Computer Science 1510

Lecture 2

Lecture QOutline

e Computer number systems and representation
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Computer Number Systems

e We are accustomed to using the decimal number
system, which uses 10 digits: 0,1,2,3,4,5,6,7,8,
and 9. To count in decimal we simply add one to
get the next number (1+1=2, 2+ 1 = 3, etc.).

e When we reach the last digit, 9, to add one we
concatenate two digits to give 9 + 1 = 10.

e |f we consider a larger number, say 3025, we can
decompose that number into its concatenated parts:

3025 = (3 x 1000) + (0 x 100) + (2 x 10) + (5 x 1)
= (3 x10°%) + (0 x 10%) + (2 x 10") + (5 x 10°).

e The decimal number system uses base 10.
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Binary

e \We have already seen that computers use the binary
number system to store information.

e The binary number system uses base 2, with digits
0 and 1. Counting in binary we have,

0+1 = 1,
1+1 = 10,
10+1 = 11,
11+1 = 100,

and so on.

e Although computers use binary to store information,
arithmetic may be performed in number systems
such as hexadecimal, or octal.
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Hexadecimal and Octal

e The hexadecimal system uses base 16, with digits
0,1,2,3,4,5,6,7,8,9, A, B,C, D, E F'.

e Counting in hexadecimal:

0+1 = 1,
9+1 = A,
F+1 = 10,
19+1 = 1A,

and so on.
e Note that “10" in hexadecimal is 16 in decimal. To
avoid any confusion we write the base as a subscript,

1016.

e The octal system uses base 8, with digits
0,1,2,3,4,5,6,7.
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Conversion to decimal

e To convert a number d;d;_1...dydy from base
b to decimal we decompose the number into its
constituent parts,

(didi_1...dido)y = (di x b") + (dj—y x b*71) + -+

+(d1 x bY) + (dg x b%).

e Examples:

— Hexadecimal to decimal conversion (keeping in
mind that A16 = 1010, BlG = 1110, etc.):

14815 = (1 x 16°%) + (10 x 16") + (8 x 16")
= 256 + 160 + 8 = 4244,

— Binary to decimal conversion:

10115 = (1x2°%)+(1x2Y)+(1x2") = 84241 = 1144
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Conversion from decimal

e [o convert a decimal number to base b we divide
out successive powers of b.

e Example: Decimal to hexadecimal conversion:
Consider 5861.

— We can divide out 162 since 586/16%=2.289.
Thus there are 2, 16%'s in 586 plus some leftover
(0.289), that is, 58619 = (2 X 16%) + .. ..

— We are now left with
586 — (2 x 16%) = 586 — 512 = 74.

From 74 we can divide out 16! since 74/16% =
4.625, 58619 = (2 x 162) + (4 x 16%) + .. ..

— Finally, we have 74 — (4 x 161) = 10 remaining,
which can be expressed in hexadecimal as
(A x 16%), giving us the final hexadecimal
representation,

58610 = (2x16%)+(4x161)+(Ax16") = 24 A1s.
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Conversion from decimal

e Conversion from decimal to binary can be done very
quickly by using the remainders.

e Example:
Consider 157.

157 /2 = 78 R 1
78/2 = 39 R 0
39/2 = 19 R 1
19/2 = 9 R 1
9/2 = 4 R 1
4/2 2 R 0
2 /2 1 R 0
1/2 = 0 R 1

Reading the remainders from the bottom we have,

15710 = 100111015

— CS1510 Lecture 2 — 6



Binary to hexadecimal

e Binary numbers are difficult to read since even small
numbers require many bits (binary digits).

e Binary is often converted to hexadecimal since the
conversion can be done quickly and hex numbers
are much easier to read.

e Quick conversion between binary and hex is due to
the hex base being a multiple of the binary base
(2% = 16). Thus, every hex digit can be represented
by 4 bits.

e We only need to be able to count to 16 in binary.
e Consider 3A515.
Taking each digit: 314 = 00115, A1 = 1010,
516 = 01015,

3A516 = 0011101001015.
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Character representation

e Recall that 8 binary bits make up a byte.

e An encoding method such as ASCIl or Unicode is
used to store characters. The ASCII representation

of the letter ‘A’ is 01000001.

e Each letter requires 1 byte, therefore each location
in memory can store one character.

e The ASCIl table includes the alphabet in both
upper and lower case, digits 0-9, symbols (;, &,
©, etc.), white spaces (blank space, tab, new line),
unprintable symbols such as CTRL-A, and some
graphic shapes.
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Ascii Table
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Integer representation

e Bits are grouped into bytes for memory organization.

e Bits (or bytes) are grouped together into words for
number storage and processing.

e The number of bits in a word (the word size) varies
between computers.

e |ntegers are usually stored in 16 or 32 bit words, the
most commonly used being 32 bits.

e For example, using a 16-bit word, the value 10 could
be stored as:

0000000000001010

e But what about —1077
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Integers: Sign-magnitude notation

e One way to store negative numbers is to use 1 bit
as a sign bit and the remaining 15 (or 31) bits for
the value.

e The sign bit would be 1 for negative numbers and
0 for positive numbers.

e So —10 would be stored as:
1000000000001010

e The largest positive number that can be stored in a
sign-magnitude 16-bit word is,

