Computer Science 1510

Lecture 29

Lecture QOutline

e Strings

e Data structures

— (CS1510 Lecture 29 —



The char data type

e In C, characters are stored as one byte integers, but
can be treated as characters when output.

e T his allows us to do “character arithmetic”.
e For example,

#include<stdio.h>

int main(int argc, char *argvl[])
{

char x;

x="A";

X++;

printf ("%c\n",x);
return 0O;

prints B.

— CS1510 Lecture 29 - 1



Character strings

e In C, a character string is simply a one-dimensional
array of characters, terminated by the null character.
The null character is denoted by \O.

e Thus, an n character string requires n + 1 bytes of
memory.

e Single characters are indicated by single quotes (ex.
A°).

e Character strings are denoted by double quotes; ex.
“abc” and “Peter Piper’ are character strings.

The null character is not explicitly included in the
string, but is added by the compiler.

e As we will see later, C has a number of functions
that deal with strings, including one that returns the
size (length) of a string, excluding the null character
terminator.

strlen("abc") returns 3.

— CS1510 Lecture 29 - 2



Character strings

e |t is worthwhile to note that not all arrays of
characters are strings.

It is possible to have character arrays without the
null character terminating the array (this array would
then not be a string.)

e Characters are single bytes, so they are often used
(or misused) to store small numbers. In fact,
because of this, C allows signed and unsigned
characters, even though, logically, a character does
not have a sign.

— CS1510 Lecture 29 - 3



The C standard library

e Thus far, we have seen several functions available
from the C standard library, as well as several from
the math library.

e For example, fopen, fclose, fprintf, printf,
fscanf, and scanf, are all functions that are
declared in stdio.h, which is a part of the C
standard library.

e |t is beyond the scope of this course to examine all
of the functions available in the C standard library,
but we will look at a few.

— CS1510 Lecture 29 - 4



C: fgets

e The fgets function reads a string from an open
stream, up to a newline character.

e Syntax:
fgets(char *s, size, FILE *fp)

where char *s points to the array where the input
string will be stored, size is the maximum number
of characters to be read, and FILE *fp is a pointer
to an open stream (ex. a file or stdin).

e The newline character is included in the array, and
the array is terminated by the null character \0.

e The sscanf function can then be used to extract
the desired elements from the string.

— CS1510 Lecture 29 - 5



Example: fgets and sscanf

e Example:
#include <stdio.h>

int main(int argc, char *argv[])

{
int a,b,c,d;
char buff[256];
fgets(buff,256,stdin) ;
sscanf (buff,"%d %d %d4d",&a,&b,&c);
printf("%d, %d, %d\n",a,b,c);
sscanf (buff,"’%d",&d) ;
printf ("%d\n",d) ;
return O;

Input:
1234

Output:

1, 2, 3
1

— CS1510 Lecture 29 -



C: sprintf

e \We have seen above how to use the sscanf function
to read elements from a string.

e \We also saw how to assign a string to a statically
defined array of characters on the declaration line,
and set a pointer to a string.

e How can we set a character array after the
declaration line?

e The function required is sprintf, which is similar
to printf except that it prints to a string rather
than the screen.

e Syntax:

sprintf (string, description, variable-list);

where string is an array of characters where the
output will be written, description is the format
of the string to be written, and variable-1list is
a list of variables with matching conversion codes
in description.

— CS1510 Lecture 29 - 7



Example: sprintf

#include <stdio.h>

int main(int argc, char *argv([])

{
int a,b,c;
/* Declare a static string of length 256 */
char buff[256];
/* Set buff to the string "1 2 3 */
sprintf (buff,"1 2 3");
/* Read 3 ints from buff */
sscanf (buff,"%d %d %d4d",&a,&b,&c);
printf ("%d, %d, %d\n",a,b,c);
return O;

+

Output:

1, 2, 3

— CS1510 Lecture 29 -



String manipulation

A portion of the C standard library is dedicated to
string manipulation.

