Computer Science 1510

Lecture 7

Lecture QOutline

e Selection: IF statements

e Selection: SELECT-CASE statements

— (CS1510 Lecture 7 —

Control Logic

e So far we have concentrated on programs with
statements executed sequentially from top to
bottom.

e However, some of the algorithms that we have seen
require:

— control over the order in which statements are
executed:

— control over which of a group of statements is to
be executed; or

— control over whether certain statements are
executed at all.

e In the latter two cases we can use IF statements or
SELECT-CASE statements.

— CS1510 Lecture 7 — 1

Logical expressions

e |ogical expressions are expressions that evaluate to
either true or false.

e Logical expressions can consist of logical constants
(.TRUE. or .FALSE.), logical variables, or relational
expressions of the form

expl relational-operator exp2
e Example: X > 2.

e Logical expressions can also be formed by combining
smaller logical expressions using a logical operator.

e Example: X >= 5 AND. X <= 10.

— CS1510 Lecture 7 — 2

Relational operators

e Two items can be compared in a logical expression
using relational operators.

e Relational operators in Fortran include:

Operator Meaning
== Equal to
/= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

e Note that the two items being compared would
normally (but not always) be of the same type.

— CS1510 Lecture 7 — 3

Logical operators

e | ogical operators can be used to combine conditions
in logical expressions.

e |ogical operators in Fortran include:

Operator Meaning
.NOT. Not
.AND. And
.OR. Or

.EQV. Equivalent to
.NEQV. Not equivalent to

e The first operator is a unary operator, meaning that
it operates on one item, .NOT.A, for example.

e The remaining four operators are binary operators,
meaning that they operate on two items. That is
A OP B, where OP is a logical operator.

— (CS1510 Lecture 7 — 4

Logic (truth) tables

— CS1510 Lecture 7 —

A | B |A.AND.B A | B | AORB
T| T T T| T T
T|F F T|F T
FI T F FIT T
F|F F F|F F
A | B |A.EQV.B A | B |ANEQV.B
T| T T T| T F
T|F F T|F T
FI T F FIT T
F|F T F|F F

A | NOT.A

T F

Order of Operations

e Logical operators:
.NOT., .AND., .OR., .EQV. (or .NEQV)

e For expressions containing arithmetic operators,
relational operators, and logical operators, the
operations are performed in the following order:

1. Arithmetic
2. Relational
3. Logical

e Consider Nx*x*2 + 1 > 10 .AND. .NOT. N < 3,
with N=4, we have,

1. Arithmetic: 17 > 10 .AND. .NOT. 4 < 3
2. Relational: . TRUE. .AND. .NOT. .FALSE.
3. Logical: .TRUE. .AND. .TRUE. = .TRUE.

e Using parentheses for clarity is strongly advised.

— CS1510 Lecture 7 — 6

Fortran Statements: IF

e The IF construct can be used if a given sequence of
statements is to be executed or bypassed depending
on the result of a logical expression.

e Syntax:

IF (logical-expression) THEN
statement-sequence
END IF

where logical-expression is some condition that
must be true in order for statement-sequence to
be executed.

e |f the condition is false then statement-sequence
Is not executed and execution continues from the
statement following the IF block.

e Example:

IF (x>=0) THEN
y=X*X
z=SQRT (x)

END IF

— CS1510 Lecture 7 — 7

Fortran Statements: Logical IF

e In the case where only a single statement is to be
executed depending on the result of some logical
expression, a logical IF statement can be used.

e Syntax:
IF (logical-expression) statement

where logical-expression is some condition that
must be true in order for statement to be executed.

e If the condition is false then statement s
not executed and execution continues from the
statement following the IF statement.

e Note that statement is a single command. For
conditional execution of more than one command
we must use the IF-THEN statement.

— CS1510 Lecture 7 — 8

Fortran statements: IF-THEN-ELSE

e In the case where we wish to execute a group
of statements under one condition, but a different
group of statements otherwise then the IF-THEN-
ELSE construct can be used.

e Syntax:

IF (logical-expression) THEN
statement-sequencel

ELSE
statement-sequence?2

END TIF

e Example (evaluation of a piecewise function):

IF (X <= 0) THEN

fval = -x
ELSE

fval = x**2
END IF

— CS1510 Lecture 7 — 9

Fortran statements: ELSE IF

e The final case occurs when one wishes to execute
a group of statements under one condition, but
a different group of statements under a different
condition. Then the IF-ELSE-IF construct can be
used.

e Syntax:

IF (logical-expression-1) THEN
statement-sequencel

ELSE IF (logical-expression-2) THEN
statement-sequence?

END IF

e If neither logical-expression-1 nor
logical-expression-2 are true, then no portion
of the above IF block is executed.

e One can also have an ELSE statement at the end
of the IF-ELSE-IF construct, in which case, exactly
one group of statements within the IF block will be
executed.

— CS1510 Lecture 7 — 10

Example: ELSE IF

PROGRAM Rectangles
IMPLICIT NONE
REAL::x1,x2,y1,y2
REAL: :x3,x4,y3,y4
REAL: :x,y
x1=1;y1=1;x2=3;y2=4
x3=4;y3=b;x4=8;y4=9

WRITE(*,*) ’Enter coordinates:’
READ (*,*) x,y

IF (x>=x1.AND.x<=x2.AND.y>=y1.AND.y<=y2) THEN
WRITE(*,*) ’Inside rectangle 1’

ELSE IF (x>=x3.AND.x<=x4.AND.y>=y3.AND.y<=y4) THEN
WRITE(*,*) ’Inside rectangle 2’

ELSE
WRITE(*,*) ’Outside both rectangles’

END IF

END PROGRAM Rectangles

— CS1510 Lecture 7 — 11

Nested IF statements

e |F statements can also be nested, that is, we are
permitted to use IF statements within IF statements.

