Computer Science 1510

Lecture 14

Lecture QOutline

e Scientific Computing Example — Rootfinding

— CS1510 Lecture 14 —

The rootfinding problem

e Problem: Given a function y = f(x), find a value
x* such that f(z*) = 0.

e Such values are called the roots of the function.

e Intermediate value theorem:
If a function f(x) is continuous on [a,b] and
f(a)f(b) <0 then f(x) =0 for at least one x = z*
on la,b].

— CS1510 Lecture 14 — 1

Rootfinding methods

e Algorithms to solve the rootfinding problem are
iterative, that is, they produce a sequence of
guesses, that hopefully will converge to the desired
root.

e One rootfinding method is called the Bisection
algorithm.

e In the bisection algorithm it is assumed that we
know an interval [a,b] where f(a) and f(b) have
different signs (ie. f(a)f(b) < 0).

e In this case we know, by the intermediate value
theorem, that there is at least one root in the
interval |a, b].

— CS1510 Lecture 14 — 2

Bisection algorithm

e To find a root of f(x) we first find an interval [a, D]
where f(a)f(b) < 0.
e We proceed to find the root via the following steps:

1. Compute the midpoint of the interval [a, b,

a-+b
m = .
2

2. If f(m) = 0 then stop, we have reached a root.
3. Otherwise, one of the following is true:
~ f(a)f(m) <0, or
— f(b)f(m) <O0.
In the first case, there is a root in the interval
la, m] so we set b =m and go to step 1.
In the second case, there is a root in the interval
Im, b] so we set a = m and go to step 1.

— CS1510 Lecture 14 — 3

Bisection algorithm

e On each iteration we are cutting the interval in half,
hence the name bisection.

e We have seen that comparing two floating point
numbers X and Y for equality is best done by
checking if ABS(X-Y) < tol.

e The stopping criteria used for this algorithm requires
a similar consideration.

e Due to round-off errors in calculations, it is unlikely
that the value of the function will ever be exactly
zero. Thus, rather than testing f(m) = 0 it would
be wise to instead introduce some tolerance (tol)
and test that ABS(f(m)) < tol.

e For example, a tolerance of 1.0 % 10~ would ensure
that f(m) is very close to zero before concluding
that we have reached a root.

— (CS1510 Lecture 14 - 4

lllustration of the bisection algorithm

f(x)

— CS1510 Lecture 14 —

Example: Bisection Method

PROGRAM Bisection

I The following program uses the bisection method to approximate

! the root of an equation f(x) (ie. a value of x where f(x)=0).

! INPUT:

' left,right - endpoints of an interval where f(left)*f(right)<0

! nmax - maximum number of iterations

! tol - tolerance to be used to determine convergence to the root

! OUTPUT:

! mid - the value of the root at convergence (if achieved)

! n - the number of iterations required for convergence (if achieved)

IMPLICIT NONE

INTEGER: :n,nmax

REAL: :left,right,mid ! Left, right, and mid points
REAL::fl1,fr,fmid ! Function values at left, right, and midpoint
REAL: :tol

INTERFACE
FUNCTION fval(x)
REAL: :fval

REAL,INTENT(IN)::x
END FUNCTION fval
END INTERFACE

WRITE(*,*) ’Please enter the left endpoint:’
READ(*x,*) left

WRITE(*,*) ’Please enter the right endpoint:’

READ (*,%) right

WRITE(*,*) ’Enter the maximum number of iterations:’
READ (*,*) nmax

WRITE(*,*) ’Enter a value for the tolerance’
READ(*,*) tol

fl=fval(left)
fr=fval(right)

— CS1510 Lecture 14 —

IF (flxfr>=0) THEN
WRITE(*,*) ’The interval does not bracket a root’
STOP

ENDIF

n=1
mid=(left+right)/2.0
fmid=fval(mid)

DO WHILE (ABS(fmid)>tol)

IF (n>nmax) THEN
WRITE(*,*) ’Maximum number of iterations exceeded’
STOP

ENDIF

IF (f1*fmid<0) THEN ! Root is between left and mid
right=mid

ELSE ! Root is between mid and right
left=mid

ENDIF

mid=(left+right)/2.0

fl=fval(left)

fr=fval(right)

fmid=fval(mid)

n=n+1
END DO
WRITE(*,*) ’The root is approximately x = ’,mid
WRITE(*,*) ’The value of the function there is f(x) = ’,fmid

