
Computer Science 1510

Lecture 10

January 27, 2016

Lecture Outline

• Functions

– CS1510 Lecture 10 –

Subprograms

• Algorithms to solve larger problems should be broken
down into several sub-algorithms, each of which
solves a smaller sub-problem.

• This way, each sub-algorithm may be tested
separately to ensure that it works correctly before
being incorporated into the larger algorithm.

• We can write sub-programs to implement such sub-
algorithms.

• There are two types of sub-programs in Fortran,
one called a FUNCTION, and a second called a
SUBROUTINE.

• The general distinction between the two is that a
SUBROUTINE is used to perform a section of an
algorithm where many variable values may change,
while a FUNCTION is provided with values and
returns a single value.

– CS1510 Lecture 10 – 1

Functions

• We have seen some of the built-in functions available
in Fortran (sin, cos, exp, etc.).

• We can also write our own (ie. programmer-defined)
functions and call them as we would for built-in
functions.

• Syntax:

Function heading

variable-declarations

body-of-function

RETURN

END FUNCTION function-name

• Function heading is one of:

FUNCTION function-name(formal-argument-list)

or
type-identifier FUNCTION function-name(formal-argument-list)

where function-name is any legal Fortran
identifier, formal-argument-list is a comma
separated list of identifiers, and type-identifier

is the type of the data returned by the function.

– CS1510 Lecture 10 – 2

Functions

• In the first form of the function heading, the type
of the data returned by the function must be
declared in the variable declarations section inside
the function.

• The formal-argument-list contains a list of
variables that are passed into the function.

• Variable declarations within a FUNCTION consist of:

1. Arguments - Variables passed into the FUNCTION.
2. Variables local to the function. These variables

are seen only by the FUNCTION and not by the
main PROGRAM.

3. If the first form of the function heading is used, a
variable with the same name as function-name
must be declared.

• The variable with the same name as
function-name is assigned a value which is
returned to the main PROGRAM when the RETURN

or END FUNCTION statement is reached.

– CS1510 Lecture 10 – 3

Functions

• Arguments passed into the function should have
an INTENT specifier added to their declarations,
which specifies how the arguments are to transfer
information.

• For example,

REAL,INTENT(IN)::average

specifies that the value of average is not to be
changed within the function.

• The body of a function has the same form as
the body of a main program, with the additional
requirement that a value be assigned to the variable
function-name.

• That is, an assignment statement like the following
must be included:

function-name=expression

– CS1510 Lecture 10 – 4

Example: Temperature conversion function

FUNCTION Fahr_to_Celsius(temp)

REAL::Fahr_to_Celsius

REAL,INTENT(IN)::temp

Fahr_to_Celsius = (temp-32.0)/1.8

RETURN

END FUNCTION Fahr_to_Celsius

A subprogram can be made accessible to a program in
three ways:

1. Placed inside a main program (ie. before the
END PROGRAM statement) – Internal subprograms.

2. Placed inside a module which is imported into a
program (see later) – Module subprograms.

3. Placed after the END PROGRAM statement – External

subprograms.

– CS1510 Lecture 10 – 5

Example: Temperature conversion

PROGRAM Temperature_conversion

!---

! The following program converts several Fahrenheit temperatures

! input by the user to Celsius. Function Fahr_to_Celsius is used

! to compute the conversion.

! INPUT: fahr - temperature in Fahrenheit

! OUTPUT: cel - temperature in Celsius

!---

IMPLICIT NONE

REAL::fahr,cel

CHARACTER::next

DO

WRITE(*,*) ’Enter a temperature in Fahrenheit’

READ(*,*) fahr

! Convert the temperature to Celsius

cel=Fahr_to_Celsius(fahr)

WRITE(*,*) fahr,’in Fahrenheit is’,cel,’in Celsius’

WRITE(*,*) ’Are there more temperatures to convert? [y/n]’

READ(*,*) next

IF (next/=’y’) EXIT

END DO

CONTAINS

FUNCTION Fahr_to_Celsius(temp)

!--

! This function converts a temperature from Fahrenheit to Celsius

! ACCEPTS: temp - a temperature in Fahrenheit

! RETURNS: the corresponding temperature in Celsius

!--

REAL::Fahr_to_Celsius

REAL,INTENT(IN)::temp

Fahr_to_Celsius = (temp-32.0)/1.8

RETURN

END FUNCTION Fahr_to_Celsius

END PROGRAM Temperature_conversion

– CS1510 Lecture 10 – 6

Argument Association

• A call or reference to a function has the form:

function-name(actual-argument-list)

• Arguments in the actual-argument-list do not
have to have the same names as the arguments in
the formal-argument-list.

