Computer Science 1510

Lecture 13

February 3, 2016

Lecture QOutline

e Searching

e File input/output

— (CS1510 Lecture 13 —



Searching

e A common programming problem is searching a list
of data for a particular item.

e Assume that the elements in the list are in no
particular order.

e To find the required list item, a search could
start with the first element in the list and search
sequentially until either the desired item is found or
the end of the list is reached.

e [his is called a linear search.

— CS1510 Lecture 13 - 1



Example: Linear Search

PROGRAM Linsearch
IMPLICIT NONE
INTEGER :: 1ist(999), num, i, location, to_find
LOGICAL :: found=.FALSE.

WRITE(*,*) ’How many items are to be entered?’
READ (*,*) num

WRITE(*,*) ’Enter values’

READ(*,*) (list(i),i=1,num)

WRITE(*,*) ’What value do you want to find?’
READ(*,*) to_find

location = 1 ! Start with checking the first element

DO
! Terminate if item is found, or end of list has been reached
IF ((location > num).OR.found) EXIT
I Check next element in the list
IF (list(location) == to_find) THEN
found = .TRUE.
ELSE ! Move to next element
location = location + 1
END IF
END DO

IF (found) THEN

WRITE(*,’ (A,I4,A,I4)’) ’Value ’, to_find,’ was found at location ’,location
ELSE

WRITE(*,*) ’Item not found’
END IF

END PROGRAM Linsearch

— CS1510 Lecture 13 - 2



File input/output

e For problems involving large data sets, input
from the keyboard and output to the screen are
impractical. 1/O from/to files is required.

e There are four basic operations associated with file
input/output:

1. Opening the file.

2. Reading from the file.
3. Writing to the file.

4. Closing the file.

— CS1510 Lecture 13 - 3



Opening a file

e Opening a file allows you to access the file contents,
whether it be to read the contents or add (write)
additional content.

e Syntax:
OPEN (open-1list)

where open-1ist can include the following:

— UNIT=integer — Unit number associated with
the file, any integer can be used

— FILE=string — Name of the file in quotes

— STATUS=string — Status of the file. Possible
values are ‘OLD’, ‘NEW'’, and ‘REPLACE'.

— ACTION=string — How the file will be used.

Possible values are ‘READ’, ‘WRITE', and
‘READWRITE'.

— CS1510 Lecture 13 - 4



— POSITION=string — At what position we start
In the file. Possible values are '‘REWIND',
‘APPEND’, and ‘ASIS’.

— I0STAT=integer_variable — The value of the
integer_variable indicates whether the file
was opened successfully. A value of zero indicates
that the file was opened successfully. A positive
value is assigned otherwise.

— There are other clauses that can be included in
the open-list.

e Once a file is open, it remains accessible until a
CLOSE statement is issued.

e Note that unit number 6 refers to standard input
(keyboard) and standard output (screen).

— CS1510 Lecture 13 - 5



Opening a file

e Examples:

1.

Open a file called data.dat with unit number 2.
OPEN(UNIT=2,FILE=‘data.dat’)

. Open a new file called names.dat with unit

number 10.

OPEN(UNIT=10,FILE=‘names.dat’,STATUS=‘NEW’)

Open an existing file called prices.dat with unit
number b.

OPEN(UNIT=5,FILE=‘prices.dat’,STATUS=‘0LD’)

Open a file with the filename specified by the
user and stored in a character array, openfile.
CHARACTER(20) :: openfile
READ(*,*) openfile
OPEN (UNIT=7,FILE=openfile)

— CS1510 Lecture 13 - 6



Closing a file

e When you are done accessing the file you should
close the file.

e Closing a file has the following effects:

1. Information can no longer be retrieved from or
added to the file.

2. Information still in a RAM buffer is copied into
the file.

3. No data is lost if a program terminates
prematurely.

e Syntax: (in its simplest form)
CLOSE(UNIT=integer)

where the unit number must match that assigned
to the file in the OPEN statement.

— CS1510 Lecture 13 - 7



Generalized READ statement

e Syntax:
READ (control-list) input-list

where input-1list is a variable or list of variables
separated by commas, and control-list may
include the following:

— A unit specifier, ex. UNIT=5.

