
Machine Learning State Evaluation

in Prismata

Rory Campbell

M.Sc. Thesis

Memorial University of Newfoundland

March 24, 2020

Abstract

Strategy games are a unique and interesting testbed for AI protocols due their com-

plex rules and large state and action spaces. Recent work in gameAI has shown that

strong, robust AI agents can be created by combining existing techniques of deep

learning and heuristic search. Heuristic search techniques typically make use of

an evaluation function to judge the value of a game state, however these functions

have historically been hand-coded by game experts. Recent results have shown

that it is possible to use modern deep learning techniques to learn these evaluation

functions, bypassing the need for expert knowledge.

In this thesis, we explore the implementation of this idea in Prismata, an online

strategy game by Lunarch Studios. By generating game trace training data with

existing state-of-the-art AI agents, we are able to use a Machine Learning (ML)

approach to learn a new evaluation function. We trained several evaluation models

with various parameters in order to compare prediction time with prediction accu-

racy. To evaluate the strength of our learned model, we ran a tournament between

AI players which differ only in their state evaluation strategy. The results of this

tournament demonstrate that our learned model when combined with the existing

Prismata Hierarchical Portfolio Search system, produces a new AI agent which is

able to defeat the previously strongest agents. A subset of the research presented

in this thesis was the subject of a publication in the Artificial Intelligence and In-

teractive Digital Entertainment (AIIDE) 2019 Strategy Games Workshop [1].

1

Acknowledgements

The work in this thesis was supervised by Dr. David Churchill whose consistent

mentor-ship proved invaluable in all stages of the research described. The other

members of the AI and Games Lab were all instrumental in this work but, in par-

ticular, I acknowledge the help of Caroline Strickland and Richard Kelly, both of

whom are tremendous researchers and cherished friends. I would like to thank my

parents for their guidance and support and also my wonderful girlfriend Morgan,

whose partnership and encouragement has meant so much to me.

2

Contents

Chapter 1 Introduction 10

1.1 Motivation . 11

1.1.1 Improvements to Gameplay 11

1.1.2 Improvements in Game Development 12

1.1.3 General Applicability . 12

1.2 Prismata AI . 13

1.3 Thesis Outline . 13

Chapter 2 Background 15

2.1 Games as an AI Testbed . 15

2.2 Heuristic Search and Games . 17

2.2.1 Game Tree Search . 17

2.2.2 Heuristic Search in Prismata 19

2.3 State Evaluation . 20

2.4 Learning State Evaluation . 21

Chapter 3 Prismata 22

3.1 Game Description . 22

3

Chapter 4 Prismata AI System 33

4.1 AI Challenges . 33

4.1.1 Hierarchical Portfolio Search 35

4.2 State Evaluation . 37

4.3 AI Players . 39

Chapter 5 Learning State Evaluation 41

5.1 Learning Objectives . 41

5.2 Data Gathering . 42

5.3 Learning Method . 45

5.4 State Representation . 46

5.4.1 Unit Types and Resources 47

5.4.2 Unit Isomorphisms and Resources 48

5.5 Tensorflow and Keras . 49

5.6 Inference on the Trained Model 50

5.6.1 Tensorflow C++ . 50

5.6.2 FLASK Application . 50

5.6.3 Frugally Deep . 51

Chapter 6 Experiments and Results 52

6.1 Experimental Setup and Performance Metrics 52

6.1.1 Network Structure . 53

6.1.2 Quality of Training Data 55

6.2 Experiment 1: Evaluation Speed 55

6.3 Experiment 2: Training Accuracy 58

4

6.4 Experiment 3: Training Data Accuracy Impact 61

6.5 Experiment 4: AI vs. AI Tournament 62

Chapter 7 Conclusions and Future Work 65

7.1 Iterative Improvement . 66

7.2 Card Buy Learning . 67

7.3 Deep Reinforcement Learning 68

5

List of Figures

3.1 Two units from the Prismata Base Set. The cost of building these

units is shown on the top right of their respective panels. The unit

health is shown in the bottom right. Drones have a clickable ability,

whose description we can read in the center. 25

3.2 A guided example of a basic set of Prismata actions 31

6.1 Evaluations per second of each method. HPS_R is the fastest,

but also the least accurate. HPS_P represents the previous best-

performing state evaluation method, which was also the slowest to

calculate . 57

6.2 Training Accuracy of networks with varying width and depth over

time . 59

6.3 Tradeoff between training accuracy and speed. The y-axis mea-

sures training accuracy as a percentage against an x-axis measure-

ment of nodes per second explored by our examined network archi-

tectures. The dots represent the mean training accuracies of each

architecture and the line is a linear regression on these mean values 60

6

6.4 AI vs. AI Tournament Results. Each set of bars represents the

success of a learned agent, labeled on the x-axis, against two pre-

viously developed Prismata AI agents, with HPS_P being the pre-

vious strongest bot. The y-axis represents the score of the learned

agent against the respective existing AI agent, where score = num-

ber of wins + draws/2. A score of 0.5 indicates both AI agents are

of similar playing strength, with a score higher than 0.5 indicating

a winning average . 63

7

List of Tables

3.1 Prismata’s Base Set, where the letter in parentheses for abilities

is either ’p’ for a passive ability or ’c’ for an ability that activates

when the unit is clicked. The Prismata term prompt means that the

unit is able to block immediately. 25

4.1 A sample portfolio for Prismata 36

6.1 Average, Maximum, and Standard Deviation of Training Accura-

cies of Models of Varying Size. The largest and slowest network

has the highest average accuracy, but the faster networks are only

slightly behind on training accuracy 59

6.2 TrainedModels tested on AI Games of Varying Quality. The value

at row i, column j represents the testing accuracy of amodel trained

on data from i and tested on data from j. 62

6.3 Players in the AI vs. AI tournament 62

8

6.4 The numerical tournament results represented in Figure 6.4. A

score > 0.5 means that our method for machine learning state

evaluation outperforms the existing strongest Prismata AI agent,

HPS_P. All such scores are represented in bold 63

9

Chapter 1

Introduction

Research into Artificial Intelligence (AI) for games has passed numerous mile-

stones, defeating themost advanced human players in classic turn-based boardgames

such as Checkers [2] and, more recently, Go [3]. Strategy video games have be-

comemilestones for AI play thanks in part to their large state and action spaces and

detailed rule-sets, which make them interesting test-beds for AI research. Many AI

techniques have been applied to the challenge of playing video games at an expert

level and this thesis attempts to implement some of these modern AI development

strategies and test their success against other relevant approaches.

10

1.1 Motivation

1.1.1 Improvements to Gameplay

Inmany single-player andmulti-player games, players frequently interact with non-

player characters (NPCs), which perform various functions within the game world.

In some games these NPCs play critical roles in a narrative, and a player’s evalu-

ation of these interactions can effect their perception of the quality of that narra-

tive. In other games, the NPCs may be obstacles to the player in some way and

the challenge they provide can become a critical detail in the player’s perception

of the game’s systems. Interaction with AI in these ways can effect the critical

and consumer reception of a game [4] and potentially have an impact on a game’s

commercial performance. Games with better overall AI systems are more fun and

engaging for players, resulting in tangible effects such as better reviews and more

game sales.

Strategy games such as Starcraft 1 and Empire: Total War 2 have been criti-

cized for having AI which provided insufficient challenge, a feature which has on

occasion been mitigated by allowing the AI to break game rules in an attempt to

balance a competitive encounter. By developing AI agents which are more skilled

opponents, players engaged in both the single and multiplayer modes would bene-

fit.
1https://starcraft.com/en-us/
2https://www.mobygames.com/game/empire-total-war

11

1.1.2 Improvements in Game Development

Quality Assurance (QA) testing is a critical part of game development in which

QA testers are hired to identify and report bugs to game developers for correction

[5]. Many modern games publish content consistently after release and this sched-

ule creates difficulties when the time-consuming process of QA testing must be

undertaken with each additional batch of content. Games such as Rare’s Sea of

Thieves3 have used AI to automate certain QA testing protocols [6]. A QA tester

may be required to test the persistence of in-game boundaries, which may involve

many attempts to break the boundaries by colliding with them with various tra-

jectories and velocities, a task which is better suited to an AI testing protocol. By

assigning some of the bug testing responsibility to automated testing, QA teams

can be free to evaluate the quality of other aspects of the gameplay experience.

1.1.3 General Applicability

Work in artificial intelligence is a prominent component of modern research in

self-driving cars [7], fraud detection [8], recommendation systems for popular des-

tinations on the web [9], and, according to a study from The University of Hull,

"Artificial intelligence techniques have the potential to be applied in almost ev-

ery field of medicine" [10]. Strategy games serve as interesting test-beds for AI

protocols due to the complexity resulting from their complicated rule-sets in con-

junction with their large state and action spaces. By developing AI agents which
3https://www.seaofthieves.com/

12

can play strategy games at an advanced level, we are showcasing the new methods’

ability to cope with these complex problems and are advancing the science of AI

as a whole, potentially impacting our ability to solve AI problems in other fields.