WRITE(*,*) ’There were ’,n,’ iterations required’
END PROGRAM Bisection

FUNCTION fval(x)

REAL: :fval
REAL, INTENT(IN)::x
fval = x*x*2-2

END FUNCTION fval

— CS1510 Lecture 14 —

Newton’s Method
y f(x)

e Starting with an initial approximation x;, compute
the tangent line to the graph at (x1, f(x1)).

e The point o where the tangent line crosses the
x-axis is taken as the second approximation.

e Similarly, compute the tangent line to the graph at
(2, f(x2)), and take the x-intercept of the tangent
line as the third approximation.

e Continue this process until we are sufficiently close
to the root.

— CS1510 Lecture 14 — 8

Newton’s Method

Tt T T)
mn

e Newton's method requires only one initial guess,
instead of an interval like that required for the

bisection method.
e The guess must be “sufficiently” close to the root.

e The following program implements Newton's
method for the function f(z) = 2z° + x — 5,
terminating when ABS(f(x)) < tol or some
maximum number of iterations has been exceeded.

— CS1510 Lecture 14 — 9

Example: Newton’s Method

PROGRAM Newtons_Method

! Program to find an approximate root of a function f(x) using Newton’s
! method. Variables used are:

! fval,fpval : the function and its derivative (internal functions)
! oldapprox : previous approximation (initially the first one)

! fp_old : value of the derivative of f at oldapprox

! newapprox : the new approximation

! fapprox : value of f at an approximation

I ftol : repetition stops when ABS(fapprox) < ftol

! fptol : repetition stops when ABS(fp_old) < fptol

! maxnum : 1limit on number of iteratioms

! n : number of iterations

I Input: ftol,fptol,maxnum,oldapprox

! Output: Iteration number n, the nth approximation, and the value of
! f at that approximation, or an error message indicating

! that the method fails

IMPLICIT NONE
INTEGER: :maxnum,n
REAL: :0ldapprox,fp_old,newapprox,ftol,fptol,fapprox

! Get termination values (ftol and fptol), maximum number of

| iterations, and initial approximation

WRITE(*,*) ’Enter tolerance for f(x) and derivative of f(x)’
READ(*,*) ftol, fptol

WRITE(*,*) ’Enter max # of iterations,and the initial approximation:’
READ (*,*) maxnum,oldapprox

! Tnitialize function value and iteration counter
fapprox=fval (oldapprox)

n=0

WRITE(*x,*) > N X F(X(N))°
WRITE(*,*) ’
WRITE(*,10) O, oldapprox, fapprox

— CS1510 Lecture 14 —

10

10 FORMAT(1X, I3, F11.5, E14.5)

! Tterate using Newton’s method while ABS(fapprox) is greater
! than or equal to tol and n has not reached maxnum
DO
IF ((ABS(fapprox) < ftol) .OR. (n > maxnum)) EXIT
! If a termination condition met, stop generating approximations
! Otherwise continue with the following
n=n+1
fp_old = fpval(oldapprox)

! Terminate if the derivative is O at some approximation
IF (ABS(fp_old) < fptol) THEN
WRITE(*,*) ’Newton’’s method fails -- derivative = 0’
EXIT
END IF

! Generate a new approximation
newapprox = oldapprox - (fapprox/fp_old)
fapprox = fval(newapprox)
WRITE(*,10) n,newapprox,fapprox
oldapprox = newapprox

END DO

CONTAINS

I-fval(x)-——————————————————————————— o
! Function for which a root is being found

FUNCTION fval(x)
REAL: :fval
REAL, INTENT (IN): :x
fval = x**3 + x - 5.0
END FUNCTION fval

I-fpval (x) ——————————————————————— o
! The derivative of the function f

— CS1510 Lecture 14 —

FUNCTION fpval(x)
REAL: :fpval
REAL, INTENT(IN)::x
fpval = 3.0*x*x*2 + 1.0
END FUNCTION fpval
END PROGRAM Newtons_Method

— CS1510 Lecture 14 —

12