— A format specifier, ex. FMT="(13)"’

— An IOSTAT clause.

— A ADVANCE clause.

— There are other clauses that can be included as
well.

e For a READ statement the IOSTAT variable has a
positive value if an input error occurs, a negative
value if the end of the data is encountered but no
input error occurs, and zero if successful.

— CS1510 Lecture 13 - 8



Reading from a file

e To read the contents of a file we use the READ
statement that we have been using all along.

e To tell the READ statement to read from the file
instead of the keyboard we specify the file unit
number in place of the first *.

e Examples:

1. Read a value n from standard input (the
keyboard).

READ(*,*) n
2. Read a value x from a file called prices.dat.

READ(5,*) x
e Note that the OPEN statement which defines the

unit number must occur before the READ statement
that accesses the file.

— CS1510 Lecture 13 - 9



Reading from a file

e Recall that the second * in the READ statement
can be changed to an integer identifying a FORMAT
statement.

e For example, to read integers n and m from a file
called prices.dat we could have the following:

OPEN(UNIT=4,FILE=‘prices.dat’,STATUS=‘0LD’)
READ(4,5) n,m
5 FORMAT(I3,I3)

e The 4 associates the READ statement with the file
prices.dat which was opened with unit number
4.

e The 5 associates the READ statement with the
FORMAT statement labelled 5 which specifies the
type of data to be read from the file. In this case
we are expecting two integers up to 3 digits each.

— CS1510 Lecture 13 - 10



Example 1: File input

PROGRAM Processing_Failure_Times_1

! Program to read a list of failure times, calculate the mean time to
I failure, and then print a list of failure times that are greater
| than the mean. Identifiers used are:

! OpenStatus : status variable for OPEN

! InputStatus : status variable for READ

! FailureTime : one-dimensional array of failure times
! NumTimes : size of the array (constant)

! I : subscript

! Sum : sum of failure times

! Mean_Time_to_Failure : mean of the failure times

! FileName : name of file from which to read times

I Input: Name of file from which to read failure times

! Output: Information to user about the data file,

! Mean_Time_to_Failure, and a list of failure times greater
! than Mean_Time_to_Failure

IMPLICIT NONE
INTEGER,PARAMETER: : NumTimes=50

REAL ,DIMENSION(NumTimes) : :FailureTime
INTEGER: : OpenStatus, InputStatus,I
REAL: :Sum,Mean_Time_to_Failure
CHARACTER (Len=20) : :FileName

WRITE(*,*) ’Which file would you like to read failure times from?’
READ(*,*) FileName

! Open file from which to read the failure times
OPEN(UNIT=10,FILE=FileName,STATUS=’0LD’ ,I0STAT=0penStatus)
I Check that file was opened successfully
IF (OpenStatus > 0) THEN

WRITE(*,*) ’Cannot open file!’

STOP
END IF

— CS1510 Lecture 13 -

11



| Read the failure times and store them in array FailureTime
READ (UNIT=10,FMT="(F4.1)’ ,I0STAT=InputStatus) FailureTime
IF (InputStatus > 0) THEN
WRITE(*,*) ’Input error’
STOP
ELSE IF (InputStatus < 0) THEN
WRITE(*,*) ’Not enough data’
STOP
END IF
CLOSE(UNIT=10)

! Calculate the mean time to failure

Sum=0.0

DO I=1,NumTimes
Sum=Sum+FailureTime (I)

END DO
Mean_Time_to_Failure = Sum/NumTimes
WRITE(*,’(A,X,F6.1)’) ’Mean time to failure =’, Mean_Time_to_Failure

! Print list of failure times greater than the mean
WRITE (x,*)
WRITE(*,*) ’List of failure times greater than the mean:’
DO I=1,NumTimes
IF (FailureTime(I) > Mean_Time_to_Failure) &
WRITE(*,’(F9.1)’) FailureTime(I)
END DO