1.2 Prismata AI

Prismata is a complex turn-based strategy gamewhich features an amalgamation of

game-play features found in other strategy games. Prismata’s ruleset and complex-

ity make it an interesting testbed for AI agents, which will be outlined in greater

depth in Chapter 4. The current AI system for Prismata is based on a technique

called Hierarchical Portfolio Search (HPS), introduced in [11]. The main goal of

this thesis is to improve the performance of HPS by using Machine Learning

(ML) to replace components of the system that were crafted by expert knowl-

edge.

1.3 Thesis Outline

Chapter 2 of this thesis will discuss related work in the field of AI for video games,

specifically in the field of heuristic search, followed in Chapter 3 by detailed outline

of Prismata including an overview of its gameplay rules. Chapter 4 will give a

description of the workings of its current AI agent, paying particular attention to

state evaluation. Chapter 5 introduces the original research contributions of

this thesis and we will go over the frameworks and general strategies involved in

13

training a model to perform state evaluation. Chapter 6 demonstrates our most

relevant experiments and results pertaining mostly to observing the effects of key

variable changes on the performance of our new state evaluation strategy. We will

then make some concluding remarks in Chapter 7 focused mostly around potential

directions for future work on this research.

14

Chapter 2

Background

2.1 Games as an AI Testbed

Games serve as a good testbed for AI research given their complicated rule-sets

and large state and action spaces [12]. Many strategy board games have served as

testbeds for AI development and the success of AI players against world champi-

ons has been a historic milestone in the development of these AI players. In 1992,

Chinook, a checkers playing AI program was narrowly defeated by Dr. Marion

Tinsley [2], widely considered to be the greatest checkers player in history [13].

A rematch took place in 1994 during which Dr. Tinsley had to withdraw due to

health concerns and conceded his title to Chinook, which would go on to defend

its title twice by 1996 [14]. Members of the team which developed Chinook would

later go on to solve the game of checkers [15], which means that it achieved perfect

play. In 1997, Deep Blue II, an AI chess player developed by IBM, successfully

15

defeated then world champion Gary Kasparov [16]. Deep Blue II was the culmina-

tion of many previous attempts at a world-class chess AI and was developed with

the assistance of numerous chess Grandmasters [16].

Casino card games such as Poker have also been the subject of AI research,

with researchers at the University of Alberta suggesting in 1998 that Poker served

as a "better testbed for machine intelligence research related to decision making

problems" [17]. AI research in Poker is currently ongoing; with AI players such as

Libratus, developed at Carnegie Mellon University, defeating four top professional

players in a tournament in 2017 [18].

More recently, the team at Google’s DeepMind developed an AI Go player

named AlphaGo, which defeated then world champion Lee Sedol [3], the process

of which is the subject of a documentary [19]. DeepMind would go on to intro-

duce AlphaZero, an AI player designed to function on a broader set of game rules,

which demonstrated its effectiveness in both Chess and Shogi by defeating high-

level AI players in both games and also defeating AlphaGo [20]. In the world of

PC strategy games, StarCraft is one of the most prominent test beds of AI research.

Although a StarCraft AI has yet to defeat a world champion, there are numerous ac-

tive StarCraft AI tournaments, with SCAIT1 and AIIDE2 being of particular note.

DeepMind has also been working on the development of a StarCraft bot, known

as AlphaStar, [21], whose performance in the game of StarCraft II was the subject

of a demonstration in early 20193. AlphaStar makes alterations to the AI system
1https://sscaitournament.com/
2https://www.cs.mun.ca/~dchurchill/starcraftaicomp/
3https://www.youtube.com/watch?v=cUTMhmVh1qs

16

of AlphaGo and was ultimately able to defeat a professional player [22]. Dota 2, a

popular multiplayer online battle arena (MOBA), has also served as a testbed for

AI research. OpenAI Five, a Dota 2 player developed by OpenAI, became the first

AI player to defeat the Dota 2 world champion team in a tournament held in 20194.

2.2 Heuristic Search and Games

2.2.1 Game Tree Search

The process of playing a game from start to finish can be represented as a sequence

of states and actions. The state of a game is an instantaneous snapshot of the cur-

rent game configuration (for example, the configuration of the pieces on a Chess

board). Actions are performed by players which transition one game state to an-

other (for example, moving a Chess piece and capturing an enemy). If we then

consider all possible paths through a particular game, we can represent this collec-

tion of paths as a game tree, with nodes in the tree representing game states, and

edges representing actions. Game tree search is the process of searching through

a game tree to find the best action that a player can perform (within a given time

limit). Heuristic search (applied to game trees) is the study of algorithms which

are used to explore the game tree in an attempt to most efficiently find these opti-

mal actions. Due to the large number of possible states for most interesting games,

game trees are often too large to search completely to the end of the game (leaf

nodes).
4https://openai.com/blog/openai-five-finals/

17

Search Strategies in Game AI

There are a variety of algorithms designed which can be used to search through

the game states in a game’s search tree. The minimax algorithm [23] can take

a substantial amount of time to examine a game’s search tree, time which can be

saved with the help of an optimization like alpha-beta pruning. Alpha-beta pruning

[23] is an added improvement to minimax which does not alter the end result but

it speeds up the process by not exploring branches of the tree that can be shown

to have no effect on the search result. Alpha-beta pruning has been used to play

two-player strategy board games, in particular it has been used extensively in chess

programs [24].

Heuristic search strategies combine search algorithms likeminimaxwith heuris-

tic optimizations and they have been applied heavily to game AI. Monte Carlo Tree

Search (MCTS) [25] is a relatively recent heuristic search strategy which assigns

values to the nodes in a game’s search tree based on the outcome of playouts which

involve random actions. The term playout describes an instance of a game which

is played from some starting point until the game ends. Once the end of a play-

out is reached, meaning that the game has ended in one of win, loss, or draw, all

nodes along the path to the end are given updated weights based on the outcome.

MCTS has been used to tackle board games such as Chess [26] and Shogi [26]. As

mentioned earlier, Chess AI often employs alpha-beta [27] but DeepMind’s Alp-

haZero protocol employsMCTS in conjunctionwith Reinforcement Learning (RL)

and was able to achieve better performance than the previously known strongest

agents which were based on alpha-beta [26].

18

MCTS has been applied to computer strategy games in both commercial and

research settings. The Total War series of strategy games has received criticism

throughout its history for the perceived weaknesses in its AI opponents, which at

one time used a protocol known as Goal Oriented Action Planning [28], which had

proven to be successful in first-person shooters such as F.E.A.R. [29], which was

praised for its strong AI [30]. For Total War: Rome II, the developers attempted to

implement MCTS to improve the AI opponents’ ability to coordinate its decision

making across the game’s numerous mechanics [31] and found that the AI agent

took a great deal more time than players to make its decisions [32].

In academic research, MCTS has been applied with success to computer card

games such as Hearthstone [33] and Magic: The Gathering [34]. However, since

playouts are random in MCTS and the search trees are so large, even MCTS is not

able to completely search the entire tree of many games. This was demonstrated

at the General Video Game-AI Competition at the 2014 IEEE Computational In-

telligence in Games, where AI players target general performance across multiple

games and agents using MCTS experienced losses due to time constraints [35].

2.2.2 Heuristic Search in Prismata

Hierarchical Portfolio Search (HPS) [11] is the heuristic search algorithm which

forms the basis of the AI protocols in Prismata. A detailed description of HPS can

be found in Chapter 4. HPS was designed to explore the large search trees found

in many strategy video games by generating a set of actions fewer than those in the

game’s entire search tree and iterating over this smaller set of possibilities. The

19

details of state evaluation will be discussed in Chapter 4 and will be the basis of

the machine learning improvements proposed and tested in this thesis.

2.3 State Evaluation

Since none of the discussed search algorithms can search an entire game tree within

a feasible amount of time, we must have a strategy for evaluating non-terminal leaf

nodes, a process called state evaluation. Historically, state evaluation used heuris-

tics which performed calculations based on features which were considered most

important in determining the relative advantage of players in a gamestate. These

heuristics were hand-coded by experts and relied on domain-specific knowledge

meaning that they were both time consuming to develop and also needed to be

built from scratch for each new game that the protocol was applied to. Exam-

ples of hand-coded heuristics can be found in historic chess-playing agents, such

as the Greenblatt chess AI, which assigned value to the various chess pieces and

used these evaluations to create variables which were considered critical in the

game [27]. More recently, in work on Starcraft, hand-coded heuristics have been

constructed based on the differential in valuable resources and incorporated into

MCTS [36]. Prismata’s strongest AI agent attempts to improve on hand-coded

heuristics by using a technique known as symmetric playout, which will be dis-

cussed in our section on Prismata’s existing AI players.

