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Abstract 
Non-deterministic, imperfect information games, in which there are random elements and 

players can not always observe the entire game state, pose challenges for AI design over 

deterministic, perfect information games. Monte Carlo Tree Search (MCTS), an AI 

technique that uses random sampling of game playouts to incrementally build a search tree, 

has been used successfully in perfect information deterministic games. MCTS does not rely 

on hand-crafted heuristics for evaluating non-terminal game states or on other domain-

specific knowledge, and performs well for games with large branching factors. Several 

techniques for playing imperfect information games with MCTS have been used for various 

board and card games. Techniques include sampling over many possible determinizations 

of a given game state, and more complex techniques in which the information sets that 

players belong to are considered. In this dissertation, we introduce the imperfect 

information card game of Cribbage and the MCTS algorithm. We then describe our 

implementation of Cribbage for two players and several MCTS-based and non-MCTS-

based AI players. We compare the performance of our players and find that Single-

Observer Information Set MCTS performs well in this domain, beating a simple 

determinized MCTS in our implementation of Cribbage most of the time. We also present 

experiments with different parameters of the MCTS-based players. 
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Chapter 1:  

Introduction 

Games with imperfect information, including many card, board, and video games, present 

interesting challenges for game AI. The card game Cribbage, a popular game for 2-4 

players, is such a game. Some properties of Cribbage, shared by many other card games 

such as Poker, are: 

Non-Determinism: Cribbage is a non-deterministic game, meaning that there is 

randomness in the game, and that actions taken by players do not deterministically 

lead to the next state of the game. Cards are dealt randomly to each player at the 

beginning of each hand and a card is drawn from the deck partway through each 

hand. 

Imperfect Information: Cribbage is an imperfect information game, which means 

that players do not have knowledge of the complete game state. Each player holds 

a hand of cards which are hidden from the other player until they are played. Unseen 

cards in the deck are also hidden from each player. 

Monte Carlo Tree Search (MCTS) is a game AI technique that has been used 

successfully in several perfect information, deterministic games, such as computer Go, 
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since 2006 [1]. It works through repeated sampling of game outcomes using elements of 

random play, while gradually building a search tree. Because MCTS uses random play, it 

works without relying on domain-specific knowledge such as hand-crafted heuristics for 

evaluating non-terminal game states. 

Several techniques for handling imperfect information and stochastic game 

elements in MCTS have been used for board and card games such as Skat, Dou Di Zhu, 

Settlers of Catan, and Phantom Go [2], [1], [3]. Cribbage was chosen as a game to 

implement MCTS in for this research because it is relatively easy to implement, but 

designing a hand-crafted AI to play optimally for Cribbage would be somewhat difficult 

and time-consuming. It is possible to make a hand-crafted AI that plays reasonably like a 

player who knows the rules well, which was a useful characteristic of the game for testing 

purposes. We are unable to find previous similar work on the game of Cribbage. The 

purpose of the research was to focus on how MCTS can handle the unknown information 

in the game tree, from the perspective of the player to act.  

In imperfect information games, it is hard to account for all the possible states that 

a player might be in, and to infer what an opponent’s plan or hidden resources might include 

based on their actions. This makes techniques for handling these kinds of games interesting 

and worthy of investigation. 

In chapter 2 we describe in detail the game of Cribbage, Monte Carlo methods, and 

the MCTS algorithm. Chapter 3 describes the implementation of Cribbage in Java and the 

different AI players implemented for this game. A scripted player, a Cheating UCT player, 

a Determinized UCT player, and a Single Observer-Information Set MCTS player were 

implemented. In chapter 4 we present the results of testing the AI players against each 
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other, tests on varying parameters of some AI players, and discussion about the 

performance of the AI players. In Chapter 5 we summarise the results of this research and 

present some possibilities for future research. 
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Chapter 2:  

Background 

2.1 Cribbage 

Cribbage is a card game for 2-4 players using a standard 52 card deck and a playing board 

used for score keeping. For this project, only the 2-player version of the game was 

considered. 