END PROGRAM Processing_Failure_Times_1

— CS1510 Lecture 13 -

12



Example 2: File input

PROGRAM Failure_Times_EOF

! Program to read a list of failure times, calculate the mean time to
I failure, and then print a list of failure times that are greater

| than the mean. Failure times are read from a file until the end

I of the file is reached. Identifiers used are:

! OpenStatus : status variable for OPEN

! InputStatus : status variable for READ

! FailureTime : one-dimensional array of failure times
! I : loop counter

! NumTimes : number of times read

! Sum : sum of failure times

! Mean_Time_to_Failure : mean of the failure times

! FileName : name of file from which to read times
! ValueRead : value read from file

! Input: Name of file from which to read failure times

! Output: Information to user about the data file,

! Mean_Time_to_Failure, and a list of failure times greater
! than Mean_Time_to_Failure

IMPLICIT NONE

REAL,DIMENSION(999) :: FailureTime

INTEGER :: OpenStatus, InputStatus, I, NumTimes
REAL :: Sum, Mean_Time_to_Failure, ValueRead
CHARACTER (Len=20) :: FileName

WRITE(*,*) ’Which file would you like to read failure times from?’
READ(*,*) FileName

! Open file from which to read the failure times
OPEN(UNIT=10,FILE=FileName,STATUS="0LD’ ,I0STAT=0penStatus)
! Check that file was opened successfully
IF (OpenStatus > 0) THEN

WRITE(*,*) ’Cannot open file!’

STOP

— CS1510 Lecture 13 - 13



END IF

I=0
Sum=0.0
! Read the failure times and store them in array FailureTime
DO
READ (UNIT=10,FMT=’(F4.1)’ ,I0STAT=InputStatus) ValueRead
IF (InputStatus > 0) THEN
WRITE(*,*) ’Input error’
STOP
ELSE IF (InputStatus < 0) THEN
I Stop reading failure times when end of file is reached.
WRITE(*,*) ’Reached end of file’
EXIT
END IF
! Value read successfully, add to array and sum
I =1I+1
FailureTime(I) = ValueRead
Sum=Sum+FailureTime (I)
END DO
CLOSE(UNIT=10)

NumTimes = I

WRITE(*,>(A,I4,A)’) ’Read ’,NumTimes,’ failure times’

I Calculate the mean time to failure

Mean_Time_to_Failure = Sum/NumTimes

WRITE(*,’ (A,X,F6.1)’) ’Mean time to failure =’, Mean_Time_to_Failure

! Print list of failure times greater than the mean
WRITE (*,*)
WRITE(*,*x) ’List of failure times greater than the mean:’
DO I=1,NumTimes
IF (FailureTime(I) > Mean_Time_to_Failure) &
WRITE(*,’(F9.1)’) FailureTime(I)
END DO

END PROGRAM Failure_Times_EOF

— CS1510 Lecture 13 -



Example: File output

PROGRAM Trig_table

! This program creates a table containing values of sin(x)

! and cos(x), given starting and ending values for x, as well

I as the number of intervals to include in the table.

I INPUT:

! minvalue - the minimum value for x.

! maxvalue - the maximum value for x.

! nvals - the number of intervals between minvalue & maxvalue
! OUTPUT: A file containing x, sin(x), and cos(x)

IMPLICIT NONE
REAL :: x, init, minvalue, maxvalue, inc
INTEGER :: nvals, i

OPEN(UNIT=7,FILE=’table.dat’,STATUS=’REPLACE’)

WRITE(*,*) ’What is the starting value’

READ(*,*) minvalue

WRITE(*,*) ’What is the ending value’

READ (*,*) maxvalue

WRITE(*,*) ’How many values would you like in the table?’
READ (*x,*) nvals

! Write headers to the file

WRITE(7,*) ’x sin(x) cos(x)’

WRITE(7,%) ’==—==—===—=—=—————————— )

! Compute the increment
inc = (maxvalue-minvalue)/(nvals-1)
X = minvalue
DO i=1,nvals
WRITE(7,10) x, sin(x), cos(x)
X = X + inc
END DO
10 FORMAT(F6.3,2(3X,F6.3))
END PROGRAM Trig_table

— CS1510 Lecture 13 -