20

2.4 Learning State Evaluation

Machine Learning has been used as a state evaluation technique in general game

playing AI as a means to incorporate experience as a means of learning, as op-

posed to using a fixed heuristic [37]. Similar work has been completed in research

on Hearthstone5, where MCTS is supplemented with a network trained on games

between AI players to predict which player is likely to win from a certain state [38]

and as a state evaluation strategy for AlphaGo [39]. The idea of supplementing

a search technique with supervised learning is one of the central motivating

ideas for the research in this thesis. The existing Prismata AI will be described

in detail in Chapter 4 and in Chapter 5 we discuss using deep neural networks for

state evaluation, which is the approach tested in this thesis.

5https://playhearthstone.com/en-us/

21

Chapter 3

Prismata

3.1 Game Description

Prismata is a strategy game developed by Lunarch Studios which combines "con-

cepts from real-time strategy games, collectible card games, and table-top strategy

games". Before the name Prismata was given to the game, its internal working

title was MCDS, which stood for: “Magic the Gathering, Chess, Dominion, Star-

Craft"’, the four games which inspired its creation and from which its gameplay

elements are borrowed. Before we discuss any AI system for Prismata, it is first

necessary to understand its basic game rules and game theoretic properties. Full

game rules available on the official Prismata website1, but we will provide all nec-

essary background here.

Prismata has the following properties:
1http://www.prismata.net

22

1. Oppositional Two Player: Although there is single-player content featuring

puzzle challenges and a narrative, the focus of the game and of this research

is its competitive 1 vs. 1 game mode, where players compete against each

other. 1 vs. 1 is also available against a set of AI players provided by the

game.

2. Deterministic - Every game features the same 11 base-set units in combi-

nation with a random set of 8 units which is generated at the beginning of

the game. Each unit type has a fixed total supply for each player. After ex-

hausting this supply amount, no further units of that type may be purchased.

These units are added to the group of purchasable units and both players

may purchase any of the available units. No further randomization takes

place throughout the game, as Prismata has no decks which can be shuffled

or mechanics through the game which incorporate chance.

3. AlternatingMove: Players alternate turns under the restriction of a time limit

within each turn, although the game features no overall time limit. Once the

time limit for a player’s turn is reached, the turn is passed to the opposing

player with no additional penalty. A player may also choose to pass the turn

at any time.

4. Zero Sum - All games in Prismata end in win, loss, or draw with a player

winning after destroying all the enemy units or after the enemy forfeits.

5. Perfect Information - Prismata does not employ a fog of war like mechanic

to obscure information from either player and no such mechanics can be

23

employed in the game. Players can observe all of their opponent’s units,

including both units on the board and those which are buyable in the future.

Players in Prismata each control a number of units, with each unit having a spe-

cific type such as a Drone or an Engineer, similar to most popular RTS games such

as StarCraft which has unit types such as Marine or Zergling. Prismata units are

used to build an economy for purchasing further units, produce resources, attack

opponents, and defend incoming attacks. Units are divided into the 11 found in the

base set and the 8 random units, which are selected from a pool of approximately

100. The base set units are described in Table 3.1, with two sample units described

in Figure 3.1.

Also similar to RTS, players start the game with a few economic units which

can produce resources for the player. These resources in turn can be spent on

purchasing additional units which come in one of 3 main flavors: economic units

(produce resources), aggressive units (can attack), or defensive units (can block

incoming attack). The resources in Prismata consist of Gold and Green, which

accumulate between turns, and Energy, Red, and Blue which are depleted at the

end of each turn. Additionally, Prismata has an attack resource which is calculated

based on the cumulative total of attack points put forth by a player.

24

Unit Type Start countSupply Cost Build Time Ability
Engineer Blocker 2 20 2 gold 1 Gain 1 energy (p)
Drone Blocker 6/7 20 3 gold, 1 energy 1 Gain 1 gold (c)
Conduit N/A 0 10 4 gold 1 Gain 1 green (p)
Blastforge N/A 0 10 5 gold 1 Gain 1 blue (p)
Animus N/A 0 10 6 gold 1 Gain 2 red (p)
Forcefield Blocker 0 20 1 gold, 1 green 0 Prompt

Gauss Cannon N/A 0 10 6 gold, 1 green 1 Gain 1 energy
Wall Blocker 0 10 5 gold, 1 blue 0 Prompt

Steelsplitter Blocker 0 10 6 gold, 1 blue 1 Gain 1 attack (c)
Tarsier N/A 0 10 4 gold, 1 red 2 Gain 1 attack (c)
Rhino Blocker 0 10 5 gold, 1 red 0 Prompt, Gain 1 attack (c)

Table 3.1: Prismata’s Base Set, where the letter in parentheses for abilities is either
’p’ for a passive ability or ’c’ for an ability that activates when the unit is clicked.
The Prismata term prompt means that the unit is able to block immediately.

Figure 3.1: Two units from the Prismata Base Set. The cost of building these units
is shown on the top right of their respective panels. The unit health is shown in
the bottom right. Drones have a clickable ability, whose description we can read
in the center.

Each turn of Prismata consists of a player performing a number of individual

Actions, with a player’s turn ending when they choose to stop acting and pass the

turn (or if their turn timer expires). These player actions can be one of the fol-

lowing: purchase a unit of a given type, activate a unit ability, assigning incoming

damage to a defending unit, assigning own damage to an enemy unit, or ending

the current turn. Turns in Prismata are further broken down into an ordered series

25

of game phases in which only actions of a certain type can be performed: 1) de-

fense phase - damage is assigned to defenders, 2) action phase - abilities of units

are activated, 3) buy phase - new units are purchased, 4) breach phase - damage

is assigned to enemy units. These phases are similar to other strategy games such

as Magic: the Gathering’s untap, upkeep, attack, and main phases, etc. A turn in

Prismata therefore consists of an ordered sequence of individual actions, which in

this thesis we will call aMove. Each player has their own pool of resources in Pris-

mata, which are produced by unit actions. There are 6 resource types in Prismata:

gold, energy, red, blue, green, and attack, which players can use in a variety of

ways to perform actions such as the consumption of resources in order to purchase

additional units or activate unit abilities.

A set of screen-shots demonstrating some basics of Prismata’s board layout

and select player actions can be seen in Figure 3.2.

Combat in Prismata consists of two main steps: Attacking and Blocking. Un-

like games like Hearthstone, units do not specifically attack other units, instead

a unit generates an amount of attack which is summed with all other attacking

units into a single attack amount. Any amount of Attack generated by units during

a player’s turn must be assigned by the enemy to their defensive units (blocked)

during the Defense phase of their next turn. When a defensive player chooses a

blocker with h health to defend against a incoming attack: if a ≥ h the blocking

unit is destroyed and the process repeats with a − h remaining attack. If a = 0

or a < h the blocking unit lives and the defense phase is complete. If a player

generates more attack than their opponent can block, then all enemy blockers are

26

(a) The positioning of the two players on the Prismata board

(b) The starting units of each player are seen here and are visible to both players

27

(c) The respective players’ resource panels

(d) The player who currently has the turn can click units to use their abilities

28

(e) The bottom player has clicked all 6 of their drones and used their ability. A drone gives the
player 1 Gold when clicked, so the bottom player now has 6 Gold, as seen in their resource panel

(f) The left panel contains the shared buyable units. Visible here are the 11 base set units which
are present in every game. Players can also click a button on this panel to see the shared buyable
units which are not in the base set, and are randomly chosen at the beginning of the game

29

(g) Players can purchase units for which they have sufficient resources from the shared buyable
pool by clicking on them. The cost of each unit is visible in the left panel

(h) The bottom player purchases a drone which costs them 3 Gold and 1 Energy, notice how their
resource panel is decremented by this amount in the bottom left

30

(i) The bottom player still has more resources to spend

(j) The bottom player purchases another drone and is now out of resources to spend. They can click
the button on the right to end their turn

Figure 3.2: A guided example of a basic set of Prismata actions

31

destroyed and the attacking player enters the Breach phase where remaining dam-

age is assigned to enemy units of the attacker’s choosing.

The main strategic decision making in Prismata involves deciding which units

to purchase, and then how tomost effectively perform combat with those units. The

task of the AI system for Prismata is therefore to decide on the best move (ordered

sequence of actions) to perform for any given turn. In the following chapter, we

will introduce and discuss the AI system for Prismata.

32

Chapter 4

Prismata AI System

In this chapter we will introduce the AI challenges in Prismata, as well as introduce

the existing AI system in Prismata which is based on a heuristic search technique

known as Hierarchical Portfolio Search.

