Computer Science 1510

Lecture 22

Lecture QOutline

e Input / Output
e Selection

e Repetition

— CS1510 Lecture 22 —

Basic Input and Output

e \We have seen the printf function which allows the

printing of formatted output to standard out (the
screen).

e Now we will consider basic input, that is, accepting
(or reading) data from the user.

e For this purpose we will use another function
accessible via stdio.h, called scanf.

— CS1510 Lecture 22 — 1

Basic Input in C: scanf

e scanf in Cis similar to a READ statement in Fortran,
In that it reads in data from the user into a variable,
or variables.

e Like printf, scanf has the formatting built-in, and
thus does not require the use of a separate format
statement.

e Syntax:
scanf ("description",&variable-list);

where description is a string describing the format
of the input, and variable-list is a list of
variables (each preceded by an ampersand &) where
the input data should be stored.

e The description for scanf uses the same escape
sequences and conversion codes as printf.

— CS1510 Lecture 22 — 2

Basic Input in C: scanf

e As for printf, the number and type of variables in
the variable-1list must match the number and
type of conversion codes in the description.

e The ampersand, &, is a new operator, which is
prepended to a variable name to obtain the memory
address of that variable.

e It is the address of a variable that must be passed
to scanf.

e Thus, each variable in the variable-1list must
have an ampersand prepended to it, provided it is
not an array. We will discuss array addresses later.

e Examples:

scanf ("/d",&a); /* Read in a single integer */
scanf ("/%c",&initial); /* Read in a single character */
scanf ("%f",&x); /* Read in a single real value */

— CS1510 Lecture 22 — 3

Example: scanf

#include <stdio.h>

int main(int argc, char *argv([])

{
int age;
float weight;
char initial;
printf ("Enter your age, weight, and first initiall\n");
scanf ("%d %f %c",&age,&weight,&initial);
printf("Age: %d, Weight: %5.1f, Initial: %c\n",
age,weight,initial);
return O;
+

— CS1510 Lecture 22 — 4

A useful C compiler flag

e Compilers often have many flags which can be used
to modify the compilation behaviour.

e We have seen some of these. For example, the
-o flag allows one to specify the name of the
executable.

e One very useful flag in gcc is =W, which is used to
request the printing of warnings.

e Warnings are similar to error messages, but are
not necessarily things that will cause undesired
behaviour or results.

e The -W flag takes an extra argument to specify
which warnings you would like to see.

e The most commonly used argument is all which
says to display all warnings. So the compile
command would be

gcc —-Wall myprog.c

— CS1510 Lecture 22 — 5

C: Selection

e In C, like in Fortran, there are two types of
statements that can be used for selection.

e In C, these are the if statement, and the switch
statement.

e [he switch statement in C is similar to the SELECT
statement in Fortran.

e \We will consider each of these in more detalil.

— CS1510 Lecture 22 — 6

Selection: if statement

e Syntax:
— Form 1:
if (logical_exp) statement;
— Form 2:
if (logical_exp)
{
statement-sequence;
+
— Form 3:

if (logical_expl){
statement-sequencel;

}

else if (logical_exp2){

statement-sequence?2;

}

else{
statement-sequence3;

}

— CS1510 Lecture 22 —

Selection: if statement

e The logical_exp above is any valid C logical
expression.

e Note that since C interprets integer values as true
or false, any valid C arithmetic expression could also
be used as the condition.

e The logical ? operator can be used like an if
statement. For example,

minimum = (a<b)? a : b

is the same as writing,
if (a<b){
minimum=a;

}

else {
minimum=b;

}

— CS1510 Lecture 22 — 8

Example 1: if and scanf

#include <stdio.h>
int main(int argc, char *argv[])
{
short age,legal=19;
printf ("Please enter your age\n");
scanf ("%4hd" ,&age) ;
if (age>=legal) printf("You can enter\n");
else printf("You are underage\n");
return O;

e Note that the conversion code for a short is %hd.

e Also, the conversion code for a long is %1d, and
the conversion code for a long double is %L.

