
Computer Science 1510

Lecture 30

Lecture Outline

• The C pre-processor

• Makefiles

– CS1510 Lecture 31 –



The C pre-processor

• Recall that the C compilation process consists of
first pre-processing the code, to create an expanded
source file, which is sent to the compiler to be
translated into machine language.

• We communicate with the pre-processor via source
code lines beginning with a #.

• Thus far, we have seen only one C pre-processor
directive, the #include directive, which is used to
include files in the source code.

• A file that is included with a #include is copied
into the source file before being sent to the compiler.

• There are several other pre-processor directives, such
as #define, #if, and #ifdef. We will look at each
of these individually.

– CS1510 Lecture 31 – 1



The C pre-processor: #define

• A #define can be used to define a macro
substitution.

• Syntax:
#define NAME replacement_text

where every instance of NAME within the source
code is replaced by replacement_text during pre-
processing.

• Example:
#define PI 3.14159

• It is common to use uppercase letters for defined
elements to distinguish them as text that will be
replaced.

• The scope of a #define is from the point of the
#define to the end of the source file.

• To continue a macro onto more than one line a
\ should be placed at the end of each line to be
continued.

– CS1510 Lecture 31 – 2



The C pre-processor: #define

• A macro may use previous macros.

• A macro can have arguments, such that the
replacement_text may differ between calls to the
macro.

• Example:

#define CIRC(R) 2*PI*(R)

• Although the above looks like a function call, it is
still simply a replacement of text. For example,

c=CIRC(2*r+3);

expands to c=2*3.14159*(2*r+3); during pre-
processing.

• Note that the parenthesis are important here, to
prevent c=2*2.14159*2*r+3

– CS1510 Lecture 31 – 3



The C pre-processor: #define

• A NAME in a string is not replaced. For example, in

printf("CIRC\n");

CIRC would not be replaced.

• It is also possible to undefine a macro with the
#undef directive.

• For example,

#undef PI

will undefine the substitution macro PI.

– CS1510 Lecture 31 – 4



The C pre-processor: #define

• Another example of macro substitution this
evaluates the greater of the two arguments:

#define GREATER(x,y) ((x) > (y) ? (x) : (y))

• Although this looks a bit like a function, it is
different in several ways:

– There is no function call, the macro is instantiated
in place in the program. (This may be more
efficient for small functions.)

– No type checking is done, so this will work for
any compatible types.

• These may be both advantages and disadvantages
– use macros carefully and sparingly.

– CS1510 Lecture 31 – 5



The C pre-processor: #if

• The pre-processor can be used for conditional
inclusion of different portions of a source file.

• Syntax:

#if expression1

statements

#elif expression2

statements

#else

statements

#endif

where the different # lines behave as a standard if,
else if, else block.

• Each expression must evaluate to an integer, which
is treated as true for nonzero values, and false for a
zero value.

– CS1510 Lecture 31 – 6



The C pre-processor: #if

• This can be useful when debugging source code, in
particular, to comment out a large block of code.
(Note that C comments /* */ do not nest).

• Example:

#include <stdio.h>

int main(int argc, char *argv[])

{

declarations;

statements1;

#if 0

statements2;

#endif

statements3;

return 0;

}

• In the above example, statements2 would not
be included in the compiled version, it would be
removed by the pre-processor since the if expression
is equal to 0.

– CS1510 Lecture 31 – 7



The C pre-processor: #ifdef, #ifndef

• The #ifdef directive is a specialized form of #if
that is used to test if something has already been
defined. #ifndef tests if something has not already
been defined.

• Syntax:
#ifndef NAME

#ifndef is ended with an #endif.

• #ifdef has similar syntax.

• This is often used in header files to ensure that
function definitions have not been included more
than once.

• For example, we could have a header file that
contains the following:

#ifndef FACTORIAL

#define FACTORIAL

int factorial(int n);

#endif

– CS1510 Lecture 31 – 8



The C pre-processor: #ifdef, #ifndef

• It is good programming practice to use the above
structure in all header files.

