
Computer Science 1510

Lecture 9

January 25, 2016

Lecture Outline

• Examples involving selection and repetition

– CS1510 Lecture 9 –

Terminating input

• When we wish to input a list of numbers, or
characters, we need to have some way to identify
the end of the list.

There are several ways to do this:

– Allow a fixed number of inputs; say N.
Input can then be done with a counted loop.
The number N can itself be an input.

– Designate a special terminal value which can be
used to determine that the input list is complete.
Input can then be done with a DO WHILE loop,
or and EXIT statement when that terminal value
is found.

– Terminate input on a special condition, such as
reading to the end of a file.

– CS1510 Lecture 9 – 1

Program 1: Mean time to failure

PROGRAM Mean_Time_to_Failure

!---

! Program to read a list of failure times, count them, and find the

! mean time to failure. Values are read until an end-of-data flag

! is read. Identifiers used are:

! INPUT:

! A list of failure times (FailureTime = current failure time read)

! OUTPUT:

! NumTimes : the number of failure time readings

! MeanFailureTime : the mean time to failure

!---

IMPLICIT NONE

INTEGER :: NumTimes

REAL :: FailureTime, Sum, MeanFailureTime

REAL, PARAMETER :: EndDataFlag = -1.0

Sum=0.0

NumTimes=0

WRITE(*,*) "Enter failure time of", EndDataFlag, "to stop."

DO

WRITE(*,*) "Enter failure time:"

READ(*,*) FailureTime

! If end-of-data, terminate repetition

IF (FailureTime == EndDataFlag) EXIT

NumTimes = NumTimes + 1

Sum = Sum + FailureTime

END DO

IF (NumTimes /= 0) THEN

MeanFailureTime = Sum / NumTimes

WRITE(*,*)

WRITE(*,*) "Number of failure time readings:", NumTimes

WRITE(*,*) "Mean time to failure:", MeanFailureTime

ELSE

WRITE(*,*) "No failure times were entered."

END IF

END PROGRAM Mean_Time_to_Failure

– CS1510 Lecture 9 – 2

Example 2: Approximating sin(x) and cos(x)

• Both the sine and cosine functions are represented
by infinite series:

sin(x) =

∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x−

x3

3!
+
x5

5!
−
x7

7!
+· · ·

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
= 1−

x2

2!
+

x4

4!
−

x6

6!
+ · · ·

• Thus, we can approximate sin(x) or cos(x) for some
x by computing some finite number of terms in the
corresponding sum, call this number of terms n.

• The following program approximates the value of
sin(x) using the above sum.

– CS1510 Lecture 9 – 3

Program 2: Approximating sine

PROGRAM Approx_sine

IMPLICIT NONE

INTEGER::i,n

REAL::x,term,approx

WRITE(*,*) ’Enter a value for x’

READ(*,*) x

WRITE(*,*) ’How many terms would you like to include?’

READ(*,*) n

term=x

approx=x

DO i=1,n-1

term=(-1)*term*(x**2/(2*i*(2*i+1)))

approx=approx+term

END DO

WRITE(*,*) ’sin(’,x,’) is approximately’,approx

END PROGRAM Approx_sine

– CS1510 Lecture 9 – 4

Program 3: Approximating sine/cosine

PROGRAM Sin_cos

IMPLICIT NONE

INTEGER::i,n

REAL::x,term,approx

CHARACTER::func

WRITE(*,*) ’Enter s for sin, and c for cos or q to quit’

READ(*,*) func

DO WHILE(func/=’q’)

WRITE(*,*) ’Enter a value for x’

READ(*,*) x

WRITE(*,*) ’How many terms would you like to include?’

READ(*,*) n

SELECT CASE (func)

CASE(’s’)

term=x

approx=x

DO i=1,n-1

term=(-1)*term*(x**2/(2*i*(2*i+1)))

approx=approx+term

END DO

WRITE(*,*) ’sin(’,x,’) is approximately’,approx

CASE(’c’)

term=1

approx=1

DO i=1,n-1

term=(-1)*term*(x**2/(2*i*(2*i-1)))

approx=approx+term

END DO

WRITE(*,*) ’cos(’,x,’) is approximately’,approx

CASE DEFAULT

WRITE(*,*) ’Invalid entry, try again’

END SELECT

WRITE(*,*) ’Enter s for sin, and c for cos or q to quit’

READ(*,*) func

END DO

END PROGRAM Sin_cos

– CS1510 Lecture 9 – 5

Example 3: Euclid’s algorithm

• Suppose that you have two integers m and n, and
you want to find their greatest common divisor
(GCD).

• According to Euclid’s algorithm we do the following.
Taking m = 1976 and n = 1032,

1976 = 1032× 1 + 944

1032 = 944× 1 + 88

944 = 88× 10 + 64

88 = 64× 1 + 24

64 = 24× 2 + 16

24 = 16× 1 + 8

16 = 8× 2 + 0

Then the GCD is 8 (the final divisor).

– CS1510 Lecture 9 – 6

Euclid’s algorithm - Why it works

• Suppose that we want to find the GCD of a and b.

• We know that a = sd and b = td for some integers
s and t, where d is the GCD.

• If we divide a by b we obtain a quotient q and a
remainder r such that a = qb+ r.

=⇒ r = a− qb = sd− qtd = (s− qt)d

Thus d is also a divisor of r.

• Therefore, the GCD of a and b is also the GCD of
b and r.

• Since r < b we will eventually obtain r = 0.

– CS1510 Lecture 9 – 7

Program 4: Euclid’s algorithm

PROGRAM Euclid

IMPLICIT NONE

INTEGER::m,n,q,r

WRITE(*,*) ’Enter two integers m and n, where m>n’

READ(*,*) m,n

r=1

DO WHILE (r/=0)

q=m/n

r=m-q*n

WRITE(*,*) m,’ = ’,n,’ * ’,q,’ + ’,r

m=n

n=r

END DO

WRITE(*,*) ’The greatest common divisor is ’,m

END PROGRAM Euclid

– CS1510 Lecture 9 – 8