2.1.1 Description of Play 

Cribbage is played in repeated hands until a player reaches 121 points at any time during a 

hand, thus winning the game. A hand consists of several ordered stages: the deal, throwing, 

the cut, play, and finally the count. The dealer position alternates between hands, and 

several game elements are affected by who the current dealer is.  

At the beginning of each hand, both players are dealt six cards, then both 

simultaneously discard two cards face down to a form a third hand (the crib), which is 

scored by the dealer at the end of the hand. A single card, referred to as the ‘cut’ in this 

research, is drawn from the deck face-up after cutting the deck. The cut is a community 

card that forms the fifth card in each of the three hands for the ‘count’ at the end of the 

hand. 
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In the “play” stage of the hand, each player plays one card from their hand face up, 

alternating turns, while keeping a running sum of the ranks of cards played. When the sum 

reaches 31, or no one can play without going over 31, the play restarts from zero with the 

remaining cards. When the play is over, both players count the points earned by their hands 

(combined with the cut card), and the dealer also counts the crib as their second hand. 

Table 2-1 summarizes the ways that a player can earn points in Cribbage. Players 

score points in both the play and counting for hitting fifteens and thirty ones, pairs, flushes, 

straights (runs), and other card combinations. Aces count as one and face cards count as 10 

when creating sums from combinations of cards. Figure 2-1 shows a Cribbage board and 

the best counting hand in the game, which is worth 29 points. 

 

Figure 2-1: Cribbage board with best hand in the game 
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Table 2-1 Summary of ways to earn points in Cribbage 

Game 

Stage 
Description Points 

Cut The cut card is a Jack of any suit 2 points for the dealer 

Play 
Second/third/fourth card of same rank 

played successively by either player 

2/6/12 points for the player who 

plays the card 

Play 

Three or more successive cards whose rank 

form a ‘run’, played in any order (e.g. 7, 5, 

6) [Note, a second run can be scored by the 

next player to play, and a third, etc.] 

Points equal to the number of 

cards in the run for the current 

player 

Play Play count hits fifteen 2 points for the current player 

Play Play count hits thirty-one 2 points for the current player 

Play 
Last card played before count resets or play 

stage over (“one for last”) 

1 point for the current player 

Count Any two or more cards that sum to fifteen 2 points for hand owner 

Count Two/three/four cards of same rank 2/6/12 points for hand owner 

Count 

Any three or more cards whose ranks form 

a ‘run’ (e.g. 10, J, Q, K) 

Points equal to the number of 

cards in the run for the hand 

owner 

Count 
Flush (in-hand only or in-hand + cut for 

player hand; all five cards only for crib) 

Points equal to number of cards in 

the flush 

Count Jack of same suit as cut card 1 point 

 

Human players usually play an odd number of games constituting a match. If a 

player wins by more than 30 points the opponent is said to be skunked (or double skunked 

if the lead is 60 points or more), earning the equivalent of two or three game wins, 

respectively.  Concepts of multi-game matches and skunking are not considered in this 

project. There are also other rule variations that some players use which are not considered 

here. 
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2.1.2 Properties of Cribbage 

Cribbage has a relatively small game tree for a given deal of the cards. If the game were to 

be played with all cards face-up, as a perfect information game, each hand would have at 

most 15×15⏟    
𝑇ℎ𝑟𝑜𝑤𝑖𝑛𝑔

×4×4×3×3×2×2×1×1⏟              
𝑃𝑙𝑎𝑦

= 129,600 different possible ways to be played. 

Many of those would be equivalent. For example, if a player is holding 6♣ and 6♠ in hand, 

playing either one of them is equivalent during the play stage of a hand. 

However, from one player’s point of view, considering only the cards that player 

has seen, there are (
46
6
) = 9,366,819 different 6-card hands that the opponent could have 

at the beginning of a hand. Again, many of these hands are equivalent, but the effect is that 

the imperfect information nature of the game makes the set of possible states a player can 

be in at any time quite large. 