0111111111111111 = 2%° — 1 = 32767

e The largest negative number that can be stored in
a sign-magnitude 16-bit word is,

1111111111111111 = —(2%5 — 1) = —32767
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Integers: Sign-magnitude notation

e Any number outside of the range [-32767,32767]
results in an overflow.

e \What about zero?

e |n sign-magnitude notation, zero has two different
representations,

1000000000000000 = -0
0000000000000000 = 0

e Operations involving negative and positive numbers
does not work properly in all cases.

e One method that is used to overcome these issues
is called 2's complement notation.
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Integers: 2’s complement notation

e In 2's complement notation, the leftmost bit still
represents the sign.

e Positive numbers are stored the same as in sign-
magnitude, allowing representation of values in the
range [1,2!° — 1] (in the case of a 16-bit word).

e Negative numbers in the range —z € [-2'°, —1] are
stored as the binary representation of 216 — z.

e Example:

10 = 0000000000001010
—10 = I1111111111110110

e To see that this does represent —10 we can add the
two binary numbers together and the result should
be zero. Try this!
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Integers: 2’s complement notation

e Given a negative integer, we can find its 2's
complement representation by:

1. Start with the binary representation of the
positive value.

2. Complement (reverse) each of the bits (1's
complement).

3. Add one (2's complement).

e Example: 10000111 in sign-magnitude (= —71¢) is
11111001 in 2's complement.
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Real numbers: IEEE standard

e The sign-magnitude and 2's complement notations
above are used to represent integers. What about
real numbers?

e In general, a real number x can be written in the
form

r = ﬂ:do.dldgdg co dt X 66

where

5 is the base,

e is the exponent (or characteristic),

d; €0,1,2,...,8—1, and

m = dg.d1ds . . . d; is called the mantissa.

o If dy # 0, then x is said to be in normalized form.

From this point on we will consider only numbers in
normalized form.

e |n the case of binary, dy can only be 1 for normalized
numbers.
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Real numbers: IEEE standard

A 32-bit |IEEE standard floating point number has
the following layout:

S| exponent | mantissa |
1 bit 8 bits 23 bits

where S is the sign bit for the number.

Note that the exponent does not have a sign bit.
How do we store negative exponents?

To allow for negative exponents we use a biased
exponent, where an offset is added to all exponents
to ensure that only positive numbers are stored.

If we have 8 bits for the exponent and e is the
(signed) value of the exponent, we would store the
value n = e + 127

With a biased exponent these stored values would
represent exponents in the range [—126, 127].

Exponents of -127 (n = 0) and 128 (n = 255) are
reserved for special cases.
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Real numbers: IEEE standard

e A floating point number = can be represented as:

— If n € (0, 255),
r = (=1)%(1.m)y x 2" 17,
— If n = 255 and

x m = 0 then x = *00 depending on s.
* m # 0 then z=NaN (“not a number").

— If n =0 and
x m = 0 then x = =0 depending on s.
x m % 0 then

r = (—1)%(0.m)y x 27120
These are “unnormalized” values.

e Given a finite number of bits that can be used to
represent a real number, there is a finite set of
real numbers that a computer can represent. This
set of real numbers is referred to as floating point
numbers.
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Example: Storing 19.25

e To determine how the real number 19.25 is stored
in memory we first convert the number to binary.

19 = 10011
0.20 = 0.01

Therefore, 19.25 = 10011.01.
e In normalized form: 10011.01 = 1.001101 x 2%.

e Since we store a biased characteristic we note that
4 =131 — 127. Thus the value 131 is stored as the
exponent. In binary 131 = 10000011

e Putting the pieces together we have,

19.25 =0 10000011 00110100000000000000000
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Example: Storing -118.625

e Since the number to be stored is negative we set
the sign bit to 1.

e In binary we have 118.625 = 1110110.101.
e Normalizing gives 118.625 = 1.110110101 x 2.

e Since we store a biased characteristic we note that
6 = 133 — 127. Thus the value 133 is stored as the
exponent. In binary 133 = 10000101

e Putting the pieces together we have,

—118.625 =1 10000101 11011010100000000000000
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Example: Storing 0.3

e Unlike the previous examples, 0.3 does not have an
obvious representation using negative powers of 2.

e One easy way to convert fractional values to binary
Is to successively multiply by 2 as follows:

03x2 = 06 — 0
06x2 = 12 — 1
02x2 = 04 — O
04x2 = 08 — 0
0.8x2 = 16 — 1
06 x2 = 12 — 1 (repeat from above)

e Thus we have 0.3 = 0.0100110011....
e Normalizing gives 0.3 = 1.00110011 - -- x 272,

e Putting the pieces together we have,

0.3=0 01111101 00110011001100110011001
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Single vs. double precision

e A single precision (binary) floating point number is
stored in a 32-bit word.

e A double precision (binary) floating point number is
stored in a 64-bit word.

In IEEE standard a double precision floating point
number uses 1 bit for the sign, 11 bits for the biased

exponent, and 52 bits for the mantissa. The bias is
1023.

e A quadruple precision (binary) floating point
number is stored in a 128-bit word.

It has a mantissa of 112 bits, and a 15-bit exponent.
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