
Computer Science 1510

Lecture 22

Lecture Outline

• Input / Output

• Selection

• Repetition

– CS1510 Lecture 22 –

Basic Input and Output

• We have seen the printf function which allows the
printing of formatted output to standard out (the
screen).

• Now we will consider basic input, that is, accepting
(or reading) data from the user.

• For this purpose we will use another function
accessible via stdio.h, called scanf.

– CS1510 Lecture 22 – 1

Basic Input in C: scanf

• scanf in C is similar to a READ statement in Fortran,
in that it reads in data from the user into a variable,
or variables.

• Like printf, scanf has the formatting built-in, and
thus does not require the use of a separate format
statement.

• Syntax:

scanf("description",&variable-list);

where description is a string describing the format
of the input, and variable-list is a list of
variables (each preceded by an ampersand &) where
the input data should be stored.

• The description for scanf uses the same escape
sequences and conversion codes as printf.

– CS1510 Lecture 22 – 2

Basic Input in C: scanf

• As for printf, the number and type of variables in
the variable-list must match the number and
type of conversion codes in the description.

• The ampersand, &, is a new operator, which is
prepended to a variable name to obtain the memory
address of that variable.

• It is the address of a variable that must be passed
to scanf.

• Thus, each variable in the variable-list must
have an ampersand prepended to it, provided it is
not an array. We will discuss array addresses later.

• Examples:

scanf("%d",&a); /* Read in a single integer */

scanf("%c",&initial); /* Read in a single character */

scanf("%f",&x); /* Read in a single real value */

– CS1510 Lecture 22 – 3

Example: scanf

#include <stdio.h>

int main(int argc, char *argv[])

{

int age;

float weight;

char initial;

printf("Enter your age, weight, and first initial\n");

scanf("%d %f %c",&age,&weight,&initial);

printf("Age: %d, Weight: %5.1f, Initial: %c\n",

age,weight,initial);

return 0;

}

– CS1510 Lecture 22 – 4

A useful C compiler flag

• Compilers often have many flags which can be used
to modify the compilation behaviour.

• We have seen some of these. For example, the
-o flag allows one to specify the name of the
executable.

• One very useful flag in gcc is -W, which is used to
request the printing of warnings.

• Warnings are similar to error messages, but are
not necessarily things that will cause undesired
behaviour or results.

• The -W flag takes an extra argument to specify
which warnings you would like to see.

• The most commonly used argument is all which
says to display all warnings. So the compile
command would be

gcc -Wall myprog.c

– CS1510 Lecture 22 – 5

C: Selection

• In C, like in Fortran, there are two types of
statements that can be used for selection.

• In C, these are the if statement, and the switch

statement.

• The switch statement in C is similar to the SELECT
statement in Fortran.

• We will consider each of these in more detail.

– CS1510 Lecture 22 – 6

Selection: if statement

• Syntax:

– Form 1:
if (logical_exp) statement;

– Form 2:
if (logical_exp)

{

statement-sequence;

}

– Form 3:
if (logical_exp1){

statement-sequence1;

}

else if (logical_exp2){

statement-sequence2;

}

else{

statement-sequence3;

}

– CS1510 Lecture 22 – 7

Selection: if statement

• The logical_exp above is any valid C logical
expression.

• Note that since C interprets integer values as true
or false, any valid C arithmetic expression could also
be used as the condition.

• The logical ? operator can be used like an if
statement. For example,

minimum = (a<b)? a : b

is the same as writing,
if (a<b){

minimum=a;

}

else {

minimum=b;

}

– CS1510 Lecture 22 – 8

Example 1: if and scanf

#include <stdio.h>

int main(int argc, char *argv[])

{

short age,legal=19;

printf("Please enter your age\n");

scanf("%hd",&age);

if (age>=legal) printf("You can enter\n");

else printf("You are underage\n");

return 0;

}

• Note that the conversion code for a short is %hd.

• Also, the conversion code for a long is %ld, and
the conversion code for a long double is %L.

– CS1510 Lecture 22 – 9

Example 2: if and scanf

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[]){

float a, b, c;

float dis, imag, real, x1, x2;

printf("To calculate the roots of polynomial ax^2+bx+c,");

printf("enter values for a, b, and c\n");

scanf("%f %f %f",&a,&b,&c);

dis = b*b - 4*a*c;

if (dis > 0){ /* Equation has 2 distinct real roots */

x1 = (-b+sqrt(dis))/(2*a);

x2 = (-b-sqrt(dis))/(2*a);

printf("The roots are %f and %f\n",x1,x2);

}

else if (dis < 0){ /* Equation has complex roots */

real = -b/(2*a);

imag = sqrt(fabs(dis))/(2*a);

printf("The roots are %f+%fi and %f-%fi\n",real,imag,real,imag);

}

else if (dis==0){ /* Equation has a double root */

x1 = -b/(2*a);

printf("The equation has a double root at %f\n",x1);

}

return 0;

}

– CS1510 Lecture 22 – 10

Selection: switch

• We have seen the use of if statements in C, we
will now consider switch statements, which are
analogous to SELECT statements in Fortran.