4.1 AI Challenges

Players in Prismata start with just a few units, and quickly grow armies that con-

sist of dozens of units and resources by the middle and late game stages. Since a

state of the game can consists of almost any conceivable combination of these units

and resources, the state space of Prismata is exponentially large with respect to the

number of purchasable units in the game. In order to gain a perspective on the size,

consider that a game of Prismata features the 11 base set units and a random set of

8 units, which are selected from a pool of about 100, giving
(
100
8

)
= 186087894300

33

possibilities. There are 19 unit type options for each player, each of which has a

total available supply, as described in Chapter 3, which, as we’ve seen, is 10 or

20 for every unit in the base set, but we will assume 10 for a conservative esti-

mate in order to establish a lower bound. This means that there can be up to 10

units of each type in play so we have 1038 possible configurations of the units on

the board once the random units have been selected, but we round up slightly to

1040 possibilities. Units also have properties that can vary during a game, such

as variable health points or an active ability when clicked and although not every

unit has one of these abilities, many units have more than 2 states, so we assume

that each unit has 2 possible states, meaning that there are 240 possible configura-

tions of unit characteristics and abilities for the units in play and we assume that

there are approximately 40 units in play. The following expression demonstrates

an approximation for the lower bound of Prismata’s state space.

186087894300 ∗ 1040 ∗ 240 ≈ 2 ∗ 1063

In addition to this, a player turn in Prismata consists of an ordered sequence

of actions that are grouped into phases as described in our chapter detailing Pris-

mata and each phase may consist of multiple actions which leads to a similarly

exponential number of possible moves for a player on any given turn. These ex-

ponential state and action spaces pose challenges for existing search algorithms,

which was why the Hierarchical Portfolio Search [11] algorithm was created by

Dr. David Churchill specifically for the Prismata AI engine, and is explained in

34

the following chapter. The strategic difficulty of Prismata is not limited to its large

state and action space and can be seen by examining a subset of its gameplay. In

the defense phase of a turn, a player is responsible for distributing the attack points

of the opponent amongst their own defenders, ideally in such a way as to minimize

their loss. This process is equivalent to the bin-packing problem, in which a finite

volume must be distributed among bins, each of which has some capacity. When

the number of bins is known, as it is during the defense phase of Prismata, the

problem is NP-complete. Such strategic decisions are a contributing factor to the

difficulty of Prismata.

The Prismata AI also has no means of violating the game rules. In certain

strategy games, the AI is allowed to cheat the game’s system by building units it

does not have resources for or playing cards it does not actually have in its hand.

Given Prismata’s perfect information, any attempts to circumvent the rules are eas-

ily spotted.

4.1.1 Hierarchical Portfolio Search

Hierarchical Portfolio Search (HPS) [11] is a heuristic search algorithm that forms

the basis of Prismata’s existing AI system, and was designed specifically to tackle

searching in environments with exponentially large action spaces. The main con-

tribution of HPS is that it significantly reduces the action space of the problem by

searching only over smaller subsets of actions which are created via a Portfolio.

This Portfolio is a collection of sub-algorithms created by AI programmers or de-

signers, which each tackle specific sub-problems within the game. An example

35

Defense Ability Buy Breach
Min Cost Loss Attack All Buy Attack Breach Cost
Save Attackers Leave Block Buy Defense Breach Attack

Do Not Attack Buy Econ

Table 4.1: A sample portfolio for Prismata

Portfolio can be seen in Table 2 - since a turn in Prismata is broken down into

4 unique phases, the portfolio consists of sub-algorithms (called Partial Players)

of varying complexity which are capable of making decisions for each of these

phases. For example, the defense phase portion of the Portfolio has an exhaustive

search which attempts to minimize the number of attackers lost when defending,

the buy phase contains a greedy knapsack solver which attempts to purchase the

most attacking units given a number of available resources, while the ability phase

has a script which simply attacks with all available units.

Once the portfolio has been formed, the turn moves are generated by simply

taking all possible permutations of the actions decided by the partial players in the

portfolio. In the example in Table I, this would result in a total of 2×3×3×2 = 36

total moves. This process is shown in the GenerateChildren function on line 3 of

Algorithm 1. The final step of HPS is to then apply a high-level search algorithm

of your choosing (Minimax, MCTS, etc) to the moves generated by the portfolio.

The full HPS algorithm is shown in Algorithm 1, with NegaMax, a variant of

minimax, chosen as the search algorithm for its compact description. The Prismata

AI’s implementation uses Alpha Beta as its search algorithm, which is functionally

identical to NegaMax.

36

Algorithm 1 Hierarchical Portfolio Search
1: procedure HPS(State s, Portfolio p)
2: return NegaMax(s,p,maxDepth)
3: procedure GenerateChildren(State s, Portfolio p)
4: m[]← ∅
5: for all move phases f in s do
6: m[f]← ∅
7: for PartialPlayers pp in p[f] do
8: m[f].add(pp(s))
9: moves[]← crossProduct(m[f] : move phase f)

10: return ApplyMovesToState(moves,s)
11: procedure NegaMax(State s, Portfolio p, Depth d)
12: if (D == 0) or s.isTerminal() then
13: return Eval(s)← state evaluation
14: children[]← GenerateChildren(s,p)
15: bestVal← −∞
16: for all c in children do
17: val← −NegaMax(c,p,d-1)
18: bestVal← max(bestVal,val)
19: return bestVal

4.2 State Evaluation

As with all challenging environments, the state space of Prismata is far too large

for the game tree to be exhaustively searched, and therefore we need some method

of evaluating non-terminal lead nodes in our search algorithm. Decades of AI re-

search has shown thatmore accurate heuristic evaluation functions produce stronger

the overall AI agents [40], so the construction of this function is vitally important

to the strength of the AI. The call to the evaluation function in HPS can be seen on

line 13 of Algorithm 1, for which any method of evaluating a state of Prismata can

be used - as long as it returns a larger positive number for states which benefit the

37

player to move, and a larger negative number for states which benefit the enemy

player.

As discussed in our review of the history of AI in strategy games, these evalu-

ation functions have been mostly hand-coded by domain experts using knowledge

of what may be important to a given game state. The original heuristic used for the

Prismata AI system was done in this way - the resource values for each unit owned

by each player were summed, and the player resource sum difference was calcu-

lated, with the player having the highest sum being viewed as in a favorable posi-

tion. This type of evaluation is flawed, as it fails to take into account the strategic

position that those units may be in - an incredibly important piece of information

that is left out.

After experimental testing, a better method of evaluation for Prismata was

found: game playouts [41]. A simple scripted AI agent was constructed (called

a Playout Player) and was used to evaluate a state. From a given state, both play-

ers were controlled by the same playout player until the end of the game, with the

intuitive notion that if the same policy controlled both players, then the resulting

winner was probably in a favorable position. This method then returns a value for

who won the playout game: 1 if the player to move won, -1 if the enemy player

won, or 0 if the game was a draw. Even though this method of evaluation was ap-

proximately 100x slower than the previous formula-based evaluation, resulting in

fewer nodes searched by HPS - the heuristic evaluation was so much more accurate

that the resulting player was stronger, winning more than 65% of games with iden-

tical search time limits. In many games, this delicate balance between the speed

38

of the evaluation function and its prediction accuracy plays a vital role in overall

playing strength, and the overall effectiveness of the evaluation function can only

be measured by playing the AI agents against each other with similar decision time

limits.

In the past few years, several world-class game AI agents have been created

which have made use of machine learning techniques for evaluating game states.

For example, the DeepStack [42] and AlphaGo [43] systems were able to use deep

neural networks to predict the value of a state in the games of Poker and Go, re-

spectively. In the following chapters, we will discuss the main contribution of this

paper: using deep neural networks to learn to predict the values of Prismata

states, and using this to construct an AI agent which is stronger than the cur-

rent system.

4.3 AI Players

Prismata’s AI system includes AI players varying in strategic capability. In terms

of the difficulty adjustment which is available to players choosing to compete

against an AI opponent, Prismata offers the following options:

1. Master: HPS agent with a 1000ms time limit

2. Expert: Chooses same portfolio as Master Bot but has a fixed alpha-beta

search depth of 1

3. Medium: Chooses randomly from the same portfolio as Master Bot

39

4. Easy: Medium bot, with less advanced purchasing strategy

5. Random: Chooses random actions until turn ends

The Master Bot with playout state evaluation will sometimes be referred to as

HPS_P, particularly when comparing it to agents that also employ HPS but with a

different state evaluation strategy. We will use the term HPS_R to refer to the HPS

agent which uses the hand-coded resource-based heuristic state evaluation used in

a previous version of the Prismata AI. Each resource was given a value (relative

to the base gold resource) by Will Ma, one of the game’s original designers and

programmers. The evaluation for a player was then simply the sum of the resource

costs of all units that a given player owned. If one player has a higher resource cost

sum, then they are considered to be at an advantage by this heuristic.

40

Chapter 5

Learning State Evaluation

In this chapter we will discuss how we learned a state evaluation model for Pris-

mata. We will discuss the overall learning objectives, the methods used for gather-

ing the training data, the techniques and models used to do the learning, the state

representation used to encode the Prismata states, as well as the implementation

details of all methods involved. The selection, implementation, and testing of the

techniques described here represent the main contribution of this thesis.

