
Computer Science 1510

Lecture 7

Lecture Outline

• Selection: IF statements

• Selection: SELECT-CASE statements

– CS1510 Lecture 7 –



Control Logic

• So far we have concentrated on programs with
statements executed sequentially from top to
bottom.

• However, some of the algorithms that we have seen
require:

– control over the order in which statements are
executed;

– control over which of a group of statements is to
be executed; or

– control over whether certain statements are
executed at all.

• In the latter two cases we can use IF statements or
SELECT-CASE statements.

– CS1510 Lecture 7 – 1



Logical expressions

• Logical expressions are expressions that evaluate to
either true or false.

• Logical expressions can consist of logical constants
(.TRUE. or .FALSE.), logical variables, or relational
expressions of the form

exp1 relational-operator exp2

• Example: X > 2.

• Logical expressions can also be formed by combining
smaller logical expressions using a logical operator.

• Example: X >= 5 .AND. X <= 10.

– CS1510 Lecture 7 – 2



Relational operators

• Two items can be compared in a logical expression
using relational operators.

• Relational operators in Fortran include:

Operator Meaning
== Equal to
/= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

• Note that the two items being compared would
normally (but not always) be of the same type.

– CS1510 Lecture 7 – 3



Logical operators

• Logical operators can be used to combine conditions
in logical expressions.

• Logical operators in Fortran include:

Operator Meaning
.NOT. Not
.AND. And
.OR. Or
.EQV. Equivalent to
.NEQV. Not equivalent to

• The first operator is a unary operator, meaning that
it operates on one item, .NOT.A, for example.

• The remaining four operators are binary operators,
meaning that they operate on two items. That is
A OP B, where OP is a logical operator.

– CS1510 Lecture 7 – 4



Logic (truth) tables

T

F F

TF

F

T T

A B

T

F

F

F

A.AND.B

T

F F

TF

F

T T

A B

T

F

T

T

T

F F

TF

F

T T

A B

T

F

F

T

T

F F

TF

F

T T

A B

F

F

T

T

A.OR.B

A.EQV.B A.NEQV.B

T

A

F

.NOT.A

F

T

– CS1510 Lecture 7 – 5



Order of Operations

• Logical operators:

.NOT., .AND., .OR., .EQV. (or .NEQV)

• For expressions containing arithmetic operators,
relational operators, and logical operators, the
operations are performed in the following order:

1. Arithmetic
2. Relational
3. Logical

• Consider N**2 + 1 > 10 .AND. .NOT. N < 3,
with N=4, we have,

1. Arithmetic: 17 > 10 .AND. .NOT. 4 < 3

2. Relational: .TRUE. .AND. .NOT. .FALSE.

3. Logical: .TRUE. .AND. .TRUE. = .TRUE.

• Using parentheses for clarity is strongly advised.

– CS1510 Lecture 7 – 6



Fortran Statements: IF

• The IF construct can be used if a given sequence of
statements is to be executed or bypassed depending
on the result of a logical expression.

• Syntax:

IF (logical-expression) THEN

statement-sequence

END IF

where logical-expression is some condition that
must be true in order for statement-sequence to
be executed.

• If the condition is false then statement-sequence

is not executed and execution continues from the
statement following the IF block.

• Example:

IF (x>=0) THEN

y=x*x

z=SQRT(x)

END IF

– CS1510 Lecture 7 – 7



Fortran Statements: Logical IF

• In the case where only a single statement is to be
executed depending on the result of some logical
expression, a logical IF statement can be used.

• Syntax:

IF (logical-expression) statement

where logical-expression is some condition that
must be true in order for statement to be executed.

• If the condition is false then statement is
not executed and execution continues from the
statement following the IF statement.

• Note that statement is a single command. For
conditional execution of more than one command
we must use the IF-THEN statement.

– CS1510 Lecture 7 – 8



Fortran statements: IF-THEN-ELSE

• In the case where we wish to execute a group
of statements under one condition, but a different
group of statements otherwise then the IF-THEN-
ELSE construct can be used.

• Syntax:

IF (logical-expression) THEN

statement-sequence1

ELSE

statement-sequence2

END IF

• Example (evaluation of a piecewise function):

IF (X <= 0) THEN

fval = -x

ELSE

fval = x**2

END IF

– CS1510 Lecture 7 – 9



Fortran statements: ELSE IF

• The final case occurs when one wishes to execute
a group of statements under one condition, but
a different group of statements under a different
condition. Then the IF-ELSE-IF construct can be
used.

• Syntax:

IF (logical-expression-1) THEN

statement-sequence1

ELSE IF (logical-expression-2) THEN

statement-sequence2

END IF

• If neither logical-expression-1 nor
logical-expression-2 are true, then no portion
of the above IF block is executed.

• One can also have an ELSE statement at the end
of the IF-ELSE-IF construct, in which case, exactly
one group of statements within the IF block will be
executed.

– CS1510 Lecture 7 – 10



Example: ELSE IF

PROGRAM Rectangles

IMPLICIT NONE

REAL::x1,x2,y1,y2

REAL::x3,x4,y3,y4

REAL::x,y

x1=1;y1=1;x2=3;y2=4

x3=4;y3=5;x4=8;y4=9

WRITE(*,*) ’Enter coordinates:’

READ(*,*) x,y

IF (x>=x1.AND.x<=x2.AND.y>=y1.AND.y<=y2) THEN

WRITE(*,*) ’Inside rectangle 1’

ELSE IF (x>=x3.AND.x<=x4.AND.y>=y3.AND.y<=y4) THEN

WRITE(*,*) ’Inside rectangle 2’

ELSE

WRITE(*,*) ’Outside both rectangles’

END IF

END PROGRAM Rectangles

– CS1510 Lecture 7 – 11



Nested IF statements

• IF statements can also be nested, that is, we are
permitted to use IF statements within IF statements.

