
Computer Science 1510

Lecture 8

Lecture Outline

• Repetition:

– DO
– DO WHILE
– DO EXIT

– CS1510 Lecture 8 –



Repetition

• With IF and SELECT-CASE statements we saw how
to execute portions of code only if some condition
is satisfied.

• In many other instances, we may want to repeatedly
execute a particular section of code.

• The Fortran construct that can accomplish this
repetition or iteration of statements is called a DO
loop.

• The DO loop has 3 different forms:

1. The counter-controlled DO loop which iterates
some specified number of times.

2. The DO WHILE loop which iterates while some
condition is true.

3. The DO EXIT loop which is a generalized version
of a DO WHILE loop.

– CS1510 Lecture 8 – 1



Counter-controlled DO loop

• Syntax:

DO control-variable=initial,limit,step-size

statements-to-repeat

END DO

• Statements in between DO and END DO, referred to
as the body of the loop, are repeatedly executed.

• The integer control-variable is referred to as
the loop counter.

• Execution proceeds as follows:

1. Set the value of control-variable to initial.
2. Check to see if control-variable is

≤ limit if step-size > 0, or
≥ limit if step-size < 0.

3. If so, the body of the loop is executed, step-size
is added to control-variable and step 2 is
repeated. Otherwise, repetition terminates.

• If not specified, the value of step-size is one.

– CS1510 Lecture 8 – 2



Example 1: Counter-controlled DO
PROGRAM Squares

INTEGER::i

DO i=1,10

WRITE(*,’(2I6)’) i, i*i

END DO

END PROGRAM Squares

• This program prints a list of squares from 1 to 10.

• Execution proceeds as follows:

1. The loop counter i is initialized to 1.
2. Since this value is less than the limit of 10, the

WRITE statement is executed.
3. We go back to the DO statement where i is

increased by one (the default value).
4. This value is less than 10 so the WRITE

statement is executed.
5. This iteration continues up to i=10, when the

WRITE statement is executed for the last time
since i is then increased to 11 which is greater
than 10, ending the loop.

6. Execution moves to the statement following the
END DO.

– CS1510 Lecture 8 – 3



Example 2: DO

PROGRAM Odd

INTEGER::i,n

READ(*,*) n

DO i=1,n,2

WRITE(*,*) i

END DO

END PROGRAM Odd

• Prints out the odd numbers less than or equal to n.

• The loop counter i is initialized to 1, and is
increased by 2 on each iteration of the loop. The
loop terminates when i is greater than n.

• If n is odd, say 7, then i will have the value 1 on
the first iteration of the loop, 3 on the second, 5
on the third, and 7 on the fourth, after which the
loop terminates. Thus, the WRITE statement was
executed 4 times.

• If n is even, say 8, then the loop is again executed 4
times, with the same output as above since 7+2=9
(which is >8).

– CS1510 Lecture 8 – 4



After the loop

• What is the value of the loop counter at the end of
the loop execution?

• For example, if we were to print the value of i after
the loop in the first example:

PROGRAM Squares

INTEGER::i

DO i=1,10

WRITE(*,’(2I6)’) i, i*i

END DO

END PROGRAM Squares

we would obtain i=11 since the counter is increased
prior to checking if it has exceeded the limit.

– CS1510 Lecture 8 – 5



Example 3: DO

• The only restriction on the value of step-size

is that it be nonzero, therefore, we can have
a negative step-size such that the value of
control-variable is decremented.

• Repetition continues as long as the value of
control-variable is greater than or equal to
limit.

• Example:

PROGRAM Hello

INTEGER::i

DO i=10,1,-1

WRITE(*,*) ’Hello’

END DO

WRITE(*,*) ’i = ’,i

END PROGRAM Hello

• Hello would be printed 10 times and the value of
i printed after the loop would be 0.

– CS1510 Lecture 8 – 6



Counter-controlled DO loop

• The number of repetitions of a counter-controlled
DO loop is determined prior to the start of repetition.

• This number depends on the values of init, limit,
and step-size.

• Although the values of variables init, limit, and
step-size can be changed within the body of the
loop, such a change does not affect the number
of repetitions. This is generally poor programming
practice.

• Attempting to change the value of the
control-variable within the body of the loop
will result in a compile-time error.

– CS1510 Lecture 8 – 7



Example 4: DO

• The initial value, the limit, and the step-size can be
variables or expressions in addition to constants.