5.1 Learning Objectives

Our objective in learning a game state evaluation is to construct a model which

can predict the value of any given input state. In our case, the value of a state is

correlated to who the winner of the game should be if both players play optimally

from that state until the end of the game. For simplicity, we will define the output

41

for our model to be a single real-valued number in the range [-1, 1]. Ideally, we

want our model to predict the value of 1 for a state which should be a definite win

for the current player of a state, the value of -1 for a state which is a definite loss

for the current player (win for the enemy), and a value of 0 to a state which is a

definite draw, assuming perfect play on both sides.

Learning state evaluation has advantages and disadvantages over the evalua-

tion techniques discussed previously. The main advantages of learned prediction

are: 1) learning can occur automatically without the need to specifically construct

evaluation functions or playout player scripts, and 2) theoretically one can learn

to predict a much stronger evaluation than hand-coded methods if enough quality

training data is given. The main disadvantages are: 1) if the game is changed (rules

or unit properties modified in any way) then we may have to re-train our models

from scratch, and 2) learning requires access to vast amounts of high quality train-

ing data, as we cannot learn to predict anything more accurately than the samples

we are given to learn from.

5.2 Data Gathering

The previously listed disadvantage of obtaining high quality training data poses a

unique problem for complex games. Unlike traditional supervised learning tasks

such as classification, in which we are typically given access to data sets of inputs

along with their correctly labeled ground-truth outputs, it is difficult to obtain who

the absolute winner should be from a given state of a complex game. After all, if

42

we were able to determine the true winner from a given state, then the AI task of

creating a strong agent would have already been solved. Therefore, the best that

we can typically do is create a model to predict the outcome of a game played by

the best known players available at any given time.

Historically, when performing initial supervised learning experiments, game

AI researchers have turned to human game replay data as the benchmark for strong

input data - the outcomes of those human games would be used as the target label

which a learned model would attempt to predict. For example, Google DeepMind

initially learned on human replay data for both its AlphaGo and AlphaStar [44] AI

systems - since at the time of initial learning, human players had a far greater skill

level than existing AI systems for those games. The same is also true for Prismata,

in which expert human players can easily defeat the current AI even on its hardest

difficulty settings. Therefore, our best option for learning would be to use these

expert human replays for our training data, however we first need to determine: 1)

if they are available for use, and 2) whether there are enough games to train the

models.

Prismata saves every game ever played by human players, with approximately

3 million total replays currently existing. This number, however, is deceptive, as

Prismata undergoes regular game balance patches every few months with major

changes to unit properties. Learning to predict game outcomes on replays which

contain units with different properties than the current version of the game could

yield results which are no longer valid. For example, certain actions which could

be performed on an older patch such as purchasing a unit for a given number of

43

resources may no longer even be legal with the same number of resources on the

current patch. Another factor limiting the usability of these replays is the rank of

the players in the game. Since we would only want to use replays of high ranked

players, this would cut approximately 60-80% of the replays from the data set as

not being of high enough quality to use for training. On top of this, there is also a

technical reason why these human replays could not be used for the training data in

this research: the format in which they are recorded. In order to save storage space,

Prismata replays are not stored as a sequence of game state descriptions, but are

instead stored as an ordered sequence of player actions. Each action is of the format

(TimeCode, PlayerID, ActionTypeID, TargetID), where the TargetID indicates the

unique instance id of a unit in the game, which is assigned by the game engine

based on some complex internal mechanism. When a player views a replay in the

official game client, the client is able to simulate these actions from the beginning

of the game to recreate a game state and display it for the user. Unfortunately, this

process of recreating the game state by the official game engine is not usable by us

in a manner that would allow for these game states to be written to a file to be used

as a training data set, and the construction of such a system would not be possible

within the time available. Based on all of these factors, the human replays cannot

be used as a training set at this time.

Since it is not practical to train a model based on the best available human

replays, we instead train a model using the best available AI players. By playing an

AI agent against itself, we can generate as many game state traces as are required,

with the learning target being the eventual winner of that game. The AI agents used

44

for the generation of the test data are agents that currently exist in the Prismata AI

engine, namely: ExpertAI and Master Bot. Both of these agents use an Alpha

Beta search implementation of HPS with a symmetric playout state evaluation,

with the difference being that ExpertAI does a fixed depth-1 search, while Master

Bot searches as many nodes as it can in a 3 second iterative-deepening Alpha Beta

search. Themain idea here is that the current playout player used byMaster Bot is a

simple scripted agent, meant to be fast enough to be used by the heuristic evaluation

within a search. If we can learn to predict the outcome of a Master Bot game for

a given state, then we can effectively replace the playout player evaluation by a

learned Master Bot evaluation, resulting in a much stronger evaluation function,

which hopefully leads to a better overall agent. We can leave these AI agents to

play against themselves and generate game traces for as long as we want, providing

ample data for learning.

5.3 Learning Method

In recent years, the vast majority of machine learning breakthroughs in AI for

games have come through the use of Deep Neural Networks (DNN). AlphaGo, Al-

phaGo Zero1, AlphaStar, DeepStack, and OpenAI Five2 each make use of DNNs in

their learning. Therefore, we have chosen to use DNNs for our supervised learning

task. The details of this network will be given in Chapter 6.
1https://deepmind.com/research/alphago/
2https://openai.com/five/

45

5.4 State Representation

Before we can actually learn anything, we must first decide on the structure of

the input and output to our supervised learning task. As we are using DNNs for

learning, it is advantageous to devise a binary representation for our game states,

which is the preferred input format for successful learning in most modern DNNs.

It remains for us now to create a function which, given a game state, translates it

into a binary sequence for input into a DNN. Also, as this data will be used as input

to a neural network, the state representationmust be of uniform length regardless of

the state of the game, which may vary considerably in number of units, resources,

etc.

For many AI agents learned on games, such as those trained by DeepMind to

play Atari 2600 games, in some cases defeating expert human players, the game

was summarized visually, using the raw pixels of the game’s graphical output [45].

This approach lends itself to learning with convolutional neural networks (CNN),

a popular tool in developing strong gameAI, used in research on games as complex

as Starcraft II. Unlike Atari 2600 games and Starcraft, Prismata lacks meaningful

geometry; unit placement is fixed and has no effect on gameplay, and so CNNs are

not appropriate for our task.

Several state representation systems were tested over the course of this research

and through experimental trial and error, we arrived at a representation which ap-

pears to provide a good balance between representing the strategic nuances of a

state and the size / complexity of the DNN required to learn on it effectively. Since

46

we are using this network as an evaluation tool in a search algorithm, the feed-

forward prediction speed of the network is of vital importance as it will be called

possibly thousands of times per search episode.

5.4.1 Unit Types and Resources

The state representation we will be using captures 3 main features of the state: the

current resource counts for each player, the current unit type counts for each player,

and the current player to move in the state. This encoding discards information

such as which units may be activated, individual unit instance properties, among

many others, but since the states are all recorded at the beginning of each turn when

units are not yet activated, much of the effect of this information loss is alleviated.

Our final binary representation is as follows:

[P,U11...U1n, R11...R1m, U21...U2n, R21...R2m] (5.1)

where P is the current player to move at the given state (0 or 1), UXi is the current

count of unit type i for player X , and RXi is the current count of resource i for

playerX . These counts are stored as one-hot encodings of their associated integer

values with a maximum length of 40, a 1 in the index corresponding to the count,

and a 0 everywhere else.

47

5.4.2 Unit Isomorphisms and Resources

As discussed in our section on Prismata game rules, Prismata units of the same

type do not always have the same properties. Some unit types, including some

defensive units such as the Forcefield, have variable health whichmeans that not all

Forcefields have equivalent consequence in the game. Our unit type representation

ignores this context entirely, grouping together all forcefields, regardless of their

current remaining health. In order to more completely represent a gamestate, we

developed a state representation which more completely summarizes the relevance

of active units. In mathematics, an isomorphism is a relationship defined between

two objects under which they are considered equal, even though they may not truly

be the same. Items which are isomorphic to one another are said to be members of

the same isomorphism class. Recall that Prismata players break down a turn into

four phases: Defense, ability, buy, and breach. At the beginning of our defense

phase, an engineer that is built and an engineer that is under construction are both

defensively irrelevant, thus having the same strategic consequence for the player

and are members of the same isomorphism class.

Instead of counting unit types, as in our first representation, we instead define

isomorphism classes within each unit type and count those. Each unit type will

be subdivided into multiple isomorphism classes which adds significantly to the

length of our state representation. The number of isomorphism classes within a

unit varies significantly. Friendly engineers for instance have only 1 isomorphism

class, while enemy Asteri Cannons have 16. The current resource counts for each

player and the current player to move in the state are still vital pieces of information

48

which must be included. The numerical component of our representation, one-hot

encodings of integers, remains the same and the state representation is as follows:

[P, I11...I1j, R11...R1m, I21...I2j, R21...R2m] (5.2)

Although this representation is certainly a more complete summary of the

game, it is also substantially more verbose and the networks required to learn on

the data proved to be too large to perform feed-forward inference rapidly enough to

compete with our unit type representation. For the remainder of this paper, all tests

will be done using the unit type and resources state representation in expression

5.1.

