
Computer Science 1510

Lecture 13

February 3, 2016

Lecture Outline

• Searching

• File input/output

– CS1510 Lecture 13 –



Searching

• A common programming problem is searching a list
of data for a particular item.

• Assume that the elements in the list are in no
particular order.

• To find the required list item, a search could
start with the first element in the list and search
sequentially until either the desired item is found or
the end of the list is reached.

• This is called a linear search.

– CS1510 Lecture 13 – 1



Example: Linear Search

PROGRAM Linsearch

IMPLICIT NONE

INTEGER :: list(999), num, i, location, to_find

LOGICAL :: found=.FALSE.

WRITE(*,*) ’How many items are to be entered?’

READ(*,*) num

WRITE(*,*) ’Enter values’

READ(*,*) (list(i),i=1,num)

WRITE(*,*) ’What value do you want to find?’

READ(*,*) to_find

location = 1 ! Start with checking the first element

DO

! Terminate if item is found, or end of list has been reached

IF ((location > num).OR.found) EXIT

! Check next element in the list

IF (list(location) == to_find) THEN

found = .TRUE.

ELSE ! Move to next element

location = location + 1

END IF

END DO

IF (found) THEN

WRITE(*,’(A,I4,A,I4)’) ’Value ’, to_find,’ was found at location ’,location

ELSE

WRITE(*,*) ’Item not found’

END IF

END PROGRAM Linsearch

– CS1510 Lecture 13 – 2



File input/output

• For problems involving large data sets, input
from the keyboard and output to the screen are
impractical. I/O from/to files is required.

• There are four basic operations associated with file
input/output:

1. Opening the file.
2. Reading from the file.
3. Writing to the file.
4. Closing the file.

– CS1510 Lecture 13 – 3



Opening a file

• Opening a file allows you to access the file contents,
whether it be to read the contents or add (write)
additional content.

• Syntax:

OPEN (open-list)

where open-list can include the following:

– UNIT=integer – Unit number associated with
the file, any integer can be used

– FILE=string – Name of the file in quotes

– STATUS=string – Status of the file. Possible
values are ‘OLD’, ‘NEW’, and ‘REPLACE’.

– ACTION=string – How the file will be used.
Possible values are ‘READ’, ‘WRITE’, and
‘READWRITE’.

– CS1510 Lecture 13 – 4



– POSITION=string – At what position we start
in the file. Possible values are ‘REWIND’,
‘APPEND’, and ‘ASIS’.

– IOSTAT=integer_variable – The value of the
integer_variable indicates whether the file
was opened successfully. A value of zero indicates
that the file was opened successfully. A positive
value is assigned otherwise.

– There are other clauses that can be included in
the open-list.

• Once a file is open, it remains accessible until a
CLOSE statement is issued.

• Note that unit number 6 refers to standard input
(keyboard) and standard output (screen).

– CS1510 Lecture 13 – 5



Opening a file

• Examples:

1. Open a file called data.dat with unit number 2.
OPEN(UNIT=2,FILE=‘data.dat’)

2. Open a new file called names.dat with unit
number 10.

OPEN(UNIT=10,FILE=‘names.dat’,STATUS=‘NEW’)

3. Open an existing file called prices.dat with unit
number 5.

OPEN(UNIT=5,FILE=‘prices.dat’,STATUS=‘OLD’)

4. Open a file with the filename specified by the
user and stored in a character array, openfile.

CHARACTER(20) :: openfile

READ(*,*) openfile

OPEN(UNIT=7,FILE=openfile)

– CS1510 Lecture 13 – 6



Closing a file

• When you are done accessing the file you should
close the file.

• Closing a file has the following effects:

1. Information can no longer be retrieved from or
added to the file.

2. Information still in a RAM buffer is copied into
the file.

3. No data is lost if a program terminates
prematurely.

• Syntax: (in its simplest form)

CLOSE(UNIT=integer)

where the unit number must match that assigned
to the file in the OPEN statement.

– CS1510 Lecture 13 – 7



Generalized READ statement

• Syntax:

READ(control-list) input-list

where input-list is a variable or list of variables
separated by commas, and control-list may
include the following:

– A unit specifier, ex. UNIT=5.
– A format specifier, ex. FMT=’(I3)’
– An IOSTAT clause.
– A ADVANCE clause.
– There are other clauses that can be included as

well.

