
Computer Science 1510

Lecture 18

Lecture Outline

• Other data types

• Multidimensional arrays

• Allocatable arrays

– CS1510 Lecture 18 –



Fortran data type: COMPLEX

• Recall that, in addition to the INTEGER, REAL,
CHARACTER, and LOGICAL data types that we
have been using, there is also a COMPLEX data
type in Fortran.

• The COMPLEX data type is used to represent
complex numbers, ie. numbers of the form,

z = a+ bi

where a is the real part and b is the imaginary or
complex part.

• In Fortran, a complex number is represented as an
ordered pair (a, b).

• Syntax:

COMPLEX::identifier-list

where identifier-list is a list of variables to be
declared of type COMPLEX.

– CS1510 Lecture 18 – 1



Fortran data type: COMPLEX

• It is also possible to have arrays of COMPLEX
values.

• There is a set of Fortran library functions that can
be used with COMPLEX variables. The following
example will illustrate a few.

• Example:

PROGRAM Test_complex

IMPLICIT NONE

COMPLEX::z

REAL::x,y,mag

z=(2.0,3.0) ! set z=2+3i

mag=CABS(z) ! compute the magnitude of z (as a real number)

x=REAL(z) ! extract the real part of z

y=AIMAG(z) ! extract the imaginary part of z

WRITE(*,5) ’z=’,z,’mag=’,mag,’x=’,x,’y=’,y

5 FORMAT(A,F4.1,’+’,F4.1,’i’,A,F4.1,A,F4.1,A,F4.1)

END PROGRAM Test_complex

• Output

z= 2.0+ 3.0i, mag= 3.6, x= 2.0, y= 3.0

– CS1510 Lecture 18 – 2



Fortran: KIND

• So far, for real number data we have used the REAL
data type. Variables declared as REAL usually
occupy 32 bits in memory (ie. single precision).

• The number of bits used for a particular
representation restricts the range and precision of
the numbers that can be stored.

• If higher precision or greater range is required, we
set the KIND of the variable.

• The KIND value for single precision variables is
either KIND=1 or KIND=4 depending on the type
of computer. For us it is 4.

• For example, we can obtain 15 decimal place
precision, and a of range [10−37, 1037]) by:

INTEGER, PARAMETER :: dp1 = selected_real_kind(15, 307)

REAL(KIND=dp1) :: b

• The KIND statement can also be used for integers.

– CS1510 Lecture 18 – 3



Fortran: KIND example

PROGRAM Test_kind

USE, INTRINSIC :: iso_fortran_env

IMPLICIT NONE

REAL :: x

INTEGER, PARAMETER :: sp = selected_real_kind(6, 37)

INTEGER, PARAMETER :: dp1 = selected_real_kind(15, 307)

INTEGER, PARAMETER :: dp2 = kind(1.d0)

INTEGER, PARAMETER :: sp_mod = REAL32

INTEGER, PARAMETER :: dp_mod = REAL64

REAL(KIND=sp) :: a

REAL(KIND=dp1) :: b

REAL(dp2) :: c

REAL(sp_mod) :: d

REAL(dp_mod) :: e

WRITE(*,*) ’The largest value for x is’, HUGE(x)

WRITE(*,*) ’sp = ’,sp

WRITE(*,*) ’The largest value for a is’, HUGE(a)

WRITE(*,*) ’dp1 = ’,dp1

WRITE(*,*) ’The largest value for b is’, HUGE(b)

WRITE(*,*) ’dp2 = ’,dp2

WRITE(*,*) ’The largest value for c is’, HUGE(c)

WRITE(*,*) ’sp_mod = ’,sp_mod

WRITE(*,*) ’The largest value for d is’, HUGE(d)

WRITE(*,*) ’dp_mod = ’,dp_mod

WRITE(*,*) ’The largest value for e is’, HUGE(e)

WRITE(*,*) ’The precision of e is’,PRECISION(e)

WRITE(*,*) ’The range of e is’,RANGE(e)

END PROGRAM Test_kind

– CS1510 Lecture 18 – 4



Fortran: KIND example

Output:

The largest value for x is 3.40282347E+38

sp = 4

The largest value for a is 3.40282347E+38

dp1 = 8

The largest value for b is 1.7976931348623157E+308

dp2 = 8

The largest value for c is 1.7976931348623157E+308

sp_mod = 4

The largest value for d is 3.40282347E+38

dp_mod = 8

The largest value for e is 1.7976931348623157E+308

The smallest value for e is 2.2250738585072014E-308

The precision of e is 15

The range of e is 307

Note the use of the HUGE function. There is also a
TINY function that will determine the smallest number
possible for a given type/kind.