IF (logical-expression-1) THEN

statement-sequence-1

IF (logical-expression-2) THEN

statement-sequence-2

END IF

statement-sequence-3

ELSE IF (logical-expression-3) THEN

statement-sequence-4

ELSE

statement-sequence-5

END IF

• Note the indenting used in this example. Such
formatting makes source code much easier to read
and debug.

– CS1510 Lecture 7 – 12



Example: Nested IF
PROGRAM Ascending_order

IMPLICIT NONE

INTEGER::a,b,c

WRITE(*,*) ’Please enter 3 integers:’

READ(*,*) a,b,c

IF (a<=b.AND.a<=c) THEN ! a is smallest

IF (b<=c) THEN

WRITE(*,*) a,b,c

ELSE

WRITE(*,*) a,c,b

END IF

ELSE IF (b<=a.AND.b<=c) THEN ! b is smallest

IF (a<=c) THEN

WRITE(*,*) b,a,c

ELSE

WRITE(*,*) b,c,a

END IF

ELSE ! c is smallest

IF (a<=b) THEN

WRITE(*,*) c,a,b

ELSE

WRITE(*,*) c,b,a

END IF

END IF

END PROGRAM Ascending_order

– CS1510 Lecture 7 – 13



Logical variables

• Logical data can have one of two values, true or
false.

• In Fortran logical data is indicated by .TRUE. or
.FALSE. (Note the periods before and after the
word).

• Fortran Logical: LOGICAL

• Logical variables can be assigned a value with a
statement of the form

logical-variable = logical-expression

• Example: test = .TRUE.

• Printing a logical variable prints T or F.

– CS1510 Lecture 7 – 14



Logical variables

• To read a logical value, the input can consist of an
optional period followed by T or F which may be
followed by other characters. A value of .TRUE.
or .FALSE. is assigned to the variable according to
whether the first letter is T or F.

• Logical variables can be used as the condition in an
IF statement. For example:

PROGRAM Admit

LOGICAL::legal

WRITE(*,*) ’Are you 19 years of age or older?’

READ(*,*) legal

IF (legal) THEN

WRITE(*,*) ’You can enter’

ELSE

WRITE(*,*) ’You may not enter’

END IF

END PROGRAM Admit

– CS1510 Lecture 7 – 15



Fortran statements: SELECT-CASE

• In the case where we would like to execute a
different section of code depending on the value of
a single variable or expression, the SELECT-CASE
statement may be used instead of an IF statement.

• Syntax:

SELECT CASE (selector)

CASE (label-list-1)

statement-sequence-1

CASE (label-list-2)

statement-sequence-2

CASE DEFAULT

default-statement-sequence

END SELECT

where selector is an integer, character, or logical
expression, and each label-list is one or more
possible values of the selector.

– CS1510 Lecture 7 – 16



Fortran statements: SELECT-CASE

• If the value of selector is in label-list-1

then statement-sequence-1 is executed. If
the value of selector is in label-list-2 then
statement-sequence-2 is executed. Otherwise,
default-statement-sequence is executed.

• Note that there can be any number of cases within
a SELECT block.

• Like the ELSE portion of an IF statement, the
DEFAULT case is optional, and is only executed if
no other case matches.

• Each label-list can be in one of the following
forms:

value a single value

value1:value2 range of values from value1 to value2 inclusive

value1: all values greater than or equal to value1

:value2 all values less than or equal to value2

– CS1510 Lecture 7 – 17



Example 1: SELECT-CASE

PROGRAM Calculator

! This program reads in a simple arithmetic calculation,

! and computes and displays the result.

IMPLICIT NONE

CHARACTER::op

INTEGER::k,m,result

WRITE(*,*) ’Enter calculation’

READ(*,*) k,op,m

SELECT CASE (op)

CASE (’+’)

result=k+m

CASE (’-’)

result=k-m

CASE (’/’)

result=k/m

CASE (’*’)

result=k*m

CASE DEFAULT

WRITE(*,*) ’Invalid operator’,op

END SELECT

WRITE(*,2) k,op,m,result

2 FORMAT(’ ’,I3,’ ’,A1,I3,’ = ’,I3)

END PROGRAM Calculator

– CS1510 Lecture 7 – 18



Example 2: SELECT-CASE

PROGRAM Display_grade

! This program reads in an integer mark and

! displays the corresponding letter grade.

IMPLICIT NONE

INTEGER::mark

WRITE(*,*) ’Please enter a grade’

READ(*,*) mark

SELECT CASE (mark)

CASE (80:100)

WRITE(*,*) ’A’

CASE (65:79)

WRITE(*,*) ’B’

CASE (55:64)

WRITE(*,*) ’C’

CASE (50:54)

WRITE(*,*) ’D’

CASE (0:49)

WRITE(*,*) ’F’

CASE DEFAULT

WRITE(*,*) ’Invalid mark, not within [0,100]’

END SELECT

END PROGRAM Display_grade

– CS1510 Lecture 7 – 19