• For a READ statement the IOSTAT variable has a
positive value if an input error occurs, a negative
value if the end of the data is encountered but no
input error occurs, and zero if successful.

– CS1510 Lecture 13 – 8



Reading from a file

• To read the contents of a file we use the READ
statement that we have been using all along.

• To tell the READ statement to read from the file
instead of the keyboard we specify the file unit
number in place of the first *.

• Examples:

1. Read a value n from standard input (the
keyboard).

READ(*,*) n

2. Read a value x from a file called prices.dat.

READ(5,*) x

• Note that the OPEN statement which defines the
unit number must occur before the READ statement
that accesses the file.

– CS1510 Lecture 13 – 9



Reading from a file

• Recall that the second * in the READ statement
can be changed to an integer identifying a FORMAT
statement.

• For example, to read integers n and m from a file
called prices.dat we could have the following:

OPEN(UNIT=4,FILE=‘prices.dat’,STATUS=‘OLD’)

READ(4,5) n,m

5 FORMAT(I3,I3)

• The 4 associates the READ statement with the file
prices.dat which was opened with unit number
4.

• The 5 associates the READ statement with the
FORMAT statement labelled 5 which specifies the
type of data to be read from the file. In this case
we are expecting two integers up to 3 digits each.

– CS1510 Lecture 13 – 10



Example 1: File input

PROGRAM Processing_Failure_Times_1

!-----------------------------------------------------------------------

! Program to read a list of failure times, calculate the mean time to

! failure, and then print a list of failure times that are greater

! than the mean. Identifiers used are:

! OpenStatus : status variable for OPEN

! InputStatus : status variable for READ

! FailureTime : one-dimensional array of failure times

! NumTimes : size of the array (constant)

! I : subscript

! Sum : sum of failure times

! Mean_Time_to_Failure : mean of the failure times

! FileName : name of file from which to read times

!

! Input: Name of file from which to read failure times

! Output: Information to user about the data file,

! Mean_Time_to_Failure, and a list of failure times greater

! than Mean_Time_to_Failure

!-----------------------------------------------------------------------

IMPLICIT NONE

INTEGER,PARAMETER::NumTimes=50

REAL,DIMENSION(NumTimes)::FailureTime

INTEGER::OpenStatus,InputStatus,I

REAL::Sum,Mean_Time_to_Failure

CHARACTER(Len=20)::FileName

WRITE(*,*) ’Which file would you like to read failure times from?’

READ(*,*) FileName

! Open file from which to read the failure times

OPEN(UNIT=10,FILE=FileName,STATUS=’OLD’,IOSTAT=OpenStatus)

! Check that file was opened successfully

IF (OpenStatus > 0) THEN

WRITE(*,*) ’Cannot open file!’

STOP

END IF

– CS1510 Lecture 13 – 11



! Read the failure times and store them in array FailureTime

READ(UNIT=10,FMT=’(F4.1)’,IOSTAT=InputStatus) FailureTime

IF (InputStatus > 0) THEN

WRITE(*,*) ’Input error’

STOP

ELSE IF (InputStatus < 0) THEN

WRITE(*,*) ’Not enough data’

STOP

END IF

CLOSE(UNIT=10)

! Calculate the mean time to failure

Sum=0.0

DO I=1,NumTimes

Sum=Sum+FailureTime(I)

END DO

Mean_Time_to_Failure = Sum/NumTimes

WRITE(*,’(A,X,F6.1)’) ’Mean time to failure =’, Mean_Time_to_Failure

! Print list of failure times greater than the mean

WRITE(*,*)

WRITE(*,*) ’List of failure times greater than the mean:’

DO I=1,NumTimes

IF (FailureTime(I) > Mean_Time_to_Failure) &

WRITE(*,’(F9.1)’) FailureTime(I)

END DO

END PROGRAM Processing_Failure_Times_1

– CS1510 Lecture 13 – 12



Example 2: File input

PROGRAM Failure_Times_EOF

!-----------------------------------------------------------------------

! Program to read a list of failure times, calculate the mean time to

! failure, and then print a list of failure times that are greater

! than the mean. Failure times are read from a file until the end

! of the file is reached. Identifiers used are:

! OpenStatus : status variable for OPEN

! InputStatus : status variable for READ

! FailureTime : one-dimensional array of failure times

! I : loop counter

! NumTimes : number of times read

! Sum : sum of failure times

! Mean_Time_to_Failure : mean of the failure times

! FileName : name of file from which to read times

! ValueRead : value read from file

!