2.2 Monte Carlo Tree Search 

2.2.1 Monte Carlo Methods 

A Monte Carlo method is any method which approximates a function through random 

sampling. In the case of a perfect information game, one way to select a move could be to 

repeatedly descend the game tree to the end of the game from the root node by taking 

actions for all players randomly, and then recording the result as a win or loss. Over an 

infinite number of samples the average results for each action from the root of the tree 

would approach their true values. The hope is that a move that results in better win rates 

given random play thereafter is a good move to take. 
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Figure 2-2: One iteration of MCTS 

This is an example of a flat Monte Carlo search, because it accumulates results only 

at the root of the search tree. In this example, the move to try in the next sample is always 

random. MCTS, described in the next section, improves on these properties. 

2.2.2 Monte Carlo Tree Search 

MCTS was first described by Rémi Coulom in 2006 [4]. MCTS improves on a flat search 

method by building a search tree that is reused in each iteration of the search. MCTS does 

not explore every part of the tree systematically as in minimax, but instead builds a tree 

asymmetrically by focusing on more promising branches of the tree. Every node of the 

search tree in MCTS accumulates information about how successful it has been in previous 

iterations in the same way as the top-level nodes in a flat Monte Carlo search. That 

information is then used to bias the selection of child nodes at every level of the search in 

subsequent search iterations, though the initial selection criteria is still random. 

MCTS is an on-line search—nothing needs to be precomputed to use MCTS—and 

it is an “anytime” search, meaning it can be stopped whenever a computational or time 
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budget is reached. When the search is stopped, the best move found so far from the root of 

the tree is selected. In practice selection can be calculated in different ways, and is 

addressed in the next section. 

The steps for building the MCTS tree are summarized in Figure 2-2 from [1]. In 

more detail, the procedure for building the tree (and the one followed for this research) is 

as follows: 

Nodes: The tree consists of nodes representing states in the game. A node can 

contain a copy of the corresponding game state or the action leading to the node’s 

corresponding game state. Each node keeps track of its visit count and total score 

or value (win or loss in most games) from visiting that node, as well as a reference 

to its parent node and child nodes. 

Selection: Descend the tree from the root node by following a selection policy until 

either a terminal node or a node with unexpanded children is reached. 

Expansion: If the selected node is not a terminal node, expand it by creating a new 

node representing an action taken from the parent node and the state arrived at by 

taking that action.  

Simulation or Playout: Play from the expanded node by following a “default” 

policy until reaching a terminal game state, which has a value (score for Cribbage) 

for each player associated with it. The default policy is usually random play but can 

be otherwise. 
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Backpropagation: Backup the simulation values to all the nodes visited in the 

selection and expansion steps. 

A key benefit of MCTS is that all that is required is a working implementation of a 

game. Random playouts mean that no knowledge of how to play the game well, and no 

evaluations of non-terminal states, are needed. While not necessary, most applications of 

MCTS for competitive game play do use various enhancements to the algorithm described 

above, including the use of domain-specific knowledge. For instance, MCTS Go agents use 

knowledge about basic patterns of Go pieces to narrow down the search space, so that all 

moves do not have to be considered [1]. This is helpful for games such as GO which have 

very large branching factors (hundreds of possible moves per turn). 

2.2.3 UCT Algorithm 

The algorithm presented in the previous section omits the selection criteria used to descend 

the tree. The selection problem is an example of a multi-armed bandit problem, in which 

there are 𝑘 choices that each provide an unknown rate of return, and the goal is to maximize 

the return in a limited number of visits to the 𝑘 choices [5]. It can also be described as 

exploitation vs. exploration. After visiting some of the choices, or trying each one at least 

once, there is a choice which has the highest average return so far. The balance of 

exploitation and exploration is about when to select the best choice found so far and when 

to try other choices that have fewer visits to learn more about their actual rate of return. 

