
Computer Science 1510

Lecture 15

Lecture Outline

• Sorting

• Searching

– CS1510 Lecture 15 –



Insertion Sort

• Insertion sort reads values and places them in the
appropriate location in the array such that when all
values have been read the resulting array is sorted.

• Consider the list

3, 1, 2, 5, 4, 2, 1, 9

• Insertion sort begins with the first element and adds
it to the first position in the sorted list.

3

• The second element is then placed before or after
the first element, depending on whether it is less
than or greater than the first element. In this case,
the second value read is to be placed in position 1,
with the 3 moved to the second position.

1, 3

– CS1510 Lecture 15 – 1



• The third element is then inserted into its proper
place in the sorted list, shifting one or both of the
first two elements if necessary. Here, just the 3 is
shifted to insert the 2.

1, 2, 3

• The process continues with insertion of subsequent
elements into their appropriate position in the list
until all elements have been placed in the sorted
list.

1, 2, 3, 5

1, 2, 3, 4, 5

1, 2, 2, 3, 4, 5

1, 1, 2, 2, 3, 4, 5

1, 1, 2, 2, 3, 4, 5, 9

– CS1510 Lecture 15 – 2



Example: Insertion Sort

PROGRAM Insertion_sort

!-------------------------------------------------------------------

! This program sorts a list of integers in ascending order using

! insertion sort.

! INPUT:

! num - the number of integers to be sorted.

! current - integer read from the user, to be placed in

! the appropriate location in the sorted array.

! OUTPUT:

! to_sort - sorted list of integers.

!-------------------------------------------------------------------

IMPLICIT NONE

INTEGER :: to_sort(999)

INTEGER::i,j,k,num,current,position

WRITE(*,*) ’How many numbers are to be read?’

READ(*,*) num

WRITE(*,*) ’Enter value’

READ(*,*) current

WRITE(*,*) ’List thus far:’

WRITE(*,’(X,I2)’) current

to_sort(1)=current ! Put the first element in the array

DO k=2,num ! For each element

WRITE(*,*) ’Enter value’

READ(*,*) current ! Get next element

position=1 ! Assume that the element belongs at the beginning

DO j=1,k-1 ! Check where element belongs among those already sorted

IF (current > to_sort(j)) THEN

position=j+1

END IF

END DO

IF (position < k) THEN ! Need to shift part or all of the list

CALL Shift(to_sort,k,position) ! Shift elements from position to k

to_sort(position)=current ! Add current element in correct position

– CS1510 Lecture 15 – 3



ELSE

to_sort(position)=current ! Add element to the end of the list

END IF

WRITE(*,*) ’List thus far:’

DO i=1,k

WRITE(*,’(X,I2)’,ADVANCE=’NO’) to_sort(i)

END DO

WRITE(*,*)

END DO

WRITE(*,*)

WRITE(*,*) ’Final sorted list:’

DO i=1,num

WRITE(*,’(X,I2)’,ADVANCE=’NO’) to_sort(i)

END DO

WRITE(*,*)

CONTAINS

SUBROUTINE Shift(array,end,start)

!-------------------------------------------------------------

! Shift the elements of array from index start to index end

! ahead by one, leaving a gap at index start.

!-------------------------------------------------------------

INTEGER,INTENT(INOUT)::array(:)

INTEGER,INTENT(IN)::end,start

INTEGER::i

DO i=end,start+1,-1

array(i)=array(i-1)

END DO

END SUBROUTINE Shift

END PROGRAM Insertion_sort

– CS1510 Lecture 15 – 4



Searching

• Another common programming problem is searching
a list of data for a particular item.

• As with sorting, there are several different algorithms
that can be used to search a list.

• We have seen a linear search which starts with the
first element in the list and searches sequentially
until either the desired item is found or the end of
the list is reached.

• A more efficient search is a binary search.

• Binary search requires the initial list to be sorted.
We first check the middle element in the list. If
this is the desired value then the search is complete.
Otherwise, if the middle value is greater than the
desired value we repeat with the first half of the list,
if the middle value is less than the desired value we
repeat with the second half of the list.

– CS1510 Lecture 15 – 5



• Consider the list

1, 1, 2, 2, 3, 4, 5, 9, 10

• Suppose that we are looking for the value 9. We
first check the middle element (= 3).

• Since 3 is less than 9 we disregard the first half of
the list and concentrate on the second half.

4, 5, 9, 10

• Since the second half of the list has 4 elements,
there is no middle element. In this case we choose
the element preceding the middle which is 5.

• Since 9 is greater than 5 we again choose the second
half of the list.

9, 10

• Since there is again no middle element, we choose
the element preceding the middle which is 9. This
is the desired value.

– CS1510 Lecture 15 – 6



Example: Binary Search

PROGRAM Binsearch

IMPLICIT NONE

INTEGER :: list(999), num, i, to_find, location

INTEGER :: first, last, mid

LOGICAL :: found=.FALSE.

WRITE(*,*) ’How many items are to be entered?’

READ(*,*) num

WRITE(*,*) ’Enter the sorted list’

READ(*,*) (list(i), i=1,num)

WRITE(*,*) ’What item would you like to find?’

READ(*,*) to_find

! Start with entire list, ie. elements from 1 to num

first = 1

last = num

DO

! Terminate if list is empty or if item is found

IF ((first > last) .OR. found) EXIT

WRITE(*,*) ’Searching list:’

DO i=first,last

WRITE(*,’(X,I3)’,ADVANCE=’NO’) list(i)

END DO

WRITE(*,*)

! Compute the midpoint. Note that integer division will

! give the item preceding the middle if there is no

! middle element.

mid = (first + last) / 2

IF (list(mid) > to_find) THEN ! Search first half of list

last = mid - 1

ELSE IF (list(mid) < to_find) THEN ! Search second half

first = mid + 1

– CS1510 Lecture 15 – 7



ELSE ! mid element is the item sought

found = .TRUE.

location = mid

END IF

END DO

IF (found) THEN

WRITE(*,’(A,I4,A,I4)’) ’Value ’, to_find,’ was found at location ’,location

ELSE

WRITE(*,*) ’Item not found’

END IF

END PROGRAM Binsearch

– CS1510 Lecture 15 – 8