5.5 Tensorflow and Keras

Many open-source libraries currently exist for the building and training of deep

neural network models. Due to its popularity, ease of use, and GPU support, we

chose to use Tensorflow3 for the research performed in this thesis. Tensorflow was

developed by Google and has an abundance of both official and unofficial docu-

mentation. On top of Tensorflow, we are using a high-level API known as Keras4

which has a python wrapper making the coding of our network very clean. Ten-

sorBoard5 visualizations are a set of useful graphical tools for observing a model’s

structure and the status of its learning metrics provided to us by Tensorflow.
3https://www.tensorflow.org/
4https://keras.io/
5https://www.tensorflow.org/tensorboard

49

5.6 Inference on the Trained Model

Since the Prismata AI engine is written in C++, we need to perform inference on

our trainedmodel within that C++ system. As of writing, Keras has no official C++

libraries, and so we needed to use additional libraries to perform the inference with

C++. This section discusses approaches that were not selected for this research but

all considered methods are presented for completeness.

5.6.1 Tensorflow C++

Tensorflow does officially support C++ so if we convert our Keras model into a

basic tensorflow model, we might be able to write C++ functionality for inference.

We were able to convert our Keras model to a standard TensorFlow model using

open-source code found on the web 6 , but overall this task proved to be too difficult

as C++ tensorflow is less commonly used andmuch of the available documentation

is now deprecated.

5.6.2 FLASK Application

Since we have a working model which was constructed, trained in, and inferred

upon using python, it is possible to develop a web application with a pythonic web

development service such as flask 7 which loads the model and accepts POST re-

quests for inference. We were able to successfully develop a FLASK application
6http://bitbionic.com/2017/08/18/run-your-keras-models-in-c-tensorflow/
7http://flask.pocoo.org/

50

which loaded and performed feed-forward prediction with a trained model, but

integrating this with the existing C++ Prismata code significantly altered the ar-

chitecture of our experimental setup and this procedure did not reach the required

level of functionality in time to compare it with our selected approach.

5.6.3 Frugally Deep

Frugally Deep8 is an open-source, header only library designed specifically for

calling Keras networks in a feed-forward capacity from C++ and was ultimately

chosen as the basis for the experiments described in Chapter 6. The downside to

this approach is that frugally deep performs all its computations on a single-core

of CPU and does not support GPU computation at all. Unfortunately, we could not

find any way to perform a GPU implementation of the feed-forward of our network

inside C++ with the Prismata AI engine, therefore we believe the results found in

the next chapter could be improved by a significant margin once we overcome this

hurdle.

8https://github.com/Dobiasd/frugally-deep

51

Chapter 6

Experiments and Results

In this chapter we will give the details of the methods and experiments that were

performed in order to construct, train, and test our novel state evaluation model.

6.1 Experimental Setup and Performance Metrics

In order to evaluate the overall quality of the new learned evaluation method, we

ran tournaments of AI vs. AI games using AI players with several different settings.

For the purpose of these experiments, our agent using learned state evaluation will

be referred to as HPS_L. Recall the players defined in chapter 4, section 4.3, where

HPS_R uses a hand-coded resource-based heuristic state evaluation, HPS_P uses

playout state evaluation, and HPS_L uses our learned state evaluation. These three

agents all use HPS with Alpha-Beta search with a time limit of 1000ms each, dif-

fering only in state evaluation. Since the only variable we are altering is state eval-

52

uation, we can be sure that any variation in performance is caused by the methods

we are testing. Each player is given a score at the end of the tournament which

serves as the metric of the player’s success, the score formula being the number

of wins + draws/2, such that a score of 0.5 indicates both AI agents are of similar

playing strength, with a score higher than 0.5 indicating a winning average.

The performance of our learned player can be decomposed into two primary

components: the structure of the neural network and the quality of the training

data.

6.1.1 Network Structure

Network structure encompasses all the parameter choices made in developing the

code for our model. For the purposes of recreating our results, our network used a

flattened input layer with dimensions of (842,1), with the unit and resource count

arrays described in section 5.4.2 as the input. Our experiments implemented a

variable number of dense hidden layers with variable numbers of neurons in each

layer. The neurons in these dense hidden layers contain ReLU activation functions.

Our output layer was a dense layer with a single neuron, defined with a sigmoid

activation function.

To design a model we must select a learning rate. A learning rate serves as a

scaling factor for adjusting theweights in a neural network. The higher our learning

rate, the more the weights are adjusted within the network in order to approximate

a solution. If the learning rate is too high, the network may over-adjust the weights

and miss a strong solution, a process referred to as overshooting. All the networks

53

tested use a conservative learning rate of 1∗10−5 in order to mitigate the possibility

of overshooting. To supplement the lower learning rate, our network also uses

an Adam optimizer [46], which implements the procedures of Adaptive Gradient

Algorithm (AdaGrad) [47] and Root Mean Square Propagation (RMSProp) [48],

meaning that Adam will adjust the learning rate for us, a process which has been

shown to outperform other automatic learning rate adjustment protocols.

Experiments 1 and 2 were designed to test the effect of network size on the

quality of our learned agent.

Network size, for the purposes of our experiments, refers to the depth (number

of layers) and the width (number of neurons per layer) of a network. As we lessen

the size of the network, we are making the process of feed-forward inference faster

and, by extension, allowing our search algorithm to explore more nodes in the

search tree. However, increasing the size of the network can improve its accuracy,

leading to a trade-off between speed and accuracy. The effect of a faster feed-

forward inference is explored in Experiment 1, which demonstrates the effect of

network size against the number of nodes an agent can evaluate in the game’s search

tree given a time constraint. Experiment 2 focuses on the relationship between

network size and accuracy, by comparing the testing accuracy of models which

vary in size. The networks examined in these experiments are identical in every

way except size. We will also demonstrate the speed vs. accuracy trade-off.

54

6.1.2 Quality of Training Data

As discussed in Chapter 5, it is best to provide our neural network with data from

games featuring the best available AI players, which in our case is Prismata’s Mas-

ter Bot. In order to test the effect that quality of training data has on ultimate

tournament performance, we generated data from 200,000 AI vs. AI games fea-

turing AI of various game skill levels, where AI players were played against AI

players of their same difficulty level. Our learned models were then trained on this

data. The effect of using training data from AI players of varying skill is one of

the details explored in Experiment 4, as learned models trained on this data are

entered into our AI vs. AI tournament.

6.2 Experiment 1: Evaluation Speed

To test the effect of network structure on speed of inference, we trained multiple

networks with identical training data (Master Bot games) and identical network

properties, with the exception of size. The metric for speed will be the number of

nodes per second explored by a set of AI agents with the only difference between

agents being the model which they are calling upon for state evaluation. It is also

useful to measure these speeds against those of certain existing AI agents. The

agents tested on the criteria of evaluation speed are the following:

55

1. HPS_R: HPS using a hand-crafted formula state evaluation function

2. HPS_P: HPS using a hand-crafted playout simulation for state evaluation.

This method was the previously best existing AI for Prismata, and was used

in the retail version of the game

3. HPS_L-2-64: Our trained neural network model feed forward prediction

time (2 layers, 64 neurons per layer).

4. HPS_L-2-128: 2 layers, 128 neurons per layer.

5. HPS_L-2-256: 2 layers, 256 neurons per layer.

6. HPS_L-2-512: 2 layers, 512 neurons per layer.

7. HPS_L-2-1024: 2 layers, 1024 neurons per layer.

8. HPS_L-3-1024: 3 layers, 1024 neurons per layer.

Each evaluation model was used in a sample Alpha Beta HPS player with a one

second time limit per turn. Figure 6.1 shows the results for how many evaluations

56

Figure 6.1: Evaluations per second of each method. HPS_R is the fastest, but also
the least accurate. HPS_P represents the previous best-performing state evaluation
method, which was also the slowest to calculate

were performed on average. From these results we can see that the Resource for-

mula is by far the fastest evaluation, but it might later prove to be the least ac-

curate. The Playout evaluation was the previous best evaluation method, but far

slower than the resource heuristic. Our learned models lie in between these two

in terms of speed, with speed decreasing as the model gets larger. If the accuracy

of our learning is sufficiently high, these models would yield an overall stronger

HPS player than with the other evaluation methods, as we will explore in the next

section.

57

6.3 Experiment 2: Training Accuracy

Experiment 1 demonstrated that constructing a larger network reduces speed. Ex-

periment 2 was designed to demonstrate how a larger network improves accuracy.

