
Computer Science 1510

Lecture 19

Lecture Outline

• Pointers

– CS1510 Lecture 19 –



Pointers

• Consider an INTEGER variable a, declared using,

INTEGER::a

The compiler allocates memory for the variable a,
to store an integer value.

• The variable name can then be used to access this
location in memory, to either assign a value to that
variable, or retrieve the value stored there.

• The variable name a can only ever be used to refer
to the specific memory location assigned to it by
the compiler.

• A POINTER allows a program to reference a variable
by a different name. It acts as an alias.

• Whereas a variable name always refers to the same
location in memory, a pointer can be reassigned to
point to different locations.

– CS1510 Lecture 19 – 1



Pointers

• Syntax:

type,POINTER::pointer-variable

where pointer-variable can be used to access a
memory location where a value of the specified type
can be stored.

• When a pointer variable is declared it is initially
undefined, ie. it does not point to any location in
memory.

• The ALLOCATE statement can be used to acquire
memory locations to associate with pointer
variables.

pt1

This memory location is referred to as a target.

• Example: ALLOCATE(pt1)

– CS1510 Lecture 19 – 2



Pointers

• Pointers variables are in one of three states:

– Undefined - As when they are declared.
– Associated - When pointing to a target.
– Disassociated - When the association is broken.

A pointer in this state is said to be null.

• The Fortran function ASSOCIATED can be used to
test if a pointer is associated with a target.
Syntax:

ASSOCIATED(pointer-variable)

This function returns true if pointer-variable is
associated with a target, and false otherwise.

• The status of a pointer variable can be changed to
null using the NULLIFY function.
Syntax:

NULLIFY(pointer-variable)

Once the association is broken, the memory location
pointed to by the pointer variable can no longer
be accessed unless pointed to by another pointer
variable.

– CS1510 Lecture 19 – 3



Pointers

• If two pointer variables have the same type, then a
pointer assignment statement,

pt1 => pt2

results in pt1 pointing to the same memory location
as pt2.

• Prior to the assignment:

pt1

pt2

After the assignment:

pt1

pt2

– CS1510 Lecture 19 – 4



Pointers

• Pointer assignment may also be of the form,

pointer-variable => target-variable

where target-variable has the same type as
pointer-variable, but it is not a pointer.

• The target-variable must have the TARGET

attribute to allow a pointer to point to its memory
location:

INTEGER, TARGET :: target_variable

• The ASSOCIATED function can also be used in the
form:

ASSOCIATED(pointer,target)

to check whether pointer points to target.
It can also be used in the form

ASSOCIATED(pointer1,pointer2)

to check whether pointer1 and pointer2 point to
the same target.

– CS1510 Lecture 19 – 5



Pointers

• When pointers are used in expressions, they are
automatically dereferenced, ie. the value that is
stored in the location pointed to by the pointer is
used.

• Therefore, if a pointer is assigned a value, the value
in its associated memory location is changed.

• Consider the following:

INTEGER, TARGET :: i=5

INTEGER, POINTER :: j

j => i

WRITE(*,*) i,j ! i is 5, what is j?

j=6

WRITE(*,*) i,j ! j is now 6, what is i?

What is the final value of i? of j? Why?

– CS1510 Lecture 19 – 6



Example: Pointers

1 PROGRAM Pt_example

2 IMPLICIT NONE

3 INTEGER,POINTER::pt1,pt2

4 INTEGER,TARGET::a,b

5 a=10

6 b=8

7 pt1=>a

8 WRITE(*,*) a,b,pt1 ! Prints 10 8 10

9 a=12

10 WRITE(*,*) a,b,pt1 ! Prints 12 8 12

11 pt1=>b

12 WRITE(*,*) a,b,pt1 ! Prints 12 8 8

13 pt2=>a

14 WRITE(*,*) pt2 ! Prints 12

15 pt1=5

16 WRITE(*,*) a,b,pt1,pt2 ! Prints 12 5 5 12

17 pt2=pt1

18 WRITE(*,*) a,b,pt1,pt2 ! Prints 5 5 5 5

19 a=4

20 WRITE(*,*) a,b,pt1,pt2 ! Prints 4 5 5 4

21 pt2=>pt1

22 WRITE(*,*) a,b,pt1,pt2 ! Prints 4 5 5 5

23 NULLIFY(pt1)

24 WRITE(*,*) pt1 ! Prints 0

25 END PROGRAM Pt_example

Line numbers have been added to the program above
for referencing individual lines below.

Line 3:

• Both pt1 and pt2 are declared as integer pointers,
and are thus not regular variables. They are

– CS1510 Lecture 19 – 7



currently not associated with a memory location.

• A pointer cannot store a value.

• A pointer can only reference a value of the same
type (ex. INTEGER).

Line 4:

• INTEGER,TARGET::a,b creates variables that can
store integer values, but that also allows pointers to
reference (or point to) the memory locations where
those integers are stored.

• TARGET modifies a regular variable such that both
the variable name (a in this case), and a pointer
can access the value stored in memory.

Lines 5 and 6:

• The variable a is assigned a value of 10, and b is
assigned a value of 8.

Line 7:

• Here pt1 is associated with the memory location
allocated for a.

• We say that pt1 points to a.

– CS1510 Lecture 19 – 8



Line 8:

• This WRITE statement prints out 10 8 10 since a

was set to 10 (line 5), b was set to 8 (line 6), and
pt1 is pointing to the memory location where the
value of a is stored.

