Computer Science 1510

Lecture 16

Lecture QOutline

e Derived data types

e Modules

— (CS1510 Lecture 16 —



Derived data types

e A program combines an algorithm and data to solve
a problem.

e So far we have seen how to use Fortran
primitive data types such as INTEGER, REAL, and
CHARACTER.

e \We have also seen that arrays can be used to store
lists of data of the same type.

e Depending on the data used for a particular problem,
it may be useful to be able to group data using a
more sophisticated group organization.

e A derived data type is a term used to refer to the
grouping and organization of primitive data types
into complex structures.

— CS1510 Lecture 16 - 1



Derived data types

e For example, suppose that we would like to have
a data type called Student that would store
information for a single student, including the
following:

— Student number
— Last name

— First name

— Assignment grades
— Lab quiz grades

— Midterm grade

— Final exam grade
— Final grade

e This would require a much more complex data
type than we have already seen. However, each
component in this new data type is of an intrinsic
type (ex. characters, integers).

— CS1510 Lecture 16 - 2



Derived data types

e In general, a derived data type is defined as follows:

TYPE type—name
declaration of field names
END TYPE type—-name

e We can define a derived type with the above
components as follows:

TYPE Student
CHARACTER (Len=9) : : id_num
CHARACTER (Len=15) : : first_name
CHARACTER (Len=20) : : last_name
REAL: :assign(8),labs(10) ,mid,final,grade
END TYPE Student

e \We now have a derived data type that can be used
similar to an intrinsic data type.

— CS1510 Lecture 16 - 3



Derived data types

e We can declare variables to be of type Student.
For example,

TYPE(Student) :: stil
where st1 is called a structure.

e Each element in a data structure is called a
component, or a field. For example, id_num,
first_name, and labs are all fields in the Student
data structure.

e [0 access an element of the data structure we use
the % symbol.

For example, to set the first name in the structure
st1 we would write:

st1%first_name=’John’

— CS1510 Lecture 16 - 4



Arrays of derived data types

e |t is possible, indeed quite useful, to have arrays
composed of structures, or derived data types.

e For example, if we have a class of 50 students then
we can declare an array of type Student as follows:

TYPE(Student) :: Class(50)

e [o access an element of the data structure we use
the % symbol. For example, to set the first name of
student 1 we would write:

Class(1)%first_name=’John’

e Class (1) accesses the first element in the Class
array, which is of type Student.

e first name is a field within the student Class(1).

— CS1510 Lecture 16 - 5



Example: TYPE

PROGRAM Structure

IMPLICIT NONE

! Define a Student data structure

TYPE Student
CHARACTER (Len=9) : : id_num
CHARACTER (Len=15) : : first_name
CHARACTER (Len=20) : : last_name
REAL: :assign(8) ,mid,final,grade

END TYPE Student

INTEGER: :1i, j,num,OpenStatus, InputStatus

REAL: :total,aavg

CHARACTER (Len=20) : :FileName

! Declare an array of 10 Students
TYPE(Student) : :Class(10)

WRITE(*,’ (A)’ ,ADVANCE="NQO’) ’Which file should be read? °’
READ (*,*) FileName

OPEN(UNIT=5,FILE=FileName,STATUS="0LD’ ,I0STAT=0penStatus)
IF (OpenStatus > 0) STOP

! Determine how many students are in the class
READ(5,*,I0STAT=InputStatus) num
IF (InputStatus /= 0) STOP

! Read in the student data

DO i=1,num
READ(5,*,I0STAT=InputStatus) Class(i)%id_num
IF (InputStatus /= 0) STOP
READ(5,*,I0STAT=InputStatus) Class(i)%first_name
IF (InputStatus /= 0) STOP
READ(5,*,I0STAT=InputStatus) Class(i)%last_name
IF (InputStatus /= 0) STOP
READ(5,*,I0STAT=InputStatus) Class(i)%assign
IF (InputStatus /= 0) STOP

— CS1510 Lecture 16 -



READ(5,*,I0STAT=InputStatus) Class(i)%mid
IF (InputStatus /= 0) STOP
READ(5,*,I0STAT=InputStatus) Class(i)%final
IF (InputStatus /= 0) STOP

END DO

! For each Student, compute the final mark
DO j=1,num
! Compute the average assignment mark for Student j
total=0
DO i=1,8
total=total+Class(J)%assign (i)
END DO
aavg=total/8.0

! Compute the final mark for Student j

! Assignments marked out of 20, midterm and final marked out of 50.