These results are demonstrated here in Figure 6.2 by testing all the learned mod-

els from Experiment 1, visualizing their learning accuracy in the form of data

recorded by Tensorboard which depicts learning over time and plotted using Mat-

plotlib1 and Seaborn2, a data visualization library running on Matplotlib. HPS_R

and HPS_P do not need to be examined here as they are not learning agents and

do not have a training accuracy. The x-axis represents 1000 equally time-spaced

accuracy reports, based on elapsed real time while the y-axis represents the per-

centage accuracy of training. The raw data could not be meaningfully displayed

due to overlapping data points and so a regression of order 3 for each network ar-

chitecture is shown, using built-in functionality in Seaborn. As we would expect,

a larger network results in learning which is more accurate on average, increasing
1https://matplotlib.org/
2https://seaborn.pydata.org/

58

Figure 6.2: Training Accuracy of networks with varying width and depth over time

Network Average Accuracy Maximum Accuracy Standard Deviation
HPS_L-2-64 0.88 0.91 0.01749
HPS_L-2-128 0.88 0.94 0.01667
HPS_L-2-256 0.89 0.92 0.01598
HPS_L-2-512 0.89 0.92 0.01522
HPS_L-2-1024 0.90 0.95 0.01564
HPS_L-3-1024 0.91 0.94 0.01600

Table 6.1: Average, Maximum, and Standard Deviation of Training Accuracies of
Models of Varying Size. The largest and slowest network has the highest average
accuracy, but the faster networks are only slightly behind on training accuracy

59

Figure 6.3: Tradeoff between training accuracy and speed. The y-axis measures
training accuracy as a percentage against an x-axis measurement of nodes per sec-
ond explored by our examined network architectures. The dots represent the mean
training accuracies of each architecture and the line is a linear regression on these
mean values

with each tested increase to size in both network width and network depth but the

increases in performance appear to be minimal, while the results from Experiment

1 show vast time penalties in evaluation speed for the construction of larger net-

works. We can observe the tradeoff between accuracy and speed in Figure 6.3.

This Seaborn visualization performs a linear regression on the mean training ac-

curacies of each of our studied architectures from experiment one.

60

6.4 Experiment 3: Training Data Accuracy Impact

We trained state evaluation models using several training data sets obtained via

playing various AI vs AI agents against each other. With any machine learning

accuracy test, there are variables that we must account for: the input training set,

and the target test set. In Figure 6.2 we showed training accuracy over time where

the input training data was the same as the target output data. We wanted to also

investigate how similar each of the learned models was, so we performed an ex-

periment which varied both the input training set and target output set across all

available data sets.

The results of this experiment can be seen in Table X, where table cell i,j

represents the accuracy of the model when trained with data set i and tested against

a target from data set j. As expected, the highest accuracy occurs when i == j,

but we also notice relatively high accuracy values for very different training / target

data sets. For example, a model trained with the Medium AI data set was able to

predict the Master Bot target data set with 82% accuracy. Intuitively, this means

that the models learned were quite similar, so the outcomes of the AI vs AI games

that were played to generate this data must have also been quite similar. While this

does not impact our final results, one potential benefit of this finding is that in the

future, we could use faster running AI agents (such as Medium AI) to generate the

model in far less time than slower running AI agents such as Master Bot, due to

the high accuracy values.

61

Model/Dataset Random Easy Medium Expert Master
Random 0.88 0.78 0.70 0.71 0.69
Easy 0.80 0.86 0.70 0.74 0.73

Medium 0.80 0.73 0.85 0.82 0.82
Expert 0.79 0.74 0.82 0.87 0.85
Master 0.78 0.74 0.81 0.84 0.89

Table 6.2: Trained Models tested on AI Games of Varying Quality. The value at
row i, column j represents the testing accuracy of a model trained on data from i
and tested on data from j.

HPS_R Agent with hand-coded resource-based heuristic state evaluation
HPS_P Agent with playout state evaluation

HPS_L_Mas Our learned state evaluation on Master Bot data
HPS_L_Exp Our learned state evaluation on Expert Bot data
HPS_L_Med Our learned state evaluation on Medium Bot data
HPS_L_Easy Our learned state evaluation on Easy Bot data
HPS_L_R Our learned state evaluation on Random Bot data

Table 6.3: Players in the AI vs. AI tournament

6.5 Experiment 4: AI vs. AI Tournament

To test the effect of variable training data on ultimate tournament performance, we

set up a round-robin tournament with the final score of each player being the score

metric described in section 6.1. In order to speed up the tournament process, we

placed all the players using any of our learned state evaluations in the same group

so they would not have to play games against each other. The following play-

ers competed in the tournament of 13741 games: Note HPS_L_R, HPS_L_Easy,

HPS_L_Med, and HPS_L_Exp all use the 2 layer, 64 neurons per layer structure

which was found in experiment 1 to be the fastest network in terms of its ability to

62

Figure 6.4: AI vs. AI Tournament Results. Each set of bars represents the success
of a learned agent, labeled on the x-axis, against two previously developed Prismata
AI agents, with HPS_P being the previous strongest bot. The y-axis represents the
score of the learned agent against the respective existing AI agent, where score =
number of wins + draws/2. A score of 0.5 indicates both AI agents are of similar
playing strength, with a score higher than 0.5 indicating a winning average

Player HPS_R HPS_P
HPS_L_R 0.37 0.27

HPS_L_Easy 0.28 0.16
HPS_L_Med 0.71 0.64
HPS_L_Exp 0.66 0.63

HPS_L_Mas-2-64 0.69 0.62
HPS_L_Mas-2-128 0.67 0.61
HPS_L_Mas-2-256 0.71 0.61
HPS_L_Mas-2-512 0.62 0.54
HPS_L_Mas-2-1024 0.59 0.54
HPS_L_Mas-3-1024 0.55 0.51

Table 6.4: The numerical tournament results represented in Figure 6.4. A score
> 0.5 means that our method for machine learning state evaluation outperforms
the existing strongest Prismata AI agent, HPS_P. All such scores are represented
in bold

63

visit more nodes in the search tree per second than our other learned agents. Figure

6.4 and Table 6.4 show the results of this tournament.

These results demonstrate that our new method for state evaluation outper-

forms the previous strongest state evaluation strategy. Generally, tournament per-

formance seems to increase as quality of training data increases but this effect

is minimal between Medium, Expert, and Master data although it is significant

between Medium AI training data and Easy or Random AI training data. With a

model learned onMaster Bot data, performance tends to decrease as the size of the

model increases, which is to be expected given the severe drop in nodes explored

per second as demonstrated in Experiment 1.

64

Chapter 7

Conclusions and Future Work

In this thesis we have introduced a neural network model to learn state evalua-

tions in Prismata. We trained this model on game traces generated by the existing

best AI agent for the game: Master Bot, which uses Hierarchical Portfolio Search

with a playout evaluation. Using state evaluation models trained on AI vs. AI

games, we were able to produce a state evaluation strategy which was capable of

evaluating up to 31 times more nodes per second as the previous state-of-the-art

playout-based approach. This new model was faster even though our experiments

were performed only with CPU computation for network predictions, which could

be sped up even further in the future by utilizing GPU computations. A variety

of network structures were tested and we demonstrated through experimentation

that smaller networks had faster evaluation speeds, and were able to maintain a

relatively high level of training accuracy compared to larger, slower networks. Fi-

nally, we played a AI agent tournament in which our newly proposed learned state

65

evaluation method was able to defeat the existing state-of-the-art Master Bot with

playout evaluations in up to 71% of games. We can therefore conclude that this new

method for learning state evaluations using deep neural networks resulted in an AI

agent that played stronger than any previously existing agent, while also running

faster, and relying on less hand-coded knowledge from the game’s developers.

7.1 Iterative Improvement

In the future, we have several ideas on how to further increase the strength of

the learned evaluation agent. First, we can continue to make improvements to

both the network topology and state representation in order to produce a smaller,

more accurate model, which will result in both more evaluations per second, and

and overall better AI agent. Next, we believe that this process can be iterated:

now that we have a stronger AI agent than the original Master Bot, we can train a

model based on this new agent, which should produce a better overall evaluation

function, which in turn should produce a better agent. We feel that eventually this

may yield to diminishing returns, but it should work in the short term to produce a

stronger agent overall. Lastly, we would like to improve our agent even further by

learning of policies for the entire game of Prismata, not limiting ourselves to mere

evaluation functions.

66

7.2 Card Buy Learning

Recall that in the sample portfolio presented in Table 4.1, there were 3 different

heuristics for purchasing units during the buy phase of a Prismata turn, meaning

that the action of buying multiplies the search space by three. In theory, we could

train a model in much the same way we did for state evaluation but instead of

learning the outcome of a game from a given state, we could learn the purchasing

decisions of Master Bot from a given state and while combining heuristics to form

a portfolio, we would not have to search over buying heuristics and the search could

explore more nodes in the search tree, presuming that the feed-forward inference

is faster than iterating over all possible combinations of incorporating the purchase

heuristics.

The training data would bemuch the same as with our state evaluation problem,

using the unit type count and resource state representation in a one-hot format, the

only difference now being that instead of training our model on a set of binary

win/loss labels, we would train it to predict an array of values which represent the

cards which would be purchased by our most advanced AI agent.