– CS1510 Lecture 18 – 5



Multidimensional arrays

• The arrays that we have used thus far have had a
single subscript.

• However, it is possible in Fortran to have multi-
dimensional arrays, in which case an element of
the array is referred to by attaching the appropriate
number of indices to the array name.

• Syntax:

type, DIMENSION(l1:u1, l2:u2, ..., lk:uk) :: array_name

or
type :: array_name(l1:u1, l2:u2, ..., lk:uk)

where k is the number of dimensions (or rank) of
the array (at most 15), and li/ui specify the lower
and upper indices for each dimension.

– CS1510 Lecture 18 – 6



Allocatable arrays

• The arrays that we have considered thus far have had
their memory allocated at compile time since the
array size was set when the program was compiled.

• In the case where we do not know ahead of time how
much space is required it would be more efficient to
be able to allocate the memory at run time.

• For example, if the user is asked to enter the number
of elements, with compile-time arrays we had to
declare an array much larger than required to ensure
that we would have enough space.

– CS1510 Lecture 18 – 7



Allocatable arrays

• In order to allocate an array during run-time we first
have to declare it as ALLOCATABLE.

• Syntax:

type, DIMENSION(:), ALLOCATABLE :: array_name

where the : within the DIMENSION clause indicates
that the size is not yet defined, and the
ALLOCATABLE clause indicates that the size will
be specified during run-time.

• To allocate memory for such arrays we use the
ALLOCATE statement.

• Syntax:

ALLOCATE(array_name(start:end),STAT=status-variable)

where status-variable is an integer variable
whose value will be zero if the allocation was
successful, and nonzero if there was insufficient
memory or if the array has already been allocated.

– CS1510 Lecture 18 – 8



Allocatable arrays

• The following code allocates space for n integers,
where n is input by the user.

INTEGER :: array_status,n

INTEGER, DIMENSION(:), ALLOCATABLE :: myarray

WRITE(*,*) ’How many elements are required?’

READ(*,*) n

ALLOCATE(myarray(n),STAT=array_status)

IF (array_status /= 0) THEN

WRITE(*,*) ’Unable to allocate’

STOP

END IF

• Following the ALLOCATE statement, allocatable
(run-time) arrays can be used in the same way
as arrays allocated at compile-time.

– CS1510 Lecture 18 – 9



Allocatable arrays

• The ALLOCATE statement requests from the
operating system, a block of memory of the required
size. Provided that there is sufficient memory for
this request the memory is assigned to the program.

• When the memory assigned to the program is no
longer needed, it should be set free (back to the
operating system). To do this the DEALLOCATE

statement can be used.

• Syntax:

DEALLOCATE(array_name,STAT=status-variable)

where status-variable will be set to zero if the
deallocation is successful, and nonzero if it is not.
The latter case can arise, for example, if the memory
to be deallocated was never allocated.

– CS1510 Lecture 18 – 10



Example: Allocatable arrays

PROGRAM Processing_Failure_Times_2

!-----------------------------------------------------------------------

! Program to read a list of failure times, calculate the mean time to

! failure, and then print a list of failure times that are greater

! than the mean. An allocatable array is used to store the failure

! times. Identifiers used are:

! FileName : name of file from which to read times

! OpenStatus : status variable for OPEN

! InputStatus : status variable for READ

! AllocateStatus : status variable for ALLOCATE

! FailureTime : one-dimensional array of failure times

! NumTimes : size of the array

! I : subscript

! Sum : sum of failure times

! Mean_Time_to_Failure : mean of the failure times

!

! Input: FileName

! File should contain a value for NumTimes following by the

! failure times.

! Output: Mean_Time_to_Failure and a list of failure times greater

! than Mean_Time_to_Failure

!-----------------------------------------------------------------------

IMPLICIT NONE

REAL, DIMENSION(:), ALLOCATABLE :: FailureTime

INTEGER :: OpenStatus, InputStatus, AllocateStatus, NumTimes, I

REAL :: Sum, Mean_Time_to_Failure

CHARACTER(Len=20) :: FileName

! Get the filename from the user

WRITE(*,’(A)’,ADVANCE=’NO’) ’Please enter the name of the file to be read: ’

READ(*,*) FileName

! Open the file

OPEN(UNIT=10,FILE=FileName,STATUS=’OLD’,IOSTAT=OpenStatus)

– CS1510 Lecture 18 – 11



IF (OpenStatus > 0) THEN

WRITE(*,*) ’Cannot open file!’