Standard library functions associated with string
manipulation are declared in string.h.

We have seen how to read in strings using fgets,
as well as how to extract and print to strings using
sscanf and sprintf respectively.

Now we will see how to copy strings, concatenate
strings, compare strings, etc.

— CS1510 Lecture 29 - 9



C: String copy — strcpy

e Syntax:
strcpy(copy_of_string,string) ;

where string is copied to copy_of_string,
including the terminating null character.

e Example:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[]){
char buff1[1024];
char buff2[1024];
sprintf (buffl,"Hello"); /* Put Hello in buffl */
strcpy(buff2,buff1); /* Copy buffl to buff2 */
printf ("%s %s\n",buffl,buff2);
return O;

e Output: Hello Hello

— CS1510 Lecture 29 - 10



C: String concatenation — strcat

e Syntax:
strcat (stringl,string2);

where string2 is concatenated to the end of
stringl.

e Example:

#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]){
char buff1[1024];
char buff2[1024];
sprintf (buffl,"Hello"); /* Put Hello in buffl */
sprintf (buff2," there"); /* Put there in buff2 */
strcat (buffl,buff2);
printf ("%s\n",buffl);
return O;

e Output: Hello there

— CS1510 Lecture 29 - 11



C: String comparison — strcmp

e Syntax:
strcmp (stringl,string?2) ;

returns an integer with value:
< 0 if stringl < string?2,
= 0 if stringl = string?2,
> 0 if stringl > string2.

e Example:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv([]) {
char buff1[1024];
char buff2[1024];
int cmp;
fgets(buffl,1024,stdin); /* Read in buffl x*/
fgets(buff2,1024,stdin); /* Read in buff2 x*/
cmp=strcmp (buffl,buff2); /* Compare the two strings */
printf ("%d\n",cmp) ;
return O;

— CS1510 Lecture 29 -



C: String tokenizer — strtok

e Syntax:
strtok(string,delimiter);

where string is the string to be tokenized, and
delimiter is the character(s) on which to break
the tokens. The strtok function returns a pointer
to the token, or NULL when no further token is
found.

e On the first call to strtok the string to be tokenized
is the argument; on successive calls to retrieve more
tokens in the same string, the argument NULL is
used.

e A sequence of two or more contiguous delimiters is
considered a single delimiter by the function.

— CS1510 Lecture 29 - 13



C: String tokenizer

e Example:

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv([]) {
const int buff_size=256;
char buff[buff_size];
char *token;
int i=0;
printf ("Enter a string\n");
fgets(buff,buff_size,stdin);

token = strtok(buff," ");

while (token!=NULL) {
printf ("Token %d: %s\n",i++,token);
token = strtok(NULL," ");

}
return O;
}
e Output:

Enter a string
The lively fox chased the tabby cat.
Token 0: The

Token 1: lively
Token 2: fox
Token 3: chased
Token 4: the
Token 5: tabby
Token 6: cat.

— CS1510 Lecture 29 -

— strtok

14



Data structures

e \We saw in Fortran how to group several variables
together into a more complex structure.

e For example, creating a data type for a student
which contains an ID number, a name, and marks
for a particular course.

e The same idea is possible in C using a struct.

e Syntax:

struct name {

type field;

type field;
¥

where name is a tag used to refer to the structure,

and fields are the individual elements comprising
the structure.

— CS1510 Lecture 29 - 15



Data structures

e Example:

struct studentq
char name[40];
int id;
float assign[10];
float midterm, final, grade;

+;

e The above definition simply describes what a
student data type contains.

e [o store student data we must first declare a
student, or an array of students. For example,

struct student class[50];

declares an array of 50 students, each having the
fields defined above.

— CS1510 Lecture 29 - 16



Data structures

e It is also possible to declare a structure on the
definition line after the end brace. For example,

struct student{

char name[40];

int id;

float assign[10];

float midterm, final, grade;
} class[50];

is a valid declaration for an array of 50 students
called class.

e It is much more common to define the structure
separately from the declaration, however.

