Computer Science 1510

Lecture 6

Lecture QOutline

e Input/Output

e Formatted input/output

— (CS1510 Lecture 6 —

Input and Output

e [he computer accepts input data from the keyboard
or a file in the form of a stream.

e A text stream is a sequence of characters divided
into lines, with each line consisting of a sequence of
characters followed by a newline character.

e To input the number 352 from the keyboard the
following would occur:

— Type the ‘3" key. This digit is placed in a location
in memory called a buffer.

— Type the ‘5" key. This digit is placed in the buffer
behind the ‘3.

— Type the 2" key. This digit is placed in the buffer
behind the ‘5.

— Finally press the ‘Enter’ key which is the signal
to the computer that you have finished entering
the string. The string ‘352\n’ is then given to
your program.

— CS1510 Lecture 6 — 1

Input and Output

e A buffer is an empty location in RAM (several blank
bytes) that is used for temporary storage (such as
accepting input strings as above).

e A buffer of size 10 could be represented as the
following:

0 1 2 3 4 5 6 7 8 9

Each of the 10 cells in the buffer consist of a byte
of memory and a label (here labels 0-9).

e |f we enter the name ‘John’ using the keyboard the
buffer fills up starting in cell 0.

0 1 2 3 4 5 6 7 8 9
J 0 h n

e The buffer is normally emptied or cleared when the
user types the Enter key following the input of a
string.

— CS1510 Lecture 6 — 2

Input and Output

e Streams are also used when outputting information
to the screen or to a peripheral device such as a
printer.

e Each character is stored as an 8-bit byte. Memory
is organized into 8-bit bytes, and peripheral devices
work with 8-bit bytes.

e Peripheral devices usually have built-in character
tables (such as the ASCII table).

e This makes it easy to pass character data between
devices with little or no conversion required.

— CS1510 Lecture 6 — 3

Input/Output

e There are two main input/output statements in
Fortran.

e [he READ statement is used to obtain information,
that is, to input data into a program.

e [The WRITE statement is used to output data from
the program.

e Both the READ and the WRITE statement can be
used to input/output information from/to the user

or from/to a file.

We will initially look at user interaction, and later
discuss reading from/ writing to a file or files.

e The simplest form of each of these statements is
called the list-directed form.

This is the form we have already seen.

— CS1510 Lecture 6 — 4

Fortran statements: WRITE

e The WRITE statement is used to print information
to the screen or to a file.

e The list-directed form of the WRITE statement
assumes certain default formatting rules.

e Syntax:
WRITE(*,*) output-list

where output-1list is a single expression or list of
expressions separated by commas to be printed to
the screen.

e Each WRITE statement prints a new line of output.

If the output-1list is omitted, a blank line will
be printed.

e Example:

WRITE(*,*) ’The average value is’,average

where average is a variable.

— CS1510 Lecture 6 — 5

Fortran statements: READ

e The READ statement is used to obtain (read)
information from the user or from a file during
run-time.

e The list-directed form of the READ statement reads
values in the order in which they are input.

e Syntax:
READ (*,*) input-list

where input-1list is a single variable or list of
variables separated by commas to which the input
data is to be assigned.

e If the input-1list is omitted, a line will be skipped.
e When a READ statement is encountered during
run-time, execution is suspended until the user

has provided the necessary input. Execution then
automatically resumes.

— CS1510 Lecture 6 — 6

Fortran statements: READ

e A new line of data is processed each time a READ
statement is executed.

e If there are more values on a line than there are
variables in the input-1list, the first values are
assigned in order, and the remaining values are
ignored.

o |[f there are fewer values entered on a line
than there are variables in the input-1list then
successive lines are processed until all variables in
the input-1ist have been assigned values.

e Example:

WRITE(*,*) ’Enter values for the initial amount,&
& time, and halflife’
READ (*,*) init, time, halflife

e Input data should be separated by commas, spaces,
or newlines.