Line 9:

• The variable a is reassigned a value of 12.

Line 10:

• This WRITE statement prints out 12 8 12 since a

was set to 12 (line 9), b was set to 8 (line 6), and
pt1 is still pointing to the memory location where
the value of a is stored.

• Recall that a pointer never stores a value, and will
therefore print the value currently stored in the
memory location that it is pointing to.

Line 11:

• pt1 is set to point to the value of b.

– CS1510 Lecture 19 – 9



Line 12:

• This WRITE statement prints out 12 8 8 since a

was set to 12 (line 9), b was set to 8 (line 6), and
pt1 is pointing to the memory location where the
value of b is stored.

Line 13:

• pt2 is set to point to the value of a.

Line 14:

• This WRITE statement prints out 12 since pt2 is
pointing to the memory location where the value of
a is stored.

Line 15:

• The value in the memory location referenced by pt1
(which is b) is set to 5.

Line 16:

• This WRITE statement prints out 12 5 5 12 since
a was set to 12 (line 9), b was set to 5 (line 15), pt1

– CS1510 Lecture 19 – 10



is pointing to the memory location where the value
of b is stored, and pt2 is pointing to the memory
location where the value of a is stored.

Line 17:

• The value referenced by pt2 (which is a) is assigned
the value referenced by pt1 (which is b), ie. a is
assigned a value of 5.

Line 18:

• This WRITE statement prints out 5 5 5 5 since a

was set to 5 (line 17), b was set to 5 (line 15), pt1
is pointing to the memory location where the value
of b is stored, and pt2 is pointing to the memory
location where the value of a is stored.

Line 19:

• a is assigned a value of 4.

Line 20:

• This WRITE statement prints out 4 5 5 4 since a

was set to 4 (line 19), b was set to 5 (line 15), pt1

– CS1510 Lecture 19 – 11



is pointing to the memory location where the value
of b is stored, and pt2 is pointing to the memory
location where the value of a is stored.

Line 21:

• pt2 is set to point to the same location in memory
as pt1, that is, to the b variable.

Line 22:

• This WRITE statement prints out 4 5 5 5 since a

was set to 4 (line 19), b was set to 5 (line 15),
and both pt1 and pt2 are pointing to the memory
location where the value of b is stored.

Line 23:

• pt1 is set to null, ie. it does not point to anything.

Line 24:

• This WRITE statement prints out 0 since the pointer
was nullified on line 23.

– CS1510 Lecture 19 – 12



Pointers to data structures

• Recall that a pointer variable can be used to access a
memory location where a value having the specified
type (and attributes) can be stored.

• Previously we have seen pointers for integer
numbers.

• A declaration like

CHARACTER(8), POINTER :: StringPtr

can be used only to access memory locations in
which character strings of length 8 reside.

• TYPE Inventory_Info

INTEGER :: Number

REAL :: Price

END TYPE Inventory_Info

TYPE(Inventory_Info), POINTER :: InvPtr

declares that InvPtr is a pointer variable that can
be used to point to locations where structures of
type Inventory_Info are stored.

– CS1510 Lecture 19 – 13



Example: Memory allocation

• Suppose that we would like to be able to increase
the size of an array as necessary during run-time.

• Consider the case where we allocate an array of a
certain size and double the size if and when we run
out of space.

• In this example, we will allocate an array with 5
elements.

• The user will be asked to enter positive integers
which will be stored in the array.

• If the user enters a sixth integer then the array will
be increased in size to 10 elements.

• If the user enters an 11th element then the array
will be increased in size to 20 elements, and so on.

• The program will stop and print out the values
entered when the user enters a value of -1.

– CS1510 Lecture 19 – 14



Example: ALLOCATE

PROGRAM Infinite_array

IMPLICIT NONE

INTEGER,DIMENSION(:),POINTER::array,newarray

INTEGER::i,j,value,AllocateStatus

ALLOCATE(array(1:5),STAT=AllocateStatus)

IF (AllocateStatus/=0) THEN

WRITE(*,*) ’Unable to allocate necessary memory’

STOP

END IF

WRITE(*,*) ’Please enter a positive integer, enter -1 to stop’

READ(*,*) value

i=1

DO WHILE (value/=-1)

IF (i>SIZE(array)) THEN ! The array is too small

! Allocate a new array that is twice the size of the old one.

ALLOCATE(newarray(1:2*SIZE(array)),STAT=AllocateStatus)

IF (AllocateStatus/=0) THEN

WRITE(*,*) ’Unable to allocate necessary memory’

STOP

END IF

WRITE(*,*) ’New memory allocated of size ’,SIZE(newarray)

! Copy the elements from the old array to the new one.

DO j=1,SIZE(array)

newarray(j)=array(j)

END DO

! Deallocate the old array

DEALLOCATE(array,STAT=AllocateStatus)

IF (AllocateStatus/=0) THEN

WRITE(*,*) ’Unable to free memory’

STOP

END IF

! Point the old array pointer to the new array.

array=>newarray

– CS1510 Lecture 19 – 15



END IF

! Add the current value to the array.

array(i)=value

i=i+1

WRITE(*,*) ’Please enter a positive integer, enter -1 to stop’

READ(*,*) value

END DO

WRITE(*,*) (array(i),i=1,SIZE(array))

END PROGRAM Infinite_array

– CS1510 Lecture 19 – 16


