Computer Science 1510

Lecture 23/24

Lecture QOutline

e Repetition

e Functions

— (CS1510 Lecture 23 —



Example: while loop

Calculating mean time to failure:

#include <stdio.h>

int main(int argc, char *argv([]){
int numtimes;
float ftime, sum, mean;
const float end=-1.0;

sum=0.0;
numtimes=0;

printf ("Enter failure time (%f to stop): ",end);
scanf ("%4f" ,&ftime) ;

while (ftime !'= end) {
numtimes++;
sum = sum + ftime;
printf ("Enter failure time (%f to stop): ",end);
scanf ("%f" ,&ftime) ;

if (numtimes!=0){
mean = sum/numtimes;
printf ("Read %d failure times\n",numtimes);
printf ("Mean time to failure is %f\n",mean);
}
elseq{
printf ("No failure times were entered\n");

return O;

— CS1510 Lecture 23 -



do while loop

e Syntax:

do{
statement-block;
} while (logical-expression);

where logical-expression is any valid C
expression that evaluates to an integer that can
be interpreted as true (non-zero) or false (zero).

e Example:

do{

scanf ("/%d",&y) ;
X++;

)

} while (x<10 && y!=5);

e In a do while loop, the first iteration is not
dependent on a condition, ie. at least one iteration
of the body of the loop is completed.

— CS1510 Lecture 23 -



The break statement

e \We have seen the use of the break statement in a
switch block.

e [he break statement can also be used within a

loop to break out of the loop and begin executing
from the first statement after the loop.

e For example,

while (logical-expression){
statement-sequencel;
if (test) break;
statement-sequence?2;

+

statement-sequence3d;

e In this example, if test evaluates to true then
statement-sequence2 is skipped, and execution
jumps to statement-sequence3.

— CS1510 Lecture 23 - 6



The continue statement

e The continue statement is used within a loop to
cause control to immediately return to the beginning

of the loop.
e For example,

for (i=0;i<n;i++){
statement-sequencel;
if (test) continue;
statement-sequence2;

+

e In this example, if test evaluates to true then
statement-sequence2 is skipped, and execution
jumps to the beginning of the loop, where the
increment is executed, and the loop condition is
retested.

e If the end condition evaluates to true, then execution
continues with statement-sequencel.

— CS1510 Lecture 23 - 7



Functions

e \We have used several C functions available in the
stdio and math libraries.

e Now we will see how to write our own functions in
C to allow us to divide a program up into smaller
parts and/or write general purpose functions that
may be reused later.

e Syntax:

return_type function_name(argument_list)

{

variable_declarations;
body_of_function;
return expression;

where return_type is the type of the value
returned by the function, function_name is the
name used to call the function, and argument_1list
defines the values that will be received by the
function (from the calling function).

— CS1510 Lecture 24 — 5



Functions

e Like Fortran functions, C functions return a value.
However, the value returned does not have to be
stored in a specific variable.

e In C, the expression in the return statement is
the value that will be returned from the function,
and can be any valid C expression.

e The argument_list takes the form,

typel idenl, type2 iden2,..., typeN idenN

where idenl, iden2,. . ., are the variable names of
the arguments to be passed into the function, and
typel, type2,. .., are the corresponding types of
the arguments.

e Like in Fortran, C functions can be called from any
location where a value of type return_type can
be used, including in assignment statements and
expressions.

— CS1510 Lecture 24 — 6



Functions

e Variables defined in a C function are local to that
function, and are not visible to the calling program
or function.

e In C, a function must be declared before it can be
used.

e One way to do this is to define the function before
the main function, ie. include the entire function
before the main function.

e An alternative method is to write a function
declaration at the beginning of the file, and define
the function at the end.

This is of the form
return_type function_name(argument list);

— CS1510 Lecture 24 — 7



Example: Functions - Temperature
conversion

#include <stdio.h>
float fahr_to_cel(float temp);
int main(int argc, char *argv[]){

float fahr,cel;
char next;

do{
printf ("Enter a temperature in Fahrenheit\n");

scanf ("%f",&fahr) ;

/* Convert the temperature to celsius */
cel = fahr_to_cel(fahr);

printf("%f in Fahrenheit is %f in celsius\n",fahr,cel);

/* Remove newline character from buffer */
scanf ("%c",&next) ;

printf ("Are there more temperatures to convert? [y/n]\n");
scanf ("/%c",&next) ;
} while (next==’y’);
return O;
float fahr_to_cel(float temp){

return (temp-32.0)/1.8;
}

— CS1510 Lecture 24 —

10



Type void

e The void data type is sometimes useful when
writing functions.

e void is used when there is to be no value returned,
and/or no arguments passed into a function.

e For example, if we declare a function like,
int myfuncl(void);

which returns an integer, but takes no arguments,
myfuncl could be called as follows:

a=myfunc1();
e \We could also declare a function like,
void myfunc2(int a, float x);

which takes two arguments, an int and a float,
but returns nothing.

— CS1510 Lecture 24 — 11



Pass-by-value / Pass-by-reference

e The function myfunc?2 raises the question of what
a function that returns nothing would actually
accomplish.

e In Fortran we saw that arguments that are passed
into subprograms are not copied, but instead, the
address of the variables in memory is passed into
the function. Thus, depending on the INTENT of a
given variable, its value can be modified within the
subprogram.

e This behaviour is called pass-by-reference, since in
Fortran we are passing the references to the variable
locations in memory.

e C however, is pass-by-value. Thus, when a variable
is passed into a function in C, the function gets a
local copy of the variable, and any changes made to
its value would not be seen by the calling function.

— CS1510 Lecture 24 — 12



Pass-by-value / Pass-by-reference

e So if C functions receive a copy of a variable, and
any changes to that variable within the function are
not seen by the calling function, then we must ask:

— Can a C function modify a variable in the calling
function?

— And how can we “return” more than one value
from a function?

e To do this we must explicitly pass references to the
variable locations in memory, that is, we pass the
address of the variables.

e For this we will need to use pointers (see later).

— CS1510 Lecture 24 — 13



Example

e Here is a C program with a function:

#include <stdio.h>

void location_check(int x){
int y = 10;
printf ("In location_check() y

%d and &y = J%u\n", y, &y);
%d and &x = %u\n", x, &x);

printf ("In location_check() x

int main(int argc, char *argv([]){
int y = 2, x = 5;

printf("In main(), y
printf("In main(), x

»d and &y = %u\n", y, &y);
%d and &x = %u\n", x, &x);

location_check(y);
return O;

e And here is the output:

In main(), y = 2 and &y = 3221223212

In main(), x 5 and &x = 3221223208

In location_check() y = 10 and &y = 3221223164
In location_check() x = 2 and &x = 3221223184

— CS1510 Lecture 24 — 14





