
Computer Science 1510

Lecture 16

Lecture Outline

• Derived data types

• Modules

– CS1510 Lecture 16 –



Derived data types

• A program combines an algorithm and data to solve
a problem.

• So far we have seen how to use Fortran
primitive data types such as INTEGER, REAL, and
CHARACTER.

• We have also seen that arrays can be used to store
lists of data of the same type.

• Depending on the data used for a particular problem,
it may be useful to be able to group data using a
more sophisticated group organization.

• A derived data type is a term used to refer to the
grouping and organization of primitive data types
into complex structures.

– CS1510 Lecture 16 – 1



Derived data types

• For example, suppose that we would like to have
a data type called Student that would store
information for a single student, including the
following:

– Student number
– Last name
– First name
– Assignment grades
– Lab quiz grades
– Midterm grade
– Final exam grade
– Final grade

• This would require a much more complex data
type than we have already seen. However, each
component in this new data type is of an intrinsic
type (ex. characters, integers).

– CS1510 Lecture 16 – 2



Derived data types

• In general, a derived data type is defined as follows:

TYPE type-name

declaration of field names

END TYPE type-name

• We can define a derived type with the above
components as follows:

TYPE Student

CHARACTER(Len=9)::id_num

CHARACTER(Len=15)::first_name

CHARACTER(Len=20)::last_name

REAL::assign(8),labs(10),mid,final,grade

END TYPE Student

• We now have a derived data type that can be used
similar to an intrinsic data type.

– CS1510 Lecture 16 – 3



Derived data types

• We can declare variables to be of type Student.
For example,

TYPE(Student) :: st1

where st1 is called a structure.

• Each element in a data structure is called a
component, or a field. For example, id_num,
first_name, and labs are all fields in the Student
data structure.

• To access an element of the data structure we use
the % symbol.

For example, to set the first name in the structure
st1 we would write:

st1%first_name=’John’

– CS1510 Lecture 16 – 4



Arrays of derived data types

• It is possible, indeed quite useful, to have arrays
composed of structures, or derived data types.

• For example, if we have a class of 50 students then
we can declare an array of type Student as follows:

TYPE(Student) :: Class(50)

• To access an element of the data structure we use
the % symbol. For example, to set the first name of
student 1 we would write:

Class(1)%first_name=’John’

• Class(1) accesses the first element in the Class

array, which is of type Student.

• first_name is a field within the student Class(1).

– CS1510 Lecture 16 – 5



Example: TYPE

PROGRAM Structure

IMPLICIT NONE

! Define a Student data structure

TYPE Student

CHARACTER(Len=9)::id_num

CHARACTER(Len=15)::first_name

CHARACTER(Len=20)::last_name

REAL::assign(8),mid,final,grade

END TYPE Student

INTEGER::i,j,num,OpenStatus,InputStatus

REAL::total,aavg

CHARACTER(Len=20)::FileName

! Declare an array of 10 Students

TYPE(Student)::Class(10)

WRITE(*,’(A)’,ADVANCE=’NO’) ’Which file should be read? ’

READ(*,*) FileName

OPEN(UNIT=5,FILE=FileName,STATUS=’OLD’,IOSTAT=OpenStatus)

IF (OpenStatus > 0) STOP

! Determine how many students are in the class

READ(5,*,IOSTAT=InputStatus) num

IF (InputStatus /= 0) STOP

! Read in the student data

DO i=1,num

READ(5,*,IOSTAT=InputStatus) Class(i)%id_num

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%first_name

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%last_name

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%assign

IF (InputStatus /= 0) STOP

– CS1510 Lecture 16 – 6



READ(5,*,IOSTAT=InputStatus) Class(i)%mid

IF (InputStatus /= 0) STOP

READ(5,*,IOSTAT=InputStatus) Class(i)%final

IF (InputStatus /= 0) STOP

END DO

! For each Student, compute the final mark

DO j=1,num

! Compute the average assignment mark for Student j

total=0

DO i=1,8

total=total+Class(J)%assign(i)

END DO

aavg=total/8.0

! Compute the final mark for Student j

! Assignments marked out of 20, midterm and final marked out of 50.