— CS1510 Lecture 6 — 7

Example: READ and WRITE

PROGRAM Projectile

I This program calculates the velocity and height of a projectile
! given its initial height, initial velocity, and constant
I acceleration. Identifiers used are:

! accel : vertical acceleration (m/sec/sec)

I Input:

! initH : initial height of projectile (meters)
! initV : initial vertical velocity (m/sec)

! time : time since launch (seconds)

' Qutput:

! height : height at any time (meters)

' velocity : vertical velocity at any time (m/sec)

IMPLICIT NONE
REAL :: initH, height, initV, velocity, time
REAL, PARAMETER :: accel=-9.80665

| Obtain values for initH, initV, and time
WRITE(*,*) ’Enter the initial height (m) and velocity (m/sec):’
READ(*,*) initH, initV
WRITE(*,*) ’Enter time in seconds at which to calculate height and velocity:’
READ(*,*) time

I Calculate the height and velocity
height = 0.5*%accel*time**2 + initVxtime + initH
velocity = accel*time + initV

! Display velocity and height
WRITE(*,*) ’At time’, time, ’seconds’
WRITE(*,*) ’the vertical velocity is’, velocity, ’m/sec’

WRITE(*,*) ’and the height is’, height, ’meters’

END PROGRAM Projectile

— CS1510 Lecture 6 — 8

Fortran statements: FORMAT

e So far we have seen only the simplest (list-directed)
form of both the WRITE and READ statements.

e In list-directed form the WRITE statement prints
information using default spacing, which is often
not the nicest format.

e By default a READ statement that reads in two
numbers requires a comma or a space between the
numbers, and a WRITE statement prints variable
values with tab spacing.

e This behaviour can be modified using a FORMAT
statement which specifies exactly how information
Is Input or output.

e Syntax:

label FORMAT layout-information

— CS1510 Lecture 6 — 9

Fortran statements: FORMAT

e Each FORMAT statement is linked to an input or
output statement via a label which can be any

number from 1 to 99999.

e The label number replaces the second * in the
corresponding input or output statement.

e FORMAT statements can be placed anywhere in a
program AFTER the declaration statements.

e It is good practice to place a FORMAT statement
immediately following the input or output statement
to which it applies.

e The layout-information is a list of format
descriptors separated by commas as discussed below.

e A single FORMAT statement can be used by any
input/output statements that require the specified
format.

— CS1510 Lecture 6 — 10

Formatted output

e Syntax (to print to the screen):

WRITE(*,label) output-list
e Example:

INTEGER :: a=2, b=3
WRITE(*,10) ’The sum of a and b is’,a+b
10 FORMAT(A40,I3)

e [he format label here is 10.

e The first argument A40 specifies that a character
string up to 40 characters long is to be printed,
using exactly 40 spaces.

e The second argument I3 specifies that an integer
up to 3 digits is next to be printed, using exactly
3 spaces. Note that if the integer was 3 digits
then there would be no space between the character
string and the number, when printed.

— CS1510 Lecture 6 — 11

Formatted output

e The output produced from this program is:

The sum of a and b is b5

Note that the beginning of the 40 character string
is padded with blank spaces (or right-justified).

e If the first argument was A15 instead of A40 the
following output would result since the string to be
printed is more than 15 characters long:

The sum of a an b5

Note that it is now left-justified, and truncated.

e The format descriptors (A40 and I3) specify the
type and size of the data to be printed.

e Omitting the size on the A descriptor results in a
character field equal to the width of the string being
printed. In the above case:

The sum of a and b is b5

— CS1510 Lecture 6 — 12

Format descriptors

rEw.d or rEw.dEe
rESw.d or rESw.dESe
rLw

rA or rAw

nX

Tc

-
)

Form(s) Use
rIw or rIw.m Integer data
rFw.d Real data (decimal notation)

Real data (exponential notation)
Real data (scientific notation)
Logical data

Character data

Horizontal spacing

Tab spacing (to column c¢)
Character strings (output as is)
Vertical spacing

To repeat blocks of descriptors

e 1 = repetition indicator (number of such fields). (If
not indicated, a value of 1 is assumed).

e w — total width of field.

e m = minimum number of digits.

e d = number of digits to the right of the decimal.

e ¢ = number of digits in the exponent.

e 1 = number of character positions.