The selection algorithm most commonly used for MCTS and used in this research 

is Upper Confidence Bound or UCB1. It was first applied to MCTS by Kocsis and 
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Szepesvári in 2006, which they call Upper Confidence Bound for Trees, or UCT [5]. The 

UCT algorithm for selecting the next child node 𝑣′ of a node 𝑣 to visit is: 

arg𝑚𝑎𝑥𝑣′∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑣        
𝑄(𝑣′)

𝑁(𝑣′)
+ 𝑐√

2 ln𝑁(𝑣) 

𝑁(𝑣′)
 

where: 

• 𝑄(𝑣) is the accumulated total value for the player to act at node 𝑣 from the 

backpropagation step of previous iterations; 

• 𝑁(𝑣) is the number of times 𝑣 has been visited in the selection step of previous 

iterations; 

• 𝑐 is an exploration constant that can be adjusted for different domains. 

 

In the selection step of the UCT algorithm, the child node which maximizes the 

above expression is repeatedly selected to descend the tree. The first term of the expression 

represents the average value observed when visiting that node in the past. The second term 

incorporates the ratio of visits to the parent node to visits to the child node. Intuitively, child 

nodes that have shown little value will be visited when the second term grows, which 

happens as the parent node is visited. The MCTS algorithm described in this chapter 

ensures that each child node is visited once before this formula is used to select a child node 

in future iterations. Kocsis and Szepesvári showed that the probability of selecting the 

optimal action when using UCT converges to 1 over an infinite number of search iterations 

[5]. 

The UCT algorithm used in this research is adapted from [1], and is presented in 

pseudocode here: 
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Algorithm 1 UCT 

function search(State 𝑠, c) 

 root ← new Node(𝑠) 
 while within computational budget do 

  Node newNode ← treePolicy(root, c) 

  value ← defaultPolicy(newNode.state) 

  backup(newNode, value) 

 return bestChild(root, 0).action 

 

function treePolicy(Node 𝑣, c) 

 while 𝑣.state is non-terminal do 

  if 𝑣 is fully expanded then 𝑣 ← bestChild(𝑣, 𝑐) 
  else return expand(𝑣) 

 

function expand(Node 𝑣) 

 𝑠 ← 𝑣.state 

 randomly choose 𝑎 ∈ untried actions from 𝑠.actions 

 𝑠′ ← 𝑠.applyAction(𝑎) 

 𝑣′ ← new Node(𝑠′) 
 𝑣′.parent ← 𝑣; 𝑣′.action ← 𝑎 

 return 𝑣′ 
 

function defaultPolicy(State 𝑠) 
 while 𝑠 is non-terminal do 

  randomly choose 𝑎 ∈ 𝑠.actions 

  𝑠.applyAction(𝑎) 

 return 𝑠.value 

 

function backup(Node 𝑣, value) 

 while 𝑣 is not null do 

  𝑁(𝑣) ← 𝑁(𝑣) + 1 

  𝑄(𝑣) ← 𝑄(𝑣) + value 

  𝑣 ← 𝑣.parent 

 

function bestChild(Node 𝑣, c) 

 max ← −∞ 

 for 𝑣′ ∈ children of 𝑣 do 

  score ← 
𝑄(𝑣′)

𝑁(𝑣′)
+ 𝑐√

2 ln𝑁(𝑣)

𝑁(𝑣′)
 

  if score > max then 

   max ← score 

   maxChild ← 𝑣′ 
 return maxChild 
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Chapter 3:  

Methodology 

3.1 Cribbage Java Application 

For this project, a Cribbage game and AI players were implemented in Java. Both a text-

based and Java Swing based Graphical User Interface (GUI) were made for human play 

against the AI players. In Figure 3-1, we see an image of the Java GUI after the first hand 

of a game. The program implements all the rules found in standard play described in 

Chapter 2. 