We performed some preliminary tests on this question but difficulties emerged

when the AI agent with learned purchasing behaviour was put to the test. The

model was attempting to return an array of units to be purchased, which was one-

hot encoded just as the state representation was and was often quite long. A single

incorrectly predicted one-hot value could lead to a vastly different choice of which

unit to purchase and advantage in Prismata is highly sensitive to mistakes, meaning

67

that an otherwise advanced agent could often be rendered useless.

Were the process of training a model to learn Master Bot’s purchase decisions

more successful it could, in theory, be extended to be a substitute for any other

phase of the turn, greatly improving the speed of the search.

7.3 Deep Reinforcement Learning

Future work on Prismata could feature the development of an AI agent similar to

those developed by DeepMind which uses Deep Reinforcement Learning, which is

a reinforcement learning approach supported with deep neural networks, or some

related deep learning tool. Such an agent could learn to actually play the game of

Prismata instead of just performing state evaluation, by training a policy network

similar to the one trained in AlphaGo or AlphaStar. While this would be a more

complex problem to solve, we feel confident that it would yield a strong AI agent,

due to the promising results found in this thesis.

68

Bibliography

[1] R. Campbell and D. Churchill, “Machine learning state evaluation

in prismata,” 2019. [Online]. Available: https://skatgame.net/mburo/

aiide19ws/paper-3.pdf

[2] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron,

“A world championship caliber checkers program,” Artificial Intelligence,

vol. 53, no. 2-3, pp. 273–289, 1992.

[3] S. Borowiec, “Alphago seals 4-1 victory over go grandmaster lee sedol,” The

Guardian, vol. 15, 2016.

[4] R. McCaffrey, “Alien: Isolation review,” https://ca.ign.com/articles/2014/

10/03/alien-isolation-review, accessed: 2019-11-17.

[5] G. McAllister and G. R. White, “Video game development and user experi-

ence,” in Game user experience evaluation. Springer, 2015, pp. 11–35.

[6] T. Thompson, “Automated testing for gameplay bugs | ai of sea of thieves

(part 4),” https://aiandgames.com/seaofthieves4/, accessed: 2019-11-17.

69

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,

L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning

for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[8] A. Zakaryazad and E. Duman, “A profit-driven artificial neural network (ann)

with applications to fraud detection and direct marketing,” Neurocomputing,

vol. 175, pp. 121–131, 2016.

[9] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube

recommendations,” in Proceedings of the 10th ACM conference on recom-

mender systems. ACM, 2016, pp. 191–198.

[10] A. Ramesh, C. Kambhampati, J. R. Monson, and P. Drew, “Artificial intel-

ligence in medicine.” Annals of The Royal College of Surgeons of England,

vol. 86, no. 5, p. 334, 2004.

[11] D. Churchill and M. Buro, “Hierarchical portfolio search: Prismata’s robust

ai architecture for games with large search spaces,” in Proceedings of the

Artificial Intelligence in Interactive Digital Entertainment Conference, 2015.

[12] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and

M. Preuss, “A survey of real-time strategy game AI research and

competition in StarCraft,” TCIAIG, 2013. [Online]. Available: http:

//webdocs.cs.ualberta.ca/~cdavid/pdf/starcraft_survey.pdf

[13] J. Schaeffer, “Marion tinsley: Human perfection at checkers?” https://

wylliedraughts.com/Tinsley.htm, accessed: 2019-11-17.

70

[14] J. Schaeffer, R. Lake, P. Lu, andM. Bryant, “Chinook the worldman-machine

checkers champion,” AI Magazine, vol. 17, no. 1, pp. 21–21, 1996.

[15] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake,

P. Lu, and S. Sutphen, “Checkers is solved,” science, vol. 317, no. 5844, pp.

1518–1522, 2007.

[16] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial intelli-

gence, vol. 134, no. 1-2, pp. 57–83, 2002.

[17] D. Billings, D. Papp, J. Schaeffer, and D. Szafron, “Poker as a testbed for ai

research,” in Conference of the Canadian Society for Computational Studies

of Intelligence. Springer, 1998, pp. 228–238.

[18] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit poker:

Libratus beats top professionals,” Science, vol. 359, no. 6374, pp. 418–424,

2018.

[19] “Alphago,” https://www.imdb.com/title/tt6700846/, 2017, accessed: 2019-

11-17.

[20] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforce-

ment learning algorithm that masters chess, shogi, and go through self-play,”

Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

71

[21] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czar-

necki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, et al., “Alphastar: Mas-

tering the real-time strategy game starcraft ii,” DeepMind Blog, 2019.

[22] K. Arulkumaran, A. Cully, and J. Togelius, “Alphastar: An evolutionary com-

putation perspective,” arXiv preprint arXiv:1902.01724, 2019.

[23] S. H. Fuller, J. G. Gaschnig, J. Gillogly, et al., Analysis of the alpha-beta

pruning algorithm. Department of Computer Science, Carnegie-Mellon

University, 1973.

[24] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,” Artificial

intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[25] C. B. Browne, E. Powley, D.Whitehouse, S.M. Lucas, P. I. Cowling, P. Rohlf-

shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of

monte carlo tree search methods,” IEEE Transactions on Computational In-

telligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[26] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and

shogi by self-play with a general reinforcement learning algorithm,” arXiv

preprint arXiv:1712.01815, 2017.

[27] R. D. Greenblatt, D. E. Eastlake, and S. D. Crocker, “The greenblatt chess

program,” in Computer chess compendium. Springer, 1988, pp. 56–66.

72

[28] T. Thompson, “Evolution of war the ai of total war part 2,”

https://www.gamasutra.com/blogs/TommyThompson/20180205/314171/

Evolution_of_War__The_AI_of_Total_War_Part_2.php, accessed: 2020-

03-24.

[29] J. Orkin, “Three states and a plan: the ai of fear,” in Game Developers Con-

ference, vol. 2006, 2006, p. 4.

[30] E. Brudvig, “F.e.a.r. review,” https://https:ca.ign.com/articles/2006/10/25/

fear-review-2, accessed: 2019-11-17.

[31] A. J. Champandard, “Monte-carlo tree search in total war: Rome ii’s cam-

paign ai,” https://web.archive.org/web/20150302041541/https://aigamedev.

com/open/coverage/mcts-rome-ii/, accessed: 2020-03-24.

[32] T. Thompson, “Revolutionary warfare the ai of total war part 3,”

https://www.gamasutra.com/blogs/TommyThompson/20180212/314399/

Revolutionary_Warfare__The_AI_of_Total_War_Part_3.php.

[33] S. Zhang, “Improving collectible card game ai with heuristic search and ma-

chine learning techniques,” 2017.

[34] C. D. Ward and P. I. Cowling, “Monte carlo search applied to card selec-

tion in magic: The gathering,” in 2009 IEEE Symposium on Computational

Intelligence and Games. IEEE, 2009, pp. 9–16.

73

[35] H. Park and K.-J. Kim, “Mcts with influence map for general video game

playing,” in 2015 IEEE Conference on Computational Intelligence and

Games (CIG). IEEE, 2015, pp. 534–535.

[36] A. Uriarte and S. Ontanón, “Game-tree search over high-level game states in

rts games,” in Tenth Artificial Intelligence and Interactive Digital Entertain-

ment Conference, 2014.

[37] D. Michulke andM. Thielscher, “Neural networks for state evaluation in gen-

eral game playing,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer, 2009, pp. 95–110.

[38] M. Świechowski, T. Tajmajer, and A. Janusz, “Improving hearthstone ai by

combining mcts and supervised learning algorithms,” in 2018 IEEE Confer-

ence on Computational Intelligence and Games (CIG). IEEE, 2018, pp.

1–8.

[39] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mas-

tering the game of go with deep neural networks and tree search,”Nature, vol.

529, no. 7587, pp. 484–489, 2016.

[40] J. Schaeffer, “The history heuristic and alpha-beta search enhancements in

practice,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 11, no. 11, pp. 1203–1212, 1989.

74

[41] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for rts game

combat scenarios,” in Eighth Artificial Intelligence and Interactive Digital

Entertainment Conference, 2012.

[42] M. Moravčík, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis,

K.Waugh, M. Johanson, andM. Bowling, “Deepstack: Expert-level artificial

intelligence in heads-up no-limit poker,” Science, vol. 356, no. 6337, pp. 508–

513, 2017.

[43] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam,M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go

with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp.

484–489, jan 2016.

[44] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.

Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds,

D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard,

D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Bud-

den, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, Y. Wu, D. Yo-

gatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,

K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar: Mastering

the Real-Time Strategy Game StarCraft II,” https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

75

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv

preprint arXiv:1312.5602, 2013.

[46] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[47] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-

line learning and stochastic optimization,” Journal of Machine Learning Re-

search, vol. 12, no. Jul, pp. 2121–2159, 2011.

[48] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude,” COURSERA: Neural networks for

machine learning, vol. 4, no. 2, pp. 26–31, 2012.

76