IF (logical-expression-1) THEN
statement-sequence-1
IF (logical-expression-2) THEN

statement-sequence-2

END IF
statement-sequence-3

ELSE IF (logical-expression-3) THEN
statement-sequence-4

ELSE
statement-sequence-5

END IF

e Note the indenting used in this example. Such
formatting makes source code much easier to read
and debug.

— CS1510 Lecture 7 — 12

Example: Nested IF

PROGRAM Ascending_order
IMPLICIT NONE
INTEGER: :a,b,c
WRITE(*,*) ’Please enter 3 integers:’
READ(*,*) a,b,c
IF (a<=b.AND.a<=c) THEN ! a is smallest
IF (b<=c) THEN
WRITE(*,*) a,b,c
ELSE
WRITE(*,*) a,c,b
END IF
ELSE IF (b<=a.AND.b<=c) THEN ! b is smallest
IF (a<=c) THEN
WRITE(*,*) b,a,c
ELSE
WRITE(*,*) b,c,a
END IF
ELSE ! ¢ is smallest
IF (a<=b) THEN
WRITE(*,*) c,a,b
ELSE
WRITE(*,*) c,b,a
END IF
END IF
END PROGRAM Ascending_order

— CS1510 Lecture 7 — 13

Logical variables
e Logical data can have one of two values, true or
false.

e In Fortran logical data is indicated by .TRUE. or
FALSE. (Note the periods before and after the
word).

e Fortran Logical: LOGICAL

e Logical variables can be assigned a value with a
statement of the form

logical-variable = logical-expression
e Example: test = .TRUE.

e Printing a logical variable prints T or F.

— CS1510 Lecture 7 — 14

Logical variables

e To read a logical value, the input can consist of an
optional period followed by T or F which may be
followed by other characters. A value of .TRUE.
or .FALSE. is assigned to the variable according to
whether the first letter is T or F.

e Logical variables can be used as the condition in an
IF statement. For example:

PROGRAM Admit
LOGICAL: :1legal
WRITE(*,*) ’Are you 19 years of age or older?’
READ(*,*) legal
IF (legal) THEN
WRITE(*,*) ’You can enter’
ELSE
WRITE(*,*) ’You may not enter’
END IF
END PROGRAM Admit

— CS1510 Lecture 7 — 15

Fortran statements: SELECT-CASE

e In the case where we would like to execute a

different section of code depending on the value of
a single variable or expression, the SELECT-CASE

statement may be used instead of an |F statement.

e Syntax:

SELECT CASE (selector)
CASE (label-list-1)
statement-sequence-1
CASE (label-list-2)
statement-sequence-2
CASE DEFAULT
default-statement-sequence

END SELECT

where selector is an integer, character, or logical
expression, and each label-1list is one or more

possible values of the selector.

— CS1510 Lecture 7 — 16

Fortran statements: SELECT-CASE

o If the value of selector is in label-list-1
then statement-sequence-1 is executed. f
the value of selector is in label-1list-2 then
statement-sequence-2 is executed. Otherwise,
default-statement-sequence is executed.

e Note that there can be any number of cases within
a SELECT block.

o Like the ELSE portion of an IF statement, the
DEFAULT case is optional, and is only executed if
no other case matches.

e Each label-1list can be in one of the following
forms:

value a single value

valuel:value2 range of values from valuel to value2 inclusive
valuel: all values greater than or equal to valuel
:value?2 all values less than or equal to value?2

— CS1510 Lecture 7 — 17

Example 1: SELECT-CASE

PROGRAM Calculator
I This program reads in a simple arithmetic calculation,
! and computes and displays the result.
IMPLICIT NONE
CHARACTER: : op
INTEGER: :k,m,result
WRITE(*,*) ’Enter calculation’
READ(*,*) k,op,m
SELECT CASE (op)
CASE (’+’)
result=k+m
CASE (°-7)
result=k-m
CASE (’/?)
result=k/m
CASE (%)
result=k*m
CASE DEFAULT
WRITE(*,*) ’Invalid operator’,op

END SELECT
WRITE(*,2) k,op,m,result
2 FORMAT(’> °,I3,’ ’,A1,I3,’ = ’,I3)

END PROGRAM Calculator

— CS1510 Lecture 7 — 18

Example 2: SELECT-CASE

PROGRAM Display_grade
! This program reads in an integer mark and
I displays the corresponding letter grade.
IMPLICIT NONE
INTEGER: :mark
WRITE(*,*) ’Please enter a grade’
READ (*,*) mark
SELECT CASE (mark)
CASE (80:100)
WRITE(*,*) ’A’
CASE (65:79)
WRITE(*,*) ’B’
CASE (55:64)
WRITE(*,*) ’C’
CASE (50:54)
WRITE(*,*) ’D’
CASE (0:49)
WRITE(*,*) ’F’
CASE DEFAULT
WRITE(*,*) ’Invalid mark, not within [0,100]°
END SELECT
END PROGRAM Display_grade

— CS1510 Lecture 7 — 19