3.2 Cribbage AI players 

Two baseline AI players were implemented for the purposes of testing the MCTS-based 

players. These were a random player, and a simple scripted player. The scripted player 

takes any action which will give the most immediate points. In the case of discarding to the 

crib, it keeps the four cards which (on their own, without a fifth card) would have the 

highest point total at the end-of-hand score count. During play it plays the card which earns 

the most points immediately for that play, with ties broken by selecting the first such play 

scanned. The scripted player could be considered equivalent to a human player who knows 

the rules but never looks ahead to future moves in planning. 
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Figure 3-1: Cribbage Java GUI 

3.2.1 Cheating UCT 

The simplest version of a MCTS Cribbage player agent we implemented is a cheating 

player. It uses the UCT algorithm outlined in section 2.2.3 while considering the game to 

be a perfect information game. It plays as if all cards are known to both players, and the 

order of cards in the deck was known to all players. The Cheating UCT agent ignores the 

issue of imperfect information, but it serves as a useful benchmark for comparing to other 

AI players. 

In all versions of MCTS used in this research the best move is chosen by comparing 

the visit counts of all the child nodes from the root of the tree after the computational or 

time budget is past, and selecting the move corresponding to the child node with the highest 
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visit count as the move taken. Another method that could be used is to choose the node 

with the highest average value. 

Another decision needed for all MCTS-based players in this research is where to 

stop the search. Typically, MCTS simulations are played out until the end of a game. The 

value returned for those simulations is either 1 (win) or 0 (loss). In Cribbage, each player 

receives a certain number of points during the play and counting of each hand, and then 

play resets as a new hand is dealt with nothing but the total score and dealer position (which 

changes) carrying forward to the next game state. Running the simulation past the end of 

the current hand isn’t necessary, since the value of actions taken during the hand can be 

measured at the end of the hand. Therefore, all MCTS-based agents in this research use the 

difference between the players’ point gains at the end of the current hand as the value of a 

simulation. For example, if player A gains 3 points from a hand and player B gains 10 

points from the same hand, that simulation would have a value of -7 for player A, and 7 for 

player B. 

3.2.2 Determinized UCT 

Determinization is a popular way to handle imperfect information in game AI when using 

Monte Carlo techniques. On any player’s move when there is hidden information in the 

game state, from that player’s perspective they may be in any one of many possible game 

states. That combination of states together form an information set for that player. A 

determinization of a game state is any random state from the player’s information set. For 

example, at the beginning of a hand after the cards have been dealt to each player, a player 
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knows their own cards but doesn’t know the opponent’s 6 cards. The opponent can have 

(
46
6
) = 9,366,819 different 6-card hands, so there are that many states in each player’s 

information set in that stage of a hand. 

Michael Buro, Timothy Burtak, and others use a technique called Perfect 

Information Monte Carlo (PIMC) to play games such as the German trick-based card game 

Skat [6], [7]. The technique involves repeatedly taking determinizations from the 

information set the player to act is in, and then using a standard AI technique for playing 

out that determinization as a perfect information game. The move chosen at the end of the 

search is the one that had the most success over all the determinizations. In Figure 3-2, we 

see a determinization, 𝑑1, which is searched independently of other determinizations. 

In this research, we used determinizations, as in PIMC, but used the Cheating UCT 

agent to play out each determinization, as opposed to minimax or other methods. The visit 

𝑑0 𝑑1 𝑑2 … 

Figure 3-2: Illustration of Determinized UCT 



 17 

counts of all child nodes of the root node are summed across all determinizations, and the 

action corresponding to the child node with the most visits is returned as best move by the 

Determinized UCT agent. 

To create a determinization, each part of the game state which the current player 

has seen is held fixed, and the rest of the game state is randomized. Since Cribbage is a 

card game, it is sufficient to shuffle the deck of cards (excepting the cards seen by the 

current player) and reissue cards to the other player per the cards’ positions in the shuffled 

deck. No attempt is made to prevent repeats of determinizations, since the frequency of a 

card appearing in a determinization is equivalent to its odds of being in the necessary part 

of the deck to be in play. Only 13 cards of the deck are used in each hand of Cribbage (in 

our representation of a deck, cards 1-6 form one player’s hand, cards 7-12 form the other 

player’s hand, and the “cut” card is card 13), so there are many determinizations that result 

in the same cards being in play. 