— CS1510 Lecture 6 —

13

Displaying integer data: The | descriptor

rIw rIw.m

e I is used to denote integer data.

e w Is an integer specifying the width of the field
(number of spaces required), including the sign.

e 7 is a repetition indicator, indicating the number of
such fields. E.g., 312 is equivalent to I2,12,12.

e m is the minimum number of digits to be displayed
(often omitted).

e Integer data is right justified in the field.

e Example:
INTEGER: :i,7,k
1=2389; j=1; k=865
WRITE(*,10) i,j,k
10 FORMAT(3I4)

e Output:
2389 1 865

— CS1510 Lecture 6 — 14

Displaying real data: The F descriptor

rFw.d

F is used to denote real (floating-point) data (in
decimal notation).

w is an integer specifying the total width of the
field, including the sign, the decimal point, and any
leading zeros (w > d + 3).

d is an integer specifying the number of digits to
the right of the decimal. (Values with more than d
digits after the decimal are rounded).

r is a repetition indicator, indicating the number of
such fields.

Real data is right justified in the field.
For both integer and real data, if the specified width

of the field is not sufficient for the given value, *'s
will be displayed.

— CS1510 Lecture 6 — 15

Displaying character data: The A descriptor

rA rAw

e A is used to denote character data.

e w Is an integer specifying the width of the field
(number of characters).

e 1 is a repetition indicator, indicating the number of
such fields.

e In the first case, where a width is not specified, the
width of the field is determined by the length of the
string to be displayed.

e In the case where a field width is specified, and it is
sufficiently wide to hold the string to be displayed,
the string is right justified in the field.

e In the case where the width of the field is not

sufficient for the given string, the leftmost w
characters are displayed.

— CS1510 Lecture 6 — 16

Formatting without FORMAT

e Input and output can be formatted by including
format descriptors within the corresponding WRITE
and READ statements.

e The format specifier should be written as
’(list-of-descriptors)’ in place of the second
* (ie. in place of the label).

e Example:
WRITE(*,’ (A,I3)’) ’Age’, years
or

WRITE(*,FMT="(A,I3)’) ’Age’, years

— CS1510 Lecture 6 — 17

Example 1: Format descriptors

PROGRAM Format_integers

! This program illustrates the use of format statements
IMPLICIT NONE
INTEGER :: m,n
m=-12; n=375

WRITE(*,*) ’QOutput without formatting:’
WRITE(*,*) ’m=’,m,’n=’,n
WRITE(*,*) ’QOutput with formatting:’
WRITE(*,10) m,n

10 FORMAT (°m=’,I4,X,’n=’,14)

END PROGRAM Format_integers

Output:

Output without formatting:

m= -12 n= 375
Output with formatting:
m= -12 n= 375

— CS1510 Lecture 6 — 18

Example 2: Format descriptors

PROGRAM Format_reals

! This program illustrates the use of format statements
IMPLICIT NONE
REAL :: x,y
x=15.2; y=-3.14159

WRITE(*,*) ’QOutput without formatting:’
WRITE(*,*) ’x=’,x,’y=’,y
WRITE(*,’ (A)’) ’Output with formatting:’
WRITE(*,’ (A2,F7.2)’) ’x=’,x,’y=’,y
WRITE(*,’ (A2,E9.2)’) ’x=’,x,’y=’,y
WRITE(*,’ (A2,ES9.2)’) ’x=’,x,’y=’,y

END PROGRAM Format_reals

Output:

Output without formatting:

x= 15.200000 y= -3.1415901
Output with formatting:

x= 15.20

y= -3.14

x= 0.15E+02

y=-0.31E+01

x= 1.52E+01

y=-3.14E+00

— CS1510 Lecture 6 — 19

The ADVANCE clause

e In each of the examples that we have seen, the
WRITE statement prints the output-list and
moves to the next line on the screen.

e To suppress moving to the next line, we can use
ADVANCE="NO"

within the write statement. Use of the ADVANCE
clause requires formatted output.

e Example:

WRITE(*,’ (A)’ ,ADVANCE="NQO") ’Initial amount: °’
READ (*,*) init

will print:

Initial amount:

to the screen and wait for the user to enter a value.
The value entered will appear on the same line as
Initial amount:

— CS1510 Lecture 6 — 20

Formatted input

e Formatted input uses similar format descriptors as
we have discussed for formatted output.

e A form of the READ statement is used to read in
data in a particular format.

e Formatted input is generally only needed when
reading data (usually from a file) that is in a
predetermined format.

e We will postpone our discussion of formatted input
until we consider file input/output.

— CS1510 Lecture 6 — 21