• Example:

PROGRAM Sum_of_integers

IMPLICIT NONE

INTEGER :: num, i, sum=0

WRITE(*,*) ’This program prints the sum &

& 1 + 2 + 3 +...+ num’

WRITE(*,*) ’Enter a value for num’

READ(*,*) num

DO i=1,num

sum = sum + i

END DO

WRITE(*,*) ’1 + 2 + 3 +...+ ’,num,’ = ’,sum

END PROGRAM Sum_of_integers

– CS1510 Lecture 8 – 8



Example 5: DO

• DO loops can be nested.

• Example:

PROGRAM Mult_table

IMPLICIT NONE

INTEGER :: m, n, lastm, lastn, prod

WRITE(*,*) ’Calculating m*n up to some limit’

WRITE(*,*) ’Enter the limit of m and n’

READ(*,*) lastm, lastn

WRITE(*,*) ’M N M*N’

WRITE(*,*) ’-------------’

DO m=1,lastm

DO n=1,lastn

prod = m*n

WRITE(*,2) m,n,prod

END DO

END DO

2 FORMAT(I2,2X,I2,2X,I3)

END PROGRAM Mult_table

– CS1510 Lecture 8 – 9



Fortran statements: DO-WHILE

• A DO-WHILE loop combines the iteration of a
DO loop with the conditional execution of an IF
statement.

• This is useful when the number of repetitions is not
known in advance.

• Syntax:

DO WHILE (logical-expression)

statements-to-repeat

END DO

• logical-expression is any expression that
evaluates to true or false.

• The loop iterates as long as logical-expression
is true.

– CS1510 Lecture 8 – 10



Example 6: DO WHILE

PROGRAM While

IMPLICIT NONE

INTEGER::n,m

n=0

m=5

DO WHILE((m-n)>0)

n=n+1

WRITE(*,90) m,n

END DO

90 FORMAT(’m = ’,I2,’ n = ’,I2)

END PROGRAM While

Output:

m = 5 n = 1

m = 5 n = 2

m = 5 n = 3

m = 5 n = 4

m = 5 n = 5

– CS1510 Lecture 8 – 11



Example 7: DO WHILE

PROGRAM While_odd

INTEGER::i,n

i=1

READ(*,*) n

DO WHILE (i<=n)

WRITE(*,*) i

i=i+2

END DO

END PROGRAM While_odd

• Like PROGRAM Odd, the above program prints the
odd numbers less than or equal to n, but uses a
DO WHILE loop instead of a counter-controlled DO
loop.

– CS1510 Lecture 8 – 12



Fortran statements: DO EXIT

• Syntax:

DO

statement-sequence-1

IF (logical-expression) EXIT

statement-sequence-2

END DO

• IF logical-expression is true, the EXIT

command causes the execution to break out of
the loop, that is, execution is immediately moved
to the statement following the END DO.

• A DO EXIT loop behaves similar to a DO WHILE
loop in the case where statement-sequence-1 is
not present.

• One has to be careful to not introduce an infinite
loop (ie. a loop that never stops iterating)
since termination of a DO EXIT loop requires
logical-expression to be true at some point.

– CS1510 Lecture 8 – 13



Example 8: DO EXIT

PROGRAM Summation

IMPLICIT NONE

INTEGER :: num, sum, limit

WRITE(*,*) ’Finding smallest value of n such that &

& 1+2+...+n exceeds limit’

WRITE(*,*) ’Enter value for limit’

READ(*,*) limit

num = 0

sum = 0

DO

IF (sum > limit) EXIT

num = num + 1

sum = sum + num

END DO

WRITE(*,*) ’1+...+’,num,’=’,sum,’>’,limit

END PROGRAM Summation

– CS1510 Lecture 8 – 14



Fortran statements: CYCLE

• In some cases we may want to terminate the current
iteration of a loop and return to the beginning of
the loop for the next iteration.

• This can be accomplished by using a CYCLE
statement.

• Syntax:

DO i=1,N

statement-sequence-1

IF (logical-expression-1) CYCLE

statement-sequence-2

END DO

• If logical-expression-1 is true on any given
iteration, statement-sequence-2 is skipped, and
execution returns to the top of the loop.

• A CYCLE statement can be used in any type of DO
loop.

– CS1510 Lecture 8 – 15



A few more points about loops

• The statements within each loop should be indented
for clarity.

• It is possible for the body of a loop to never be
executed. For example, in a counter-controlled DO
loop, if initial exceeds limit on the first check,
then control jumps to the statement following the
END DO.

• EXIT and CYCLE can also be used in counter-
controlled DO and DO WHILE loops.

– CS1510 Lecture 8 – 16