In addition to the parameters of execution time and exploration constant, 

Determinized UCT requires a fixed number of determinizations. Since MCTS does not 

guarantee convergence in a fixed number of iterations (it approaches the solution over 

time), the computational or time budget must be split over some number of 

determinizations. Experiments with different numbers of determinizations are presented in 

section 4.4. 

3.2.3 Single Observer-Information Set MCTS 

The algorithm for the final agent implemented in this research, Single Observer-

Information Set MCTS (SO-IS MCTS), is adapted from a 2012 paper by Peter I. Cowling, 
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Edward J. Powley, and Daniel Whitehouse [8]. It relies on determinizations, like 

Determinized UCT, but it only builds a single MCTS tree in which nodes correspond to 

information sets rather than single states. 

Before each iteration of the search, a determinization compatible with the current 

player’s observable game state is created. Then as the selection, expansion, and simulation 

steps are conducted for the iteration, only actions which are compatible with the current 

determinization are considered. In each iteration, information from previous 

determinizations is used in selecting nodes to traverse, so the decision that a player would 

make is based on how good that decision has been in previous determinizations that 

included the same choice as a possibility. 

In Cribbage, the actions available to the player to act (maximizing player) in a given 

node are the same in all determinizations in which that node is reachable, because that 

player’s cards remain the same in all determinizations. The opponent (minimizing player), 

whose unseen cards are randomized in each determinization, may have actions available 

from a given node in one determinization but not in another, because the actions correspond 

directly with cards in the player’s hand, which are different in each determinization. In 

Figure 3-3, the actions available in the 𝑖𝑡ℎ determinization are shown in solid lines, while 

actions unavailable in the 𝑖𝑡ℎ determinization are shown in dotted lines. This example 

reflects a situation that can occur in a Cribbage game because the maximizing player 

(triangles pointing upwards) has all actions available during all determinizations, whereas 

the minimizing player has some actions it can’t take in some states in this determinization.  
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Figure 3-3: Illustration of Single Observer Information Set MCTS 

In our implementation of SO-IS MCTS, each node stores the action that produced 

it rather than a state (each node is associated with an information set, which may include 

multiple states). References to child nodes are organized by keeping track of all actions that 

have been taken from that node. Unlike in the Cheating or Determinized UCT 

implementations, for an opponent decision node the possible actions include all legal card 

plays that the root player has not seen in a previous part of the hand. 

The authors in [8] modify the selection formula for SO-IS MCTS by considering 

only the number of times a node has been available for selection, rather than the number of 

times its parent node has been selected. In normal UCT those numbers are the same, but in 

SO-IS MCTS, actions that are rarely available would be over-selected if the number of 

visits to the parent were used in the second term of the formula. The modified formula is: 

𝑑𝑖  
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arg𝑚𝑎𝑥𝑣′∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑣
𝑐𝑜𝑛𝑠𝑖𝑡𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑑

       
𝑄(𝑣′)

𝑁(𝑣′)
+ 𝑐√

2 ln𝐴(𝑣′)

𝑁(𝑣′)
 

where: 

• 𝑄(𝑣) is the accumulated total value for the player to act at node 𝑣 from the 

backpropagation step of previous iterations; 

• 𝑁(𝑣) is the number of times 𝑣 has been visited in the selection step of previous 

iterations; 

• 𝐴(𝑣) is the number of times the node 𝑣 has been available for selection; 

• 𝑐 is an exploration constant that can be adjusted for different domains. 
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Chapter 4:  

Results and Discussion 

Tests were run to compare the performance of each of the AI players, as well as to compare 

different values for the parameters that can be changed for each of the MCTS-based players. 