— CS1510 Lecture 22 — o

Example 2: if and scanf

#include <stdio.h>
#include <math.h>

int main(int argc, char *argv([]){
float a, b, c;
float dis, imag, real, x1, x2;

printf("To calculate the roots of polynomial ax~2+bx+c,");
printf ("enter values for a, b, and c\n");
scanf ("%f %f %f",&a,&b,&c);

dis = b*b - 4x*xa*c;

if (dis > 0){ /* Equation has 2 distinct real roots */
x1l = (-b+sqrt(dis))/(2xa);
x2 = (-b-sqrt(dis))/(2xa);
printf ("The roots are %f and %f\n",x1,x2);
}
else if (dis < 0){ /* Equation has complex roots */
real = -b/(2xa);
imag = sqrt(fabs(dis))/(2*a);
printf("The roots are %f+)fi and %f-%fi\n",real,imag,real,imag);
}
else if (dis==0){ /* Equation has a double root */
x1 = -b/(2%a);
printf ("The equation has a double root at %f\n",x1);

return O;

— CS1510 Lecture 22 — 10

Selection: switch

e \We have seen the use of if statements in C, we
will now consider switch statements, which are
analogous to SELECT statements in Fortran.

e A switch statement is used when one of several
actions is to be taken depending on the value of a
particular expression.

e Syntax:

switch (expression) {

case valuel:
statement-sequencel;
break;

case value2:
statement-sequence?2;
break;

default:
statement-sequenceD;
break;

— CS1510 Lecture 22 — 11

Selection: switch

e The result of the expression must be of type
char, short, int, or long.

e This result is tested against valuel, value2, etc.,
in turn, until a match is found. Execution continues
with the statements following the matching case.

e Note that braces are not required for the case
portions of the statement.

e [he break statement is used to “break out of” the
switch statement, such that execution continues
from the statement following the switch block.

e |f no match is found, execution will continue from
the statement following the default clause.

e The default block is optional.

— CS1510 Lecture 22 — 12

Selection: switch

e In other words, case statements indicate locations
to begin execution within a switch block, while
break statements indicate where to break out of
the switch block.

e The break statement can be used within any
C construct (such as an if statement, switch
statement, or loop) to ‘“break out of” the
statement, and begin executing from the statement
immediately after the construct.

— CS1510 Lecture 22 — 13

Advantages and disadvantages of switch

e Advantages:

— Can be easier to read than an if statement.
— More efficient than an if statement (only requires
a table look-up).

e Disadvantages:

— Does not work with non-integer data types (such
as floats or strings).

— Does not work with ranges (unlike the Fortran
SELECT statement).

— Cannot use variables in the case values.

— CS1510 Lecture 22 — 14

Example 1: switch

#include <stdio.h>

int main (int argc, char *argv[]){
float k,m,result;
char op;

printf ("Please enter expression to evaluate\n");
scanf ("%f Y%c %f",&k,&op,&m) ;

switch (op) {

case ’+’:
result=k+m;
break;

case ’-’:
result=k-m;
break;

case ’x’:
result=k*m;
break;

case ’/7:
result=k/m;
break;

default:
printf("Invalid operator\n");

printf("%6.2f %c %6.2f = %8.2f\n",k,op,m,result);
return O;

— CS1510 Lecture 22 —

15

Example 2: switch

#include <stdio.h>
int main(int argc,char *argv[]) {
char c;
printf ("Enter a or b\n");
scanf ("%c",&c) ;
switch (c) {
case ’A’:
case ’a’:
printf ("A ok!\n");
break;
case ’B’:
case ’b’:
printf("2B or !2B\n");
break;
default:
printf ("I said a or b, not %c!\n",c);
break;
}

return O;

— CS1510 Lecture 22 — 16

Repetition

e There are three types of loops in C: a while loop,
a do while loop, and a for loop.

e The while loop is analogous to the DO WHILE in
Fortran, while the for loop is somewhat analogous
to the counter controlled DO loop in Fortran.

e Unlike a DO loop in Fortran, which iterates for a fixed
number of iterations, all loops in C will continue to
iterate as long as their condition is true.

e We will look at each of these loops in detail.

— CS1510 Lecture 22 — 17

while loop

e Syntax:

while (logical-expression){
statement-block;

¥

where logical-expression is any valid C
expression that evaluates to an integer that can
be interpreted as true (non-zero) or false (zero).

e Example:

while (x<10 && y!=5){
scanf ("%d",&y) ;
X++;

)

— CS1510 Lecture 22 — 18

Example 1: while loop

Euclid’s algorithm:

#include <stdio.h>
int main (int argc, char *argvl[])
{
int m,n,q,r;
printf ("Please enter two integers M and N, where M>N\n");
scanf ("%d %d4",&m,&n) ;
r=1;
while (r!=0){
q=m/n;
r=m-qg*n;
printf("%d = %d * %d + %d\n",m,n,q,r);
m=n;
n=r;
+
printf ("The greatest common divisor is %d\n",m);
return O;

— CS1510 Lecture 22 — 19

for loop

e Syntax:

for (start-condition; end-condition; update){
statement-block;

+

e Example:

for (i=0; i<10; i++){
scanf ("%d",&y) ;
printf ("%4d",y);

e Note that the for loop begins counting at i=0.
The default in C is to count from zero since array
indices start from 0. (Fortran starts from 1).

— CS1510 Lecture 22 — 20

