Computer Science 1510

Lecture 15

Lecture QOutline

e Sorting

e Searching

— (CS1510 Lecture 15 —



Insertion Sort

e Insertion sort reads values and places them in the
appropriate location in the array such that when all
values have been read the resulting array is sorted.

e Consider the list
3, 13 2, 53 4, 2, 1, 9

e Insertion sort begins with the first element and adds
it to the first position in the sorted list.

3

e The second element is then placed before or after
the first element, depending on whether it is less
than or greater than the first element. In this case,
the second value read is to be placed in position 1,
with the 3 moved to the second position.

1, 3

— CS1510 Lecture 15 - 1



e The third element is then inserted into its proper
place in the sorted list, shifting one or both of the
first two elements if necessary. Here, just the 3 is
shifted to insert the 2.

1, 2, 3

e The process continues with insertion of subsequent
elements into their appropriate position in the list
until all elements have been placed in the sorted
list.

1, 2, 3, 5

1, 2, 3, 4, 5

1, 2, 2, 3, 4, 5

1, 1, 2, 2, 3, 4, 5

1, 1, 2, 2, 3, 4, 5, 9

— CS1510 Lecture 15 - 2



Example: Insertion Sort

PROGRAM Insertion_sort

I This program sorts a list of integers in ascending order using
! insertion sort.

I INPUT:

! num - the number of integers to be sorted.

! current - integer read from the user, to be placed in

! the appropriate location in the sorted array.

! OUTPUT:

! to_sort - sorted list of integers.

IMPLICIT NONE
INTEGER :: to_sort(999)
INTEGER: :i,j,k,num,current,position

WRITE(*,*) ’How many numbers are to be read?’
READ (*,*) num

WRITE(*,*) ’Enter value’

READ(*,*) current

WRITE(*,*) ’List thus far:’

WRITE(*,’ (X,I2)’) current

to_sort(l)=current ! Put the first element in the array
DO k=2,num ! For each element
WRITE(*,*) ’Enter value’
READ(*,*) current ! Get next element
position=1 ! Assume that the element belongs at the beginning
DO j=1,k-1 ! Check where element belongs among those already sorted
IF (current > to_sort(j)) THEN
position=j+1

END TIF
END DO
IF (position < k) THEN ! Need to shift part or all of the list
CALL Shift(to_sort,k,position) ! Shift elements from position to k

to_sort(position)=current ! Add current element in correct position

— CS1510 Lecture 15 - 3



ELSE
to_sort(position)=current ! Add element to the end of the list
END IF
WRITE(*,*) ’List thus far:’
DO i=1.,k
WRITE(*,’(X,I2)’,ADVANCE="NO’) to_sort(i)
END DO
WRITE (*,*)
END DO
WRITE (*,*)
WRITE(*,*) ’Final sorted list:’
DO i=1,num
WRITE(*,’ (X,I2)’,ADVANCE="NO’) to_sort(i)
END DO
WRITE (*,*)

CONTAINS
SUBROUTINE Shift(array,end,start)

! Shift the elements of array from index start to index end
! ahead by one, leaving a gap at index start.

INTEGER, INTENT (INOUT) : :array(:)
INTEGER, INTENT(IN) : :end,start
INTEGER: : 1

DO i=end,start+1,-1
array(i)=array(i-1)
END DO
END SUBROUTINE Shift

END PROGRAM Insertion_sort

— CS1510 Lecture 15 -



Searching

e Another common programming problem is searching
a list of data for a particular item.

e As with sorting, there are several different algorithms
that can be used to search a list.

e \We have seen a linear search which starts with the
first element in the list and searches sequentially
until either the desired item is found or the end of
the list is reached.

e A more efficient search is a binary search.

e Binary search requires the initial list to be sorted.
We first check the middle element in the list. If
this is the desired value then the search is complete.
Otherwise, if the middle value is greater than the
desired value we repeat with the first half of the list,
if the middle value is less than the desired value we
repeat with the second half of the list.

— CS1510 Lecture 15 - 5



e Consider the list
1, 1, 2, 2, 3, 4, 5, 9, 10

e Suppose that we are looking for the value 9. We
first check the middle element (= 3).

e Since 3 is less than 9 we disregard the first half of
the list and concentrate on the second half.

4, 5, 9, 10

e Since the second half of the list has 4 elements,
there is no middle element. In this case we choose
the element preceding the middle which is 5.

e Since 9 is greater than 5 we again choose the second
half of the list.

9, 10

e Since there is again no middle element, we choose
the element preceding the middle which is 9. This
is the desired value.

— CS1510 Lecture 15 - 6



Example: Binary Search

PROGRAM Binsearch
IMPLICIT NONE
INTEGER :: 1ist(999), num, i, to_find, location
INTEGER :: first, last, mid
LOGICAL :: found=.FALSE.

WRITE(*,*) ’How many items are to be entered?’
READ (*,*) num

WRITE(*,*) ’Enter the sorted list’

READ (*,*) (1list(i), i=1,num)

WRITE(*,*) ’What item would you like to find?’
READ(*,*) to_find

! Start with entire list, ie. elements from 1 to num
first =1
last = num

DO
I Terminate if list is empty or if item is found
IF ((first > last) .OR. found) EXIT
WRITE(*,*) ’Searching list:’
DO i=first,last
WRITE(*,’ (X,I3)’,ADVANCE="N0’) list(i)
END DO
WRITE (*,*)

I Compute the midpoint. Note that integer division will
! give the item preceding the middle if there is no

| middle element.

mid = (first + last) / 2

IF (1ist(mid) > to_find) THEN ! Search first half of list
last = mid - 1

ELSE IF (list(mid) < to_find) THEN ! Search second half
first = mid + 1

— CS1510 Lecture 15 -



ELSE ! mid element is the item sought
found = .TRUE.
location = mid
END IF
END DO

IF (found) THEN
WRITE(*,’ (A,I4,A,I4)’) ’Value ’, to_find,’ was found at location ’,location
ELSE
WRITE(*,*) ’Item not found’
END IF
END PROGRAM Binsearch

— CS1510 Lecture 15 - 8