The first player to act as dealer has an advantage in Cribbage, since that player benefits 

from the points available in the crib first. With random play by both players the dealer won 

60% of one million games played. Therefore, all other tests described in this chapter were 

run by alternating the first player to deal, and even numbers of games were played in all 

cases so that the first dealer advantage would not affect the results. 

Some experiments presented in this chapter comparing AI performance used 

number of search iterations as the search budget, while other experiments used time per 

move as the search budget. All testing was done on a machine with an Intel i5 7500 CPU 

running at 3.4 GHz. For comparison, one second of SO-IS MCTS search used between 

50,000 and 150,000 search iterations, which is largely dependent on what stage of a 

Cribbage hand the search is starting from (a search iteration of a shallower tree is generally 

faster). 
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Table 4-1: Win rates of AI players against each other 

AI Players Random Scripted 
Cheating UCT 

(c=1.75, 1s) 

Determinized 

UCT (c=1.75, 

1s, 100 determs.) 

SO-IS 

MCTS 

(c=2.0, 1s) 

Random - 2.2% 0.0% 19.0% 1.2% 

Scripted 97.8% - 24.0% 87.5% 35.5% 

Cheating UCT 

(c=1.75, 1s) 
100.0% 76.0% - 97.7% 64.0% 

Determinized 

UCT (c=1.75, 1s, 

100 determs.) 

81.0% 12.5% 2.3% - 6.2% 

SO-IS MCTS 

(c=2.0, 1s) 
99.8% 64.5% 36.0% 93.8% - 

Note: Win rates given are for the player on the left-hand side, in 400 games played. 

 

4.1 Comparison of AI Players 

In Table 4-1, the win rates of each AI player against each other are given for a sample of 

400 games of each pairing. Both the scripted and Cheating UCT players outperform the 

random player, with 97.8% and 100% win rates, respectively. Cheating UCT also 

outperforms all other players, as expected. 

Determinized UCT performed worse than we expected, winning only 81% of games 

against the random player, and 12.5% of games against the scripted player. SO-IS MCTS 

performed better than all players except the Cheating UCT player, winning 99.8% of games 

against the random player, 64.5% of games against the scripted player, 36% of games 

against the Cheating UCT player, and 93.8% of games against the Determinized UCT 

player. 
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4.2 Variation of Exploration Constant 

The exploration constant, 𝑐, used in applications where the simulation values are in the 

range [0, 1] is often 1 √2⁄ ≈ 0.707 [1]. Therefore, we used 𝑐 = 0.707 as a starting value 

when first performing tests. 

In Figure 4-1, we see that SO-IS MCTS performance improves with higher values 

of 𝑐 up to a value of 2.0. The test was conducted against a SO-IS MCTS player using 

𝑐 = 0.707 and against the scripted player, with 450 games played at each value. For the 

main AI comparison tests a value of 𝑐 = 2.0 was used for SO-IS MCTS. 

In Figure 4-2, we see the results of varying the exploration constant for 

Determinized UCT. Performance is highest between 1.5 and 2, but the results for very 

small values of 𝑐 are also high. That may be because each determinization gives a relatively 

small game tree to explore, causing the exploration constant to be less important. For the 

main AI comparison tests a value of 𝑐 = 1.75 was used for Determinized UCT. 
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4.3 Variation of Search Iterations 

Intuitively, devoting more time or search iterations to a move should produce better results. 

In Figure 4-3, we see that SO-IS MCTS performance improves little beyond 100-250ms 

per move in test of 450 games at each amount of search time against the scripted player. At 

both 100ms and 2000ms the SO-IS MCTS player wins 65% of games against the scripted 

player. Against a SO-IS MCTS player set at 1000ms searches, there is no clear trend, and 

the 50ms player wins 54% of games. We believe that a single Cribbage hand is too small 

of a game to see a large impact above a few thousand search iterations. 

