
– The name of the programmer and the date on

which it was created and modified.

– CS1510 Lecture 5 – 6

Data types

• When developing an algorithm, it is important to
identify the type of the data involved with solving
the problem.

• A data type defines the physical representation that
a particular form of information will use in computer
memory. Recall the different binary representations
for integers, real numbers, and characters.

• Fortran intrinsic data types:

INTEGER
REAL

CHARACTER
COMPLEX
LOGICAL

• We will now examine the first three of these data
types in more detail.

– CS1510 Lecture 5 – 7

Integers

• Whole numbers (positive, negative, or zero).

• Negative integers must have a − sign prepended.
For non-negative numbers a + sign is optional.

• Examples of integer constants:

2
-15
+634

1200000
-3278651

• In Fortran, an integer is a string of digits that does
not contain commas or a decimal point.

• 16 or 32 bits.

• The more bits that are allocated for the number,
the larger the range of numbers that can be stored.

• Fortran integers: INTEGER

– CS1510 Lecture 5 – 8

Real numbers

• Floating point or decimal data.

• Can also be written in exponential notation.

• Examples of real constants:

-34.6
3.14159
-10.

15679.0
5.6E-4

• In Fortran, a real number is a string of digits
that contains a decimal point. Commas are not
permitted.

• 32 or 64 bits.

• Fortran real numbers: REAL

• Note that 10 is an integer while 10.0 is a real
number. These are stored differently in memory.

– CS1510 Lecture 5 – 9

Characters/Strings

• A character is any single letter, number, or symbol.

• A character string is a series of characters together,
such as a word or sentence (ex. ‘today’).

• In Fortran, characters are indicated by enclosing
them in single or double quotes (ex. ‘a’, or “a”).

• Each character requires one byte of memory (8 bits).

• Recall that a blank space is considered a character,
and also requires one byte of memory.

• Fortran characters:

CHARACTER
CHARACTER(Len=10)

• A quote (or double quote) character can be included
in a string by using two consecutive quotes (or
double quotes) (ex. ‘Don”t’).

– CS1510 Lecture 5 – 10

Identifiers

• An identifier is a name used to identify entities such
as programs, constants, and variables.

• In Fortran, identifiers must conform to the following
rules:

1. First character must be an alphabetic character
(A through Z, uppercase or lowercase).

2. Maximum of 31 characters.
3. Characters other than the first may be letters,

numbers, or the underscore character (), but
not spaces.

• Note that the underscore character is often used in
identifiers to separate words (ex. num_grades=5).

• Fortran is not case-sensitive. Variables GRADE and
grade are considered the same variable. However,
strings (in quotes) retain their case.

• It is important to use meaningful identifiers!

– CS1510 Lecture 5 – 11

Fortran variables

• A variable within a computer program, like a
mathematical variable, is a symbol that is used
to refer to a quantity.

• A variable can have a value assigned to it, and this
value can change throughout a program.

• A variable represents a value of some specified type
(integer, real, etc.).

• When a variable is used in a program, the compiler
associates it with a memory location.

• The value of a variable at any time is the value
stored in the associated memory location at that
time.

• Variable names are identifiers, and thus must
conform to the rules for valid identifiers.

– CS1510 Lecture 5 – 12

Variable declarations

• The type of a variable determines what type of data
can be assigned to its memory location.

• Each variable used should therefore be declared,
that is, each variable should be assigned a data
type.

• Fortran variables can be declared as follows:

type-specifier::list

where type-specifier is any valid Fortran data
type (ex. INTEGER), and list is a list of variable
names (separated by commas) to be declared of
that type.

• Variable declarations must be placed at the
beginning of a Fortran program, before any
executable statements.

– CS1510 Lecture 5 – 13

Examples: Variable declarations

• Real variables:

REAL::sum,average

• Integer variables:

INTEGER::num,factorial

• Character variables:

CHARACTER::initial

CHARACTER(Len=20)::first_name

CHARACTER(20)::last_name,letter*1

initial is a single character
first_name is a string of up to 20 characters
last_name is a string of up to 20 characters
letter is a single character (*1 overrides the 20)

– CS1510 Lecture 5 – 14

Fortran statements - IMPLICIT NONE

• Most programming languages require that all
variables used in a program be declared.

Fortran has default types for variables depending on
the first character of the identifier (implicit types).

• It is very poor programming practice to rely on such
implicit data types.

• Fortran has a statement that will force the
programmer to declare all variables used.

The IMPLICIT NONE statement is placed after
the PROGRAM statement, before any declaration
statement.

• When this statement is included, if you attempt
to use a variable that has not been declared, the
compiler will stop and print an error message.

• You should use the IMPLICIT NONE statement in
all Fortran programs that you write.

– CS1510 Lecture 5 – 15

Fortran variable initialization

• In Fortran, all variables are initially undefined.

• It may be the case that certain compilers will
initialize variables with numeric types to 0.

However, this behaviour should not be assumed,
and it is good practice to initialize all variables.

• Variable initializations can be done on the
declaration line, or within the executable section
of the program.

• Example:

REAL::sum=0

INTEGER::num

num=5

– CS1510 Lecture 5 – 16

Fortran named constants

• In some programs certain constants may be required
and used often. For example, π = 3.14159

• To specify such a constant, the PARAMETER attribute
can be added to the declaration line.

• Syntax:

type-specifier,PARAMETER::list

where type-specifier and list are as described
for the variable declarations.