• That is, arguments passed into a subprogram are
not required to have the same names as the
corresponding arguments inside the function.

• When using a function, the intent is that the values
of the arguments passed to the function do not
change inside the function.

• The INTENT(IN) specification ensures that this
is the case. When a variable is declared as
INTENT(IN), the value of the actual argument is
passed to the corresponding formal argument, and
the value of the formal argument cannot change
within the function.

– CS1510 Lecture 10 – 7

Argument Association

• If INTENT(IN) is not specified for a formal
argument, then the value of that formal argument
can be changed inside the function, with the same
change to the actual argument.

• For example, if we had not included the INTENT(IN)
specification for temp in the program above, then
we could assign a different value to temp within
the function (for example, temp=0.0). When the
function returned, the value of fahr in the main
program would be 0.

• The number and type of actual arguments must
agree with the number and type of formal
arguments.

– CS1510 Lecture 10 – 8

Functions of several variables

• In the above example, the function Fahr_to_Celsius
has only a single argument. However, functions can
have many arguments.

• For example, the following function computes the
value of

f(x, y, n) =

{

xn + yn if x ≥ y

0 otherwise

FUNCTION F(x,y,n)

REAL::F

REAL,INTENT(IN)::x,y

INTEGER,INTENT(IN)::n

IF (x>=y) THEN

F=x**n + y**n

ELSE

F=0.0

END IF

END FUNCTION F

– CS1510 Lecture 10 – 9

Using FUNCTIONS

• As for built-in functions, programmer-defined
functions can be used in any place where a single
value can be used.

• For example, assignment statements, arithmetic
expressions, logical expressions, or loop conditions.

• Examples:

X=AVERAGE(1,2,3)

Y=X+AVERAGE(A,B,C)

IF (X > AVERAGE(A,B,3))

DO WHILE (AVERAGE(A,B,C) > D)

• In each case, when AVERAGE is reached, control is
transferred to the beginning of the FUNCTION, and
the body of the function is executed. When RETURN

or END PROGRAM is reached, the value of AVERAGE
is returned and used in place of the function call.

– CS1510 Lecture 10 – 10

Example: Multiple functions

PROGRAM Poisson_Probability

!---

! Program to calculate the Poisson probability function using the

! function subprogram Poisson. Identifiers used are:

! AveOccurs : average # of occurrences of phenomenon per

! time period

! NumOccurs : number of occurrences in a time period

! Probability : Poisson probability

! NumProbs : number of probabilities to calculate

! I : DO-loop control variable

! Poisson : internal function to calculate Poisson probability

! Factorial : internal function to calculate factorials

! Input: NumProbs and values for AveOccurs and NumOccurs

! Output: Poisson probabilities

!---

IMPLICIT NONE

REAL :: AveOccurs, Probability

INTEGER :: NumProbs, I, NumOccurs

WRITE(*,*) ’This program calculates Poisson probabilities.’

WRITE(*, ’(1X, A)’, ADVANCE = "NO") &

’How many probabilities do you wish to calculate? ’

READ *, NumProbs

DO I = 1, NumProbs

WRITE(*, ’(1X, A)’, ADVANCE = "NO") &

’Enter average # of occurrences per time period: ’

READ(*,*) AveOccurs

WRITE(*, ’(1X, A)’, ADVANCE = "NO") &

’Enter # of occurrences for which to find probability: ’

READ(*,*) NumOccurs

Probability = Poisson(AveOccurs, NumOccurs)

WRITE(*,’(1X, "Poisson probability = ", F6.4 /)’) Probability

END DO

– CS1510 Lecture 10 – 11

CONTAINS

!-Poisson --

! Function to calculate the Poisson probability

! N -Lambda

! Lambda * e

! Poisson(N) = ------------------

! N!

! Function Factorial is called to calculate N!

!

! Accepts: Lambda - average number of occurrences per time period

! N - number of occurrences in that time period

! Returns: The Poisson probability given by the formula above

!---

FUNCTION Poisson(Lambda, N)

REAL :: Poisson

REAL, INTENT(IN) :: Lambda

INTEGER, INTENT(IN) :: N

Poisson = (Lambda ** N * EXP(-Lambda)) / REAL(Factorial(N))

END FUNCTION Poisson

!- Factorial ---

! Function to calculate the factorial N! of N which is 1 if N = 0,

! 1 * 2 * . . . * N if N > 0.

!

! Accepts: Integer N

! Returns: The integer N!

