
Computer Science 1510

Lecture 12

February 1, 2016

Lecture Outline

• Arrays

– CS1510 Lecture 12 –



Structured data

• So far, all the data elements (variables) we have
used in our programs have had distinct, individual
names. (Preferably, names that represent something
in the problem being solved.)

• Often, though, we are interested in collections of
data, where the data elements are related to each
other.

• We often call such collections of related data a data
structure.

• Perhaps the simplest data structure is a list of similar
data elements.

• Examples of lists could be a list of course grades,
a set of telephone numbers, the hourly temperature
measurements for a day, or the components of a
vector.

– CS1510 Lecture 12 – 1



Lists

• Lists are a convenient way of organizing similar data
elements.

• Typically, we give the list a name, and identify
individual data elements in the list by their location
in the list.

• The location is an index pointing to the particular
data element to which it refers.

• For example, for a list with elements (A1, A2, A3,
A4) the index 3 refers to the third element in the
list with name (or label) A.

• We often use subscripts to identify individual
elements in a list.

In fact, the memory of a computer is typically
organized as one large list. A memory address is
simply an index, and the list element is the data
stored at that memory location.

– CS1510 Lecture 12 – 2



Arrays

• Fortran has, as part of its language, the concept of
an array.

• Lists are simply a 1-dimensional array.

• Arrays are sequential and contiguous sections of
memory that can be allocated by a program.

• Each element of an array has the same type
(INTEGER, REAL, etc.).

• The array has a single variable name.

• A 1-dimensional array has an index, or subscript,
which refers to individual elements in the array.

– CS1510 Lecture 12 – 3



Declaration of a one-dimensional array

• Syntax:
type,DIMENSION(start:end)::array_name

or
type::array_name(start:end)

where type is any Fortran data type, array_name
is any legal Fortran identifier, start is the initial
index, and end is the final index. If start=1 then
only end has to be specified.

• For example, INTEGER::grades(8) creates a one-
dimensional array of integers called grades which
has 8 elements.

• grades can now store 8 separate integers.

• To access a particular element in the array we would
specify its position in the array, called its index.

• Each element in the array has a unique index
number. For example, grades(3) refers to the
third element in the array.

– CS1510 Lecture 12 – 4



Using arrays

• Array elements can be used in any location where a
single variable can be used. For example,

– An array element can be assigned a value,
array_name(index)=expression

– A variable can be assigned the value of an array
element,

variable=array_name(index)

– The value of an array element can be displayed,
WRITE(*,*) array_name(index)

– An array element can be used in an arithmetic or
logical expression,

X=array_name(index)**2

IF(array_name(index)==0) EXIT

• Note that in each case above, the index can be
an integer constant, an integer variable, or an
expression that evaluates to an integer.

– CS1510 Lecture 12 – 5



Array initialization

• It is always good practice to initialize your variables.

• Array initialization can be done using a loop. For
example,

DO i=1,8

grades(i)=0

END DO

• Notice the use of the loop counter to index into the
array. The initialization statement is executed with
a different value of i on each iteration of the loop
(from i=1 up to 8).

• The size of the array is often referred to as the
dimension of the array.

• If all elements of an array are to be initialized to
the same value, a single assignment statement can
be used,

grades = 0

– CS1510 Lecture 12 – 6



Array input/output

• One method of reading in values for an array is to
use a loop,

DO i=1,8

READ(*,*) grades(i)

END DO

• This is equivalent to 8 READ statements.

• Alternatively, the single READ statement,

READ(*,*) grades

can be used. Execution will be suspended until
enough values to fill the array have been entered.

• An implied DO loop can also be used,

READ(*,*) (grades(i), i=1,8)

• The above methods also apply to array output (ie.
WRITE statements).

– CS1510 Lecture 12 – 7



Example 1: Arrays

PROGRAM Processing_Failure_Times_1

!-----------------------------------------------------------------------

! Program to read a list of failure times, calculate the mean time to

! failure, and print a list of failure times that are greater than the mean.

! Input:

! FailureTime : one-dimensional array of failure times

! NumTimes : size of the array (constant)

! Output:

! Mean_Time_to_Failure : mean of the failure times

! List of failure times greater than Mean_Time_to_Failure

!-----------------------------------------------------------------------

IMPLICIT NONE

INTEGER,PARAMETER::NumTimes=50

REAL,DIMENSION(NumTimes)::FailureTime

INTEGER::I

REAL::Sum,Mean_Time_to_Failure

! Read the failure times and store them in array FailureTime

WRITE(*,*) ’Enter the ’, NumTimes, ’failure times’

READ(*,*) FailureTime

! Calculate the mean time to failure

Sum=0.0

DO I=1,NumTimes

Sum=Sum+FailureTime(I)

END DO

Mean_Time_to_Failure = Sum/NumTimes

WRITE(*,’(A,X,F6.1)’) ’Mean time to failure =’, Mean_Time_to_Failure

! Print list of failure times greater than the mean

WRITE(*,*) ’List of failure times greater than the mean:’

DO I=1,NumTimes

IF (FailureTime(I) > Mean_Time_to_Failure) &

WRITE(*,’(F9.1)’) FailureTime(I)

END DO

END PROGRAM Processing_Failure_Times_1

– CS1510 Lecture 12 – 8



Example 2: Arrays

PROGRAM Grade_array

!--------------------------------------------------------------

! This program accepts assignment marks from the user, and

! calculates and displays the average assignment mark, as

! well as the maximum and minimum mark.