• Example:

REAL,PARAMETER::pi=3.14159

• The value of such named constants cannot change.
Any attempt to change the value will result in a
compile-time error.

– CS1510 Lecture 5 – 17

Fortran arithmetic operations

• Basic arithmetic operations in Fortran:

Operator Function
+ addition
- subtraction
* multiplication
/ division
** exponentiation

• Priority rules for evaluating arithmetic expressions:

1. Parentheses () from innermost to outermost.
2. Exponentiation. Consecutive exponentiations are

performed right to left.
3. Multiplication and division. In the order in which

they appear from left to right.
4. Addition and subtraction. In the order in which

they appear from left to right.

• Use parentheses for clarity, or when you are in doubt
about the priority.

– CS1510 Lecture 5 – 18

Examples: Order of operations

2**3**2

= 2**9 = 512

10-8-2

= 2-2 = 0

2+4/2

= 2+2 = 4

2+4**2/2

= 2+16/2 = 2+8 = 10

(5*(11-5)**2)*4+9

= (5*6**2)*4+9

= (5*36)*4+9

= 180*4+9

= 720+9 = 729

– CS1510 Lecture 5 – 19

Arithmetic operations

• When two constants or variables of the same type
are combined using an arithmetic operator (ex. +),
the result has that same type.

For example, if we multiply two variables declared
as INTEGER, the result is an integer.

• It is possible to have arithmetic operations
involving constants or variables with different types.
Such expressions are referred to as mixed-mode

expressions.

• When mixed-mode expressions are evaluated, the
result is normally converted to the most general type
in the expression. E.g., in the case of expressions
involving an integer and a real number, the integer
is first converted to a real, and the result is a real.

• In general, mixed-mode expressions should be
avoided in most instances. (An exception is
exponentiation).

– CS1510 Lecture 5 – 20

Examples: Arithmetic operations

3.0 + 8/5

= 3.0 + 1 = 3.0 + 1.0 = 4.0

3 + 8.0/5

= 3 + 8.0/5.0 = 3 + 1.6

= 3.0 + 1.6 = 4.6

2.0**3

=2.0 * 2.0 * 2.0 = 8.0

(-4.0)**2

=(-4.0) * (-4.0) = 16.0

(-2.0)**3.0

=e3.0 ln(-2.0)=Undefined!

– CS1510 Lecture 5 – 21

Integer division

• Consider the following Fortran statements:

INTEGER::j=2,k=3,m

m=j/k

• All three variables, j, k, and m have been declared
as integers.

• When dividing j by k we have two integer variables
which will produce an integer.

However, 2/3 = 0.666 . . . , which is not an integer.
The result is truncation of the answer to give m=0.

• In some cases integer division produces unwanted
results, however, in other cases it can be used to
our advantage.

– CS1510 Lecture 5 – 22

Built-in mathematical functions

• The following is an incomplete list of built-in
mathematical functions provided by Fortran:

Function Description Arg(s) Result

ABS(x) Absolute value of x I or R Same

MOD(x,y) x-INT(x/y)*y I or R Same

SQRT(x) Square root of x R R

EXP(x) Exponential of x R R

LOG(x) Natural log of x (base e) R R

LOG10(x) Log base 10 of x R R

SIN(x) Sine of x (radians) R R

COS(x) Cosine of x (radians) R R

TAN(x) Tangent of x (radians) R R

INT(x) Conversion of x to INTEGER R I

REAL(x) Conversion of x to REAL I R

• In some cases, the arguments may also be of type
COMPLEX.

– CS1510 Lecture 5 – 23

Assignment statements

• An assignment statement is used to assign values
to variables.

• Syntax:

variable = expression

where variable is assigned the value of
expression.

• The variable is any valid Fortran identifier.

• The expression can be a constant, a variable
that has already been assigned a value, or a formula
involving constants and/or variables to be evaluated.

• In the case of a formula, the expression is
first evaluated, and the resulting value assigned
to variable.

• An assignment statement is NOT a mathematical
equation!

– CS1510 Lecture 5 – 24

Examples: Assignment statements

Consider the following Fortran statements:

REAL :: xcoord, ycoord

INTEGER :: number, term

xcoord = 5.23

ycoord = sqrt(25.0)

number = 17

term = number/3 + 2

xcoord = 2.0*xcoord

The declaration statements associate locations in
memory with the given variable names. Therefore,
we would have something like:

?

?

?

?

xcoord

number

ycoord

term

where ? indicates that the values of the variables are
currently undefined (they could be zero if the compiler
initialized them).

– CS1510 Lecture 5 – 25

Examples: Assignment statements

The three assignment statements following the
declarations assign values to xcoord, ycoord, and
number, to give:

5.23

5.0

17

?

xcoord

ycoord

number

term

The second last statement assigns a value to term.
Note the integer division.

5.23

5.0

17

7

xcoord

ycoord

number

term

The final statement replaces the value of xcoord.

5.0

17

7

10.46xcoord

ycoord

term

number

– CS1510 Lecture 5 – 26

Mixed-mode assignment

• Mixed-mode assignment occurs when the type of
expression (ie. the result of evaluating the right-
hand side of an assignment statement) differs from
the type of variable (ie. the variable on the
left-hand side of the assignment statement).

• If the expression evaluates to an integer, but
variable is a REAL then the integer result is
converted to a real number and assigned to the
variable.

• If the expression evaluates to a real number, but
variable is an INTEGER then the fractional part
of the result is truncated, and the integer part is
assigned to the variable.

– CS1510 Lecture 5 – 27