! Input: Name of file from which to read failure times

! Output: Information to user about the data file,

! Mean_Time_to_Failure, and a list of failure times greater

! than Mean_Time_to_Failure

!-----------------------------------------------------------------------

IMPLICIT NONE

REAL,DIMENSION(999) :: FailureTime

INTEGER :: OpenStatus, InputStatus, I, NumTimes

REAL :: Sum, Mean_Time_to_Failure, ValueRead

CHARACTER(Len=20) :: FileName

WRITE(*,*) ’Which file would you like to read failure times from?’

READ(*,*) FileName

! Open file from which to read the failure times

OPEN(UNIT=10,FILE=FileName,STATUS=’OLD’,IOSTAT=OpenStatus)

! Check that file was opened successfully

IF (OpenStatus > 0) THEN

WRITE(*,*) ’Cannot open file!’

STOP

– CS1510 Lecture 13 – 13



END IF

I=0

Sum=0.0

! Read the failure times and store them in array FailureTime

DO

READ(UNIT=10,FMT=’(F4.1)’,IOSTAT=InputStatus) ValueRead

IF (InputStatus > 0) THEN

WRITE(*,*) ’Input error’

STOP

ELSE IF (InputStatus < 0) THEN

! Stop reading failure times when end of file is reached.

WRITE(*,*) ’Reached end of file’

EXIT

END IF

! Value read successfully, add to array and sum

I = I+1

FailureTime(I) = ValueRead

Sum=Sum+FailureTime(I)

END DO

CLOSE(UNIT=10)

NumTimes = I

WRITE(*,’(A,I4,A)’) ’Read ’,NumTimes,’ failure times’

! Calculate the mean time to failure

Mean_Time_to_Failure = Sum/NumTimes

WRITE(*,’(A,X,F6.1)’) ’Mean time to failure =’, Mean_Time_to_Failure

! Print list of failure times greater than the mean

WRITE(*,*)

WRITE(*,*) ’List of failure times greater than the mean:’

DO I=1,NumTimes

IF (FailureTime(I) > Mean_Time_to_Failure) &

WRITE(*,’(F9.1)’) FailureTime(I)

END DO

END PROGRAM Failure_Times_EOF

– CS1510 Lecture 13 – 14



Example: File output

PROGRAM Trig_table

!---------------------------------------------------------------

! This program creates a table containing values of sin(x)

! and cos(x), given starting and ending values for x, as well

! as the number of intervals to include in the table.

! INPUT:

! minvalue - the minimum value for x.

! maxvalue - the maximum value for x.

! nvals - the number of intervals between minvalue & maxvalue

! OUTPUT: A file containing x, sin(x), and cos(x)

!---------------------------------------------------------------

IMPLICIT NONE

REAL :: x, init, minvalue, maxvalue, inc

INTEGER :: nvals, i

OPEN(UNIT=7,FILE=’table.dat’,STATUS=’REPLACE’)

WRITE(*,*) ’What is the starting value’

READ(*,*) minvalue

WRITE(*,*) ’What is the ending value’

READ(*,*) maxvalue

WRITE(*,*) ’How many values would you like in the table?’

READ(*,*) nvals

! Write headers to the file

WRITE(7,*) ’x sin(x) cos(x)’

WRITE(7,*) ’-------------------------’

! Compute the increment

inc = (maxvalue-minvalue)/(nvals-1)

x = minvalue

DO i=1,nvals

WRITE(7,10) x, sin(x), cos(x)

x = x + inc

END DO

10 FORMAT(F6.3,2(3X,F6.3))

END PROGRAM Trig_table

– CS1510 Lecture 13 – 15