! INPUT:

! n - number of assignment marks to be entered.

! assign - array of assignment marks (of size n).

! OUTPUT:

! assign_avg - average of the assignment marks.

! assign_max - maximum assignment mark

! assign_min - minimum assignment mark

!--------------------------------------------------------------

IMPLICIT NONE

INTEGER::assign(999),i,n

REAL::assign_avg

INTEGER::assign_max,assign_min

INTERFACE

FUNCTION Avg(marks,n)

INTEGER,INTENT(IN)::marks(n),n

REAL::Avg

END FUNCTION Avg

SUBROUTINE Maxmin(marks,n,amax,amin)

INTEGER,INTENT(IN)::marks(:),n

INTEGER,INTENT(OUT)::amax,amin

END SUBROUTINE Maxmin

END INTERFACE

WRITE(*,*) ’How many assignment grades would you like to enter?’

READ(*,*) n

DO i=1,n

WRITE(*,10) ’Enter assignment mark ’,i

READ(*,*) assign(i)

END DO

10 FORMAT(A25,I1)

– CS1510 Lecture 12 – 9



assign_avg=Avg(assign,n)

WRITE(*,*) ’The average assignment mark is ’,assign_avg

CALL Maxmin(assign,n,assign_max,assign_min)

WRITE(*,*) ’The maximum assignment mark is ’,assign_max

WRITE(*,*) ’The minimum assignment mark is ’,assign_min

END PROGRAM Grade_array

FUNCTION Avg(marks,n)

INTEGER,INTENT(IN)::marks(n),n

REAL::Avg

INTEGER::i ! This is a local variable

REAL::sum ! This is a local variable

sum=0.0

DO i=1,n

sum=sum+marks(i)

END DO

Avg=sum/n

RETURN

END FUNCTION Avg

SUBROUTINE Maxmin(marks,n,amax,amin)

INTEGER,INTENT(IN)::marks(:),n

INTEGER,INTENT(OUT)::amax,amin

INTEGER::i

amax=marks(1)

amin=marks(1)

DO i=2,n

IF(marks(i)>amax) THEN

amax=marks(i)

END IF

IF(marks(i)<amin) THEN

amin=marks(i)

END IF

END DO

RETURN

END SUBROUTINE Maxmin

– CS1510 Lecture 12 – 10



Notes on PROGRAM Grade array

• The above program is an example of using a
combination of functions and subroutines within
the same program.

• We have declared an array with a size much larger
than required such that the user can choose how
many marks to enter. This makes the program
much more general.

• The user supplied number of marks is passed into
the function Avg and used to determine the number
of loop iterations.

• In the subroutine Maxmin we have used an assumed

size array (: as the array size), where the subroutine
assumes the same size as in the main program.

• With the function and subroutine written in this
way, both can be easily reused in another application
where the specific tasks are required.

– CS1510 Lecture 12 – 11



Array processing

• Consider an integer array of 6 elements called A.
Array elements can be assigned values in any of the
following ways:

A = (/ 2, 4, 6, 8, 10, 12 /)

A = (/ (2*I, I=1,6) /)

A = (/ 2, (I, I=4,8,2), 10, 12 /)

• Operators and functions that we have so far applied
to simple variables expressions can also be applied to
arrays. Each operation is performed element-wise.
For example,

INTEGER::A(4)=(/ 1,2,3,4 /)

INTEGER::B(4)=(/ 5,6,7,8 /)

INTEGER::C(4)

C=A+B

will result in the elements of C having values
6,8,10,12.

– CS1510 Lecture 12 – 12



Array processing

• Logical expressions can also be used. For example,

P = (C > 0)

• Portions of an array can be extracted using an index

triplet. For example,

A(2:10:2)

refers to elements 2, 4, 6, 8, and 10 of the array A.

• An index vector can also be used to extract elements
of an array. For example,

INTEGER::A(6) = (/ 2, 4, 6, 8, 10, 12 /)

INTEGER::B(3),I(3) = (/ 4, 1, 2 /)

B=A(I)

results in an array B with elements 8, 2, 4.

– CS1510 Lecture 12 – 13



Array processing

There are several built-in array processing subprograms
in Fortran. The following is a partial list.

ALLOCATED(A) Returns true if memory has been
allocated for A (see later).

DOT_PRODUCT(A,B) Returns the dot product of arrays A

and B.
MAXVAL(A) Returns the maximum value in array

A.
MAXLOC(A) Returns the location of the first

occurrence of the maximum value in
array A.

MINVAL(A) Returns the minimum value in array
A.

MINLOC(A) Returns the location of the first
occurrence of the minimum value in
array A.

PRODUCT(A) Returns the product of the elements
in A.

SIZE(A) Returns the number of elements in A.
SUM(A) Returns the sum of the elements in A.

– CS1510 Lecture 12 – 14