• A switch statement is used when one of several
actions is to be taken depending on the value of a
particular expression.

• Syntax:

switch (expression) {

case value1:

statement-sequence1;

break;

case value2:

statement-sequence2;

break;

default:

statement-sequenceD;

break;

}

– CS1510 Lecture 22 – 11

Selection: switch

• The result of the expression must be of type
char, short, int, or long.

• This result is tested against value1, value2, etc.,
in turn, until a match is found. Execution continues
with the statements following the matching case.

• Note that braces are not required for the case

portions of the statement.

• The break statement is used to “break out of” the
switch statement, such that execution continues
from the statement following the switch block.

• If no match is found, execution will continue from
the statement following the default clause.

• The default block is optional.

– CS1510 Lecture 22 – 12

Selection: switch

• In other words, case statements indicate locations
to begin execution within a switch block, while
break statements indicate where to break out of
the switch block.

• The break statement can be used within any
C construct (such as an if statement, switch

statement, or loop) to “break out of” the
statement, and begin executing from the statement
immediately after the construct.

– CS1510 Lecture 22 – 13

Advantages and disadvantages of switch

• Advantages:

– Can be easier to read than an if statement.
– More efficient than an if statement (only requires

a table look-up).

• Disadvantages:

– Does not work with non-integer data types (such
as floats or strings).

– Does not work with ranges (unlike the Fortran
SELECT statement).

– Cannot use variables in the case values.

– CS1510 Lecture 22 – 14

Example 1: switch
#include <stdio.h>

int main (int argc, char *argv[]){

float k,m,result;

char op;

printf("Please enter expression to evaluate\n");

scanf("%f %c %f",&k,&op,&m);

switch (op) {

case ’+’:

result=k+m;

break;

case ’-’:

result=k-m;

break;

case ’*’:

result=k*m;

break;

case ’/’:

result=k/m;

break;

default:

printf("Invalid operator\n");

}

printf("%6.2f %c %6.2f = %8.2f\n",k,op,m,result);

return 0;

}

– CS1510 Lecture 22 – 15

Example 2: switch

#include <stdio.h>

int main(int argc,char *argv[]) {

char c;

printf("Enter a or b\n");

scanf("%c",&c);

switch (c) {

case ’A’:

case ’a’:

printf("A ok!\n");

break;

case ’B’:

case ’b’:

printf("2B or !2B\n");

break;

default:

printf("I said a or b, not %c!\n",c);

break;

}

return 0;

}

– CS1510 Lecture 22 – 16

Repetition

• There are three types of loops in C: a while loop,
a do while loop, and a for loop.

• The while loop is analogous to the DO WHILE in
Fortran, while the for loop is somewhat analogous
to the counter controlled DO loop in Fortran.

• Unlike a DO loop in Fortran, which iterates for a fixed
number of iterations, all loops in C will continue to
iterate as long as their condition is true.

• We will look at each of these loops in detail.

– CS1510 Lecture 22 – 17

while loop

• Syntax:

while (logical-expression){

statement-block;

}

where logical-expression is any valid C
expression that evaluates to an integer that can
be interpreted as true (non-zero) or false (zero).

• Example:

while (x<10 && y!=5){

scanf("%d",&y);

x++;

}

– CS1510 Lecture 22 – 18

Example 1: while loop

Euclid’s algorithm:

#include <stdio.h>

int main (int argc, char *argv[])

{

int m,n,q,r;

printf("Please enter two integers M and N, where M>N\n");

scanf("%d %d",&m,&n);

r=1;

while (r!=0){

q=m/n;

r=m-q*n;

printf("%d = %d * %d + %d\n",m,n,q,r);

m=n;

n=r;

}

printf("The greatest common divisor is %d\n",m);

return 0;

}

– CS1510 Lecture 22 – 19

for loop

• Syntax:

for (start-condition; end-condition; update){

statement-block;

}

• Example:

for (i=0; i<10; i++){

scanf("%d",&y);

printf("%d",y);

}

• Note that the for loop begins counting at i=0.
The default in C is to count from zero since array
indices start from 0. (Fortran starts from 1).

– CS1510 Lecture 22 – 20