• On the first inclusion of the given header file,
FACTORIAL is not yet defined, resulting in the
execution of the second and third lines (up to the
#endif).

• Now FACTORIAL is defined, and the factorial

function is declared.

• Thus, any subsequent inclusions of this header file
will see that FACTORIAL has already been defined,
and will not attempt to redeclare the function.

– CS1510 Lecture 31 – 9



The C pre-processor: #if

• We could also use a #define to remove sections of
code for debugging purposes.

• Example:

#include <stdio.h>

int main(int argc, char *argv[]) {

declarations;

statements1;

#ifdef DEBUG

statements2;

#endif

statements3;

return 0;

}

• In the above example, statements2 would be
included in the compiled version only if DEBUG is
defined.

• DEBUG can be defined by,

1. including a #define DEBUG within the code, or,
2. using the -D flag during compilation. For

example,
gcc -Wall -DDEBUG file.c

– CS1510 Lecture 31 – 10



Makefiles

• We saw in lab 8 how to create and compile programs
using multiple files.

• Rather than having to manually compile each of the
files containing functions, to object files, followed
by linking the .o files into the file containing the
main function, we can use what is called a Makefile.

• A Makefile describes which files should be compiled
to object files, and which object files each .c file
depends on.

• To compile the program using a Makefile we would
simply type make.

• A Makefile is placed in a file called Makefile,
and contains targets followed by a list of files and
compilation commands required to build that target.

– CS1510 Lecture 31 – 11



Example 1: Makefile

#!/bin/bash

binomial: factorial.o bicoeff.o bicoeff.h

gcc -Wall -o binomial binomial.c bicoeff.o factorial.o

factorial.o: factorial.c

gcc -Wall -c factorial.c

bicoeff.o: bicoeff.c factorial.h

gcc -Wall -c bicoeff.c

clean:

rm binomial bicoeff.o factorial.o

– CS1510 Lecture 31 – 12



Example 2: Makefile

#!/bin/bash

OBJS = bicoeff.o factorial.o

CC = gcc

FLAGS = -Wall

binomial: $(OBJS) bicoeff.h

$(CC) $(FLAGS) -o binomial binomial.c $(OBJS)

factorial.o: factorial.c

$(CC) $(FLAGS) -c factorial.c

bicoeff.o: bicoeff.c factorial.h

$(CC) $(FLAGS) -c bicoeff.c

clean:

rm binomial $(OBJS)

– CS1510 Lecture 31 – 13



Example: Linked list

#include <stdio.h>

#include <stdlib.h>

struct node {

int value;

struct node *next;

};

int main(int argc, char *argv[]) {

int i, ret=0;

struct node *top, *cur;

top=NULL; /* Initialize top */

/* Read in node values */

printf("Please enter a value (CTRL^D to stop)\n");

ret = scanf("%d",&i);

while (ret != EOF) { /* Until EOF is read */

if (top==NULL) { /* The list has not been started */

/* Allocate space for first node */

top = (struct node*)malloc(sizeof(struct node));

cur=top; /* Point cur to the start of the list */

} else { /* Add a new node to the end of the list */

cur->next = (struct node*)malloc(sizeof(struct node));

cur=cur->next; /* Point cur to this new node */

}

cur->next = NULL; /* next does not yet point to anything */

cur->value=i; /* Set the element’s value to the value read */

printf("Please enter a value (CTRL^D to stop)\n");

ret = scanf("%d",&i);

}

if (top==NULL) {

printf("No data read\n");

return 0;

}

– CS1510 Lecture 31 – 14



printf("The values are:\n");

cur=top; /* Start at the first node in the list */

while (cur!=NULL) {

printf("%d\n",cur->value);

cur = cur->next; /* Move to the next node in the list */

}

return 0;

}

– CS1510 Lecture 31 – 15