STOP

END IF

! Get the number of failure times

READ(10,*,IOSTAT=InputStatus) NumTimes

IF (InputStatus > 0) THEN

WRITE(*,*) ’Input error’

STOP

ELSE IF (InputStatus < 0) THEN

WRITE(*,*) ’Not enough data’

STOP

END IF

! Allocate an array with NumTimes elements to store the failure times

ALLOCATE(FailureTime(NumTimes),STAT=AllocateStatus)

IF (AllocateStatus /= 0) THEN

WRITE(*,*) ’Unable to allocate memory’

STOP

END IF

! Read the failure times and store them in array FailureTime

READ(UNIT=10,FMT=*,IOSTAT=InputStatus) FailureTime

IF (InputStatus > 0) THEN

WRITE(*,*) ’Input error’

STOP

ELSE IF (InputStatus < 0) THEN

WRITE(*,*) ’Not enough data’

STOP

END IF

! Calculate the mean time to failure

Sum = 0.0

DO I = 1, NumTimes

Sum = Sum + FailureTime(I)

END DO

Mean_Time_to_Failure = Sum / REAL(NumTimes)

– CS1510 Lecture 18 – 12



WRITE(*,’(A,X,F6.1)’) ’Mean time to failure =’, Mean_Time_to_Failure

! Print list of failure times greater than the mean

WRITE(*,*)

WRITE(*,*) ’List of failure times greater than the mean:’

DO I = 1, NumTimes

IF (FailureTime(I) > Mean_Time_to_Failure) &

WRITE(*,’(F9.1)’) FailureTime(I)

END DO

! Deallocate the array of failure times

DEALLOCATE(FailureTime)

END PROGRAM Processing_Failure_Times_2

– CS1510 Lecture 18 – 13



Example: TYPE with ALLOCATE

PROGRAM Structure

IMPLICIT NONE

! Define a Student data structure

TYPE Student

CHARACTER(Len=9)::id_num

CHARACTER(Len=15)::first_name

CHARACTER(Len=20)::last_name

REAL::assign(8),mid,final,grade

END TYPE Student

INTEGER::i,j,num,OpenStatus,InputStatus,AllocateStatus

REAL::total,aavg

CHARACTER(Len=20)::FileName

! Declare an allocatable array of Students

TYPE(Student),DIMENSION(:),ALLOCATABLE::Class

WRITE(*,’(A)’,ADVANCE=’NO’) ’Which file should be read? ’

READ(*,*) FileName

OPEN(UNIT=5,FILE=FileName,STATUS=’OLD’,IOSTAT=OpenStatus)

IF (OpenStatus > 0) STOP

! Determine how many students are in the class

READ(5,*,IOSTAT=InputStatus) num

IF (InputStatus /= 0) STOP

! Allocate memory for the Class

ALLOCATE(Class(num),STAT=AllocateStatus)

IF (AllocateStatus /= 0) STOP

! Read in the student data

DO i=1,num

READ(5,*,IOSTAT=InputStatus) Class(i)%id_num

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%first_name

IF (InputStatus /= 0) STOP

– CS1510 Lecture 18 – 14



READ(5,*,IOSTAT=InputStatus) Class(i)%last_name

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%assign

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%mid

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%final

IF (InputStatus /= 0) STOP

END DO

! For each Student, compute the final mark

DO j=1,num

! Compute the average assignment mark for Student j

total=0

DO i=1,8

total=total+Class(J)%assign(i)

END DO

aavg=total/8.0

! Compute the final mark for Student j

Class(j)%grade=aavg/20.0*30.0+Class(j)%mid*2*0.3+Class(j)%final*2*0.4

! Display the final mark for Student j

WRITE(*,10) Class(j)%first_name,Class(j)%last_name,’received’,&

Class(j)%grade,’in the course.’

END DO

10 FORMAT(A15,A20,X,A8,X,F5.1,X,A14)

DEALLOCATE(Class)

CLOSE(UNIT=5)

END PROGRAM Structure

– CS1510 Lecture 18 – 15



Allocatable arrays

• We have seen how we can allocate memory during
run-time to prevent having to declare more space
than is required.

• However, what if we want to change the size of an
array during execution?

• With the techniques that we have learned thus far,
this would require the following:

– Allocate a new, larger, array.
– Copy the elements from the old array to the new

array.
– Write the new elements to the new array.
– Deallocate the old array.

– CS1510 Lecture 18 – 16