! Assignments = 30%, Midterm = 30%, Final = 40%
Class(j)%grade=aavg/20.0%30.0+Class(j)%mid/50.0%30.0+Class(j)%final/50.0%40.0

! Display the final mark for Student j
WRITE(*,10) Class(j)%first_name,Class(j)’%last_name,’received’,&
Class(j)%grade,’in the course.’
END DO

10 FORMAT(A15,A20,X,A8,X,F5.1,X,A14)

CLOSE(UNIT=5)
END PROGRAM Structure

Output:
John Doe received 74.2 in the course.
Jane Smith received 71.3 in the course.

— CS1510 Lecture 16 - 7



Example input file

2

123456789 - student ID

John - first name

Doe - last name
19,17,15,10,16,17,18,14 - assignments
35 - midterm

37 - final

987654321 - student ID

Jane - first name

Smith - last name
16,18,14,13,10,11,18,16 - assignments
32 - midterm

38 - final

— CS1510 Lecture 16 —



Fortran MODULE

e A MODULE is a program unit used to package
together related information and functions.

e Variable declarations, subprograms, and definitions
of new data types are items that are commonly
found in a MODULE.

e Syntax:

MODULE module—-name
IMPLICIT NONE
Variable-declarations

CONTAINS
Subprogram-definitions

END MODULE module-name

e A MODULE can be placed before the main program
in a .f08 file or in its own file (see later).

e Modules allow related data and/or subprograms
to be grouped together to be used by different
programs as needed.

— CS1510 Lecture 16 - 9



Example 1: MODULE

MODULE Circle

The following module contains subprograms to compute attributes
of a circle:
Area: compute the area of a circle
Circumference: compute the circumference of a circle
IMPLICIT NONE
REAL,PARAMETER: :PI=3.14159

CONTAINS

! Compute the area of a circle with radius r.
! Accepts: radius of the circle
! Returns: the area of the circle

FUNCTION Area(r)
REAL,INTENT(IN)::r
REAL: :Area
Area=PI*r*r
RETURN

END FUNCTION Area

I-Circumference——————==————————————————— - ———————————
I Compute the circumference of a circle with radius r.

! Accepts: radius of the circle

! Returns: the circumference of the circle

FUNCTION Circumference(r)
REAL,INTENT(IN)::r
REAL: :Circumference
Circumference=2*PI*r
RETURN

END FUNCTION Circumference

END MODULE Circle

— CS1510 Lecture 16 - 10



Using a MODULE

e In order to have access to the contents of a
MODULE, a program (or subprogram) must request
access via a USE statement.

e Syntax:
USE module_name
e A USE statement must occur after the program

or subprogram name and before the declaration
statements.

e Modules allow restricted access to subprograms
since only programs and subprograms that USE
the MODULE are permitted to call subprograms
within the MODULE.

— CS1510 Lecture 16 - 11



Example 1: Using a MODULE

PROGRAM Calc_Circle

I The following program calculates and displays the area and
I circumference of a circle of a given radius.

I' INPUT: r - radius of the circle

I OUTPUT: Area and circumference of the circle

USE Circle

IMPLICIT NONE

REAL: :r

WRITE(*,*) ’Enter circle radius’

READ(*,*) r

WRITE(*,*) ’Circle area = ’,Area(r)

WRITE(*,*) ’Circle circumference = ’,Circumference(r)
END PROGRAM Calc_Circle

— CS1510 Lecture 16 -