The separation of the structure definition and the
declaration of an instance of the structure makes
the code more readable.

— CS1510 Lecture 29 - 17



Data structures

e A structure can be initialized by listing the initial
values in order. For example:

struct point {
float x;
float y;
s
struct point p = {0.0, 1.0};

e The value of one structure can be assigned to
another structure (the values of all members are
copied):

struct mystruct {int i; float f; char s[4];};
struct mystruct s1={15,0.5,"hi"}, s2={0,1.0,"bye"};
s1=s2; /* sl now = {0,1.0,"bye"} */

— CS1510 Lecture 29 - 18



Accessing Members of Data structures

e Given a structure, you can access its individual
elements using the “dot” (.) operator.

e For example, to access the first assignment mark of
the first student we would have,

mark=class[0] .assign[0];

e To access the second assignment mark of the fourth
student:

mark=class[3] .assign[1];

— CS1510 Lecture 29 - 19



Accessing Members of Data structures

e Structures can also be referenced with pointers. For
example,

struct student *stl=&class[3];

is a pointer to a student structure, and here points
to the fourth student in the structure.

e Given a pointer to a structure, you can access
the individual elements of the structure using the
“arrow” (->) operator.

e For example, to access the second assignment mark
of the fourth student we could have,

struct student *stl=&class[3];
mark=stl->assign[1];

— CS1510 Lecture 29 - 20



Data structures

e Consider the following structure:

struct point {
float x;
float y;

s

e We can declare and initialize a point as follows:
struct point pt={5.2,3.3};

e We can also nest structures. For example, we can

define a rectangle by its lower left and upper right
corner via

struct rectangle {
struct point sw;
struct point ne;

};

— CS1510 Lecture 29 - 21



Example 1: struct

#include <stdio.h>
int main(int argc, char *argv[])
{
struct point {
float x,y;
3
struct rectangle {
struct point sw,ne; /* Lower left and upper right points */
3
struct point pt; /* Point entered by user */
struct rectangle rl,r2;
printf ("Enter lower left corner of rectangle 1\n");
scanf ("%f %f",&rl.sw.x,&rl.sw.y);
printf ("Enter upper right corner of rectangle 1\n");
scanf ("%f Jf",&rl.ne.x,&rl.ne.y);
printf ("Enter lower left corner of rectangle 2\n");
scanf ("%f %f",&r2.sw.x,&r2.sw.y);
printf ("Enter upper right corner of rectangle 2\n");
scanf ("%f %f",&r2.ne.x,&r2.ne.y);

printf ("Enter coordinates of point to locate\n");
scanf ("%f J%f",&pt.x,&pt.y);
if (pt.x>=rl.sw.x && pt.x<=rl.ne.x && pt.y>=rl.sw.y && pt.y<=rl.ne.y)

{
if (pt.x>=r2.sw.x && pt.x<=r2.ne.x && pt.y>=r2.sw.y && pt.y<=r2.ne.y)

{
printf ("Inside both rectangles\n");
}
else
{
printf("Inside rectangle 1\n");
}

}
else if (pt.x>=r2.sw.x && pt.x<=r2.ne.x && pt.y>=r2.sw.y && pt.y<=r2.ne.y)

{

— CS1510 Lecture 29 - 22



printf("Inside rectangle 2\n");
}

else

{
printf ("Outside both rectangles\n");

}

return O;

— CS1510 Lecture 29 -

23



Data structures

e A structure is really a user defined data type. Simply
defining a structure does not allocate memory for
the structure; memory is allocated when a variable
with the type of the structure is declared.

e The sizeof operator can be used with structures,
just as it is used with the built-in data types:

#include <stdio.h>
int main(int argc, char *argvl[])
{
struct point {
float x,y,2z;
¥
printf("size of structure = %zu \n", sizeof(struct point));
return O;

Output:

size of structure = 12

— CS1510 Lecture 29 - 24