!---

FUNCTION Factorial(N)

!---------------------

! See Assignment 2

!---------------------

END FUNCTION Factorial

END PROGRAM Poisson_Probability

– CS1510 Lecture 10 – 12

Scope of variables

• Scope refers to where a variable is accessible and
can be used.

• The scope of a variable is the program or
subprogram in which it is declared.

• For example, a subprogram may require variables
in addition to the formal arguments. Such local

variables declared within a subprogram can only be
accessed and used within that subprogram, and are
said to have local scope.

• When control is passed from a subprogram back to
a main program all local variables are lost.

• Variables declared in a main program are global
to the entire program, including any internal
subprograms (except within subprograms that have
local variables with the same name, in which case
the local variable has precedence).

– CS1510 Lecture 10 – 13

Scope of variables

• Since programs and subprograms are compiled
independently and recombined at the linking stage,
variable names and labels can be reused without
causing a conflict.

• Each program or subprogram has its own private
memory assigned to it, called a stack.

• If two subroutines have a local variable with the
same name, these variables do not conflict since
each is located within the subroutines own stack.

• What about when we want subprograms to share
information?

– CS1510 Lecture 10 – 14

Saving local variables

• The values of local variables in a subprogram are
not retained from one execution to the next unless,

1. they are initialized in their declarations, or
2. they are declared using the SAVE attribute.

• Example: the following will result in Count having
the same value on each call to function F.

INTEGER FUNCTION F(...)

INTEGER :: Count

...

Count = Count + 1

...

END FUNCTION F

• Changing the declaration to either,
INTEGER, SAVE :: Count or
INTEGER :: Count = 0 will ensure that the value
of Count will be saved from one call to the next.

– CS1510 Lecture 10 – 15

External subprograms

• As noted previously, function subprograms can be
either internal, module, or external subprograms.

• External subprograms can be placed in the same
source file as a main program, after the END
PROGRAM statement.

• An advantage to external subprograms is that they
can be used by other programs that need the
particular functionality.

• In the case of internal subprograms, a program is
aware of what arguments are required, and can thus
check that the subprogram is being used properly.

• However, in the case of an external subprogram, the
main program contains no definition of what the
subprogram looks like, and can therefore not check
whether it is being used properly.

• To overcome this, an explicit interface should be
included in the main program.

– CS1510 Lecture 10 – 16

Fortran: INTERFACE

• In the main program we include an INTERFACE block
at the beginning of the program.

• The INTERFACE block tells the main program what
function is present, what type of arguments it takes,
and what the type of the output variable is.

• Syntax:

INTERFACE

interface-body

END INTERFACE

The interface-body contains:

1. The subprogram heading (with possible different
names for the formal arguments).

2. Declarations of the arguments and the result type
in the case of a function.

3. An END statement.

• Note that there are no executable statements in an
INTERFACE block.

– CS1510 Lecture 10 – 17

Example: Explicit interface

PROGRAM Temperature_Conversion_4

!---

! The following program converts several Fahrenheit temperatures

! input by the user to Celsius. Function Fahr_to_Celsius is used

! to compute the conversion.

! INPUT: fahr - temperature in Fahrenheit

! OUTPUT: cel - temperature in Celsius

!---

IMPLICIT NONE

INTERFACE

FUNCTION Fahr_to_Celsius(Temp)

REAL:: Fahr_to_Celsius

REAL, INTENT(IN) :: Temp

END FUNCTION Fahr_to_Celsius

END INTERFACE

REAL::fahr,cel

CHARACTER::next

DO

WRITE(*,*) ’Enter a temperature in Fahrenheit’

READ(*,*) fahr

! Convert the temperature to Celsius

cel=Fahr_to_Celsius(fahr)

WRITE(*,*) fahr,’in Fahrenheit is’,cel,’in Celsius’

WRITE(*,*) ’Are there more temperatures to convert? [y/n]’

READ(*,*) next

IF (next/=’y’) EXIT

END DO

END PROGRAM Temperature_Conversion_4

– CS1510 Lecture 10 – 18

!-Fahr_to_Celsius --

! Function to convert a Fahrenheit temperature to Celsius.

! Accepts: A temperature Temp in Fahrenheit

! Returns: The corresponding Celsius temperature

!---

FUNCTION Fahr_to_Celsius(Temp)

REAL:: Fahr_to_Celsius

REAL, INTENT(IN) :: Temp

Fahr_to_Celsius = (Temp - 32.0) / 1.8

END FUNCTION Fahr_to_Celsius

– CS1510 Lecture 10 – 19