! Assignments = 30%, Midterm = 30%, Final = 40%

Class(j)%grade=aavg/20.0*30.0+Class(j)%mid/50.0*30.0+Class(j)%final/50.0*40.0

! Display the final mark for Student j

WRITE(*,10) Class(j)%first_name,Class(j)%last_name,’received’,&

Class(j)%grade,’in the course.’

END DO

10 FORMAT(A15,A20,X,A8,X,F5.1,X,A14)

CLOSE(UNIT=5)

END PROGRAM Structure

Output:

John Doe received 74.2 in the course.

Jane Smith received 71.3 in the course.

– CS1510 Lecture 16 – 7



Example input file

2

123456789 - student ID

John - first name

Doe - last name

19,17,15,10,16,17,18,14 - assignments

35 - midterm

37 - final

987654321 - student ID

Jane - first name

Smith - last name

16,18,14,13,10,11,18,16 - assignments

32 - midterm

38 - final

– CS1510 Lecture 16 – 8



Fortran MODULE

• A MODULE is a program unit used to package
together related information and functions.

• Variable declarations, subprograms, and definitions
of new data types are items that are commonly
found in a MODULE.

• Syntax:

MODULE module-name

IMPLICIT NONE

Variable-declarations

CONTAINS

Subprogram-definitions

END MODULE module-name

• A MODULE can be placed before the main program
in a .f08 file or in its own file (see later).

• Modules allow related data and/or subprograms
to be grouped together to be used by different
programs as needed.

– CS1510 Lecture 16 – 9



Example 1: MODULE

MODULE Circle

!----------------------------------------------------------------

! The following module contains subprograms to compute attributes

! of a circle:

! Area: compute the area of a circle

! Circumference: compute the circumference of a circle

!----------------------------------------------------------------

IMPLICIT NONE

REAL,PARAMETER::PI=3.14159

CONTAINS

!-Area--------------------------------------------------------

! Compute the area of a circle with radius r.

! Accepts: radius of the circle

! Returns: the area of the circle

!-------------------------------------------------------------

FUNCTION Area(r)

REAL,INTENT(IN)::r

REAL::Area

Area=PI*r*r

RETURN

END FUNCTION Area

!-Circumference-----------------------------------------------

! Compute the circumference of a circle with radius r.

! Accepts: radius of the circle

! Returns: the circumference of the circle

!-------------------------------------------------------------

FUNCTION Circumference(r)

REAL,INTENT(IN)::r

REAL::Circumference

Circumference=2*PI*r

RETURN

END FUNCTION Circumference

END MODULE Circle

– CS1510 Lecture 16 – 10



Using a MODULE

• In order to have access to the contents of a
MODULE, a program (or subprogram) must request
access via a USE statement.

• Syntax:

USE module_name

• A USE statement must occur after the program
or subprogram name and before the declaration
statements.

• Modules allow restricted access to subprograms
since only programs and subprograms that USE
the MODULE are permitted to call subprograms
within the MODULE.

– CS1510 Lecture 16 – 11



Example 1: Using a MODULE

PROGRAM Calc_Circle

!--------------------------------------------------------------

! The following program calculates and displays the area and

! circumference of a circle of a given radius.

! INPUT: r - radius of the circle

! OUTPUT: Area and circumference of the circle

!--------------------------------------------------------------

USE Circle

IMPLICIT NONE

REAL::r

WRITE(*,*) ’Enter circle radius’

READ(*,*) r

WRITE(*,*) ’Circle area = ’,Area(r)

WRITE(*,*) ’Circle circumference = ’,Circumference(r)

END PROGRAM Calc_Circle

– CS1510 Lecture 16 – 12