In figure Figure 4-4 we see that the Determinized UCT player improves in 

performance as the number of search iterations increases from 1,000 to 10,000, winning 

9.3% and 14.7% of games against the scripted player, respectively. Above 10,000 search 

iterations the Determinized UCT player does not improve for the values that we tested. 

For the search budgets tested, a higher budget improves performance for both 

Determinized UCT and SO-IS MCTS, but in each case there is a plateau of performance 

improvement. 

 

  



 27 

 

Figure 4-5: Effect of number of determinizations on win rate 

4.4 Variation of Number of Determinizations 

In Figure 4-5, we see the effect of varying the number of determinizations for Determinized 

UCT on performance against Determinized UCT with 500 determinizations. Both AI 

players searched for 1000ms in all tests, with exploration constant 𝑐 = 1.75. Setting the 

number of determinizations lower than 75 resulted in worse performance than the 500 

determinizations player, ranging from 36% to 43% in 150 games. Setting the number of 

determinizations to 75 or higher (up to 400) resulted in a win rate of 50% or very close to 

50% against the player playing with 500 determinizations. 

4.5 Discussion 

The poor performance of the Determinized UCT player was surprising. Intuitively, it makes 

sense that a move that is good in many determinizations would be a good move to take on 

average. However, playing a given determinization as if it were a perfect information game 
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means giving both players access to information that they wouldn’t have when evaluating 

the optimal moves for each player. It is also possible that using MCTS for the playouts in 

the determinizations is ineffective, since it’s hard to choose the right amount of 

computational or time budget to give to each determinization.  

4.5.1 Strategy Fusion 

Cowling et al. note that strategy fusion is a problem for both Determinized UCT and SO-

IS MCTS [8]. Strategy fusion is an effect in which the searching agent assigns incorrect 

values to nodes in the tree, because it searches as though it can distinguish between different 

states in an information set and make a choice based on which state it is in. SO-IS MCTS 

prevents some situations of strategy fusion, but not all [8]. Long et al. propose measurable 

properties of games that can indicate to what extent game properties that cause strategy 

fusion and some other errors are present [9]. Strategy fusion and other errors of this nature 

may account for why Determinized UCT performs so poorly for Cribbage. 

4.5.2 Information Leak 

One consequence of only considering information sets from the maximizing player’s 

perspective in SO-IS MCTS is that information about that player’s hand “leaks” to the 

model of the opponent represented by opponent action nodes in the search tree. Since in all 

determinizations the maximizing player’s cards are held constant, the nodes of the tree 

where the opponent is to act will converge to optimal play against the maximizing player’s 

actual hand. The opponent model is that of a player who happens to always know what the 

other player has in their hand. 
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Figure 4-6: Example of Information Leak in Cribbage 

In Figure 4-6, we see a partial search tree in which the root or maximizing player 

holds only a pair of 3s in the play stage of a hand. In the subtree shown, if the root player 

plays the 3♢, then in the current determinization the opponent holds two legal cards to play, 

a J♠ or a 3♡. In Cribbage, playing a second card of the same rank gives that player two 

points, but the first player can then play a third card of the same rank for six points, for a 
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4-point net gain. For that reason, “leading with a pair” is a common strategy by humans. In 

this example, the root player gains four points if the opponent plays their three, and zero 

points if not. The optimal move found for the opponent node in this example will be to play 

the J♠, because in every determinization in which the opponent has a three card, the 

maximizing player will also have their second three card. Therefore, the search tree will 

find a high value for the opponent action of playing the Jack, and a low value for the 

maximizing player’s node at the root of this subtree. This contrasts with what we believe 

to be a good strategy in Cribbage; depending on the opponent’s strategy, leading with a 

card that is part of a pair is often a good strategy because the opponent doesn’t know what 

cards the other player has. 
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Chapter 5:  

Conclusion 

In this research, we have implemented a Java version of the game of Cribbage, a scripted 

Cribbage player, and several MCTS-based players for Cribbage. We showed that SO-IS 

MCTS outperforms Determinized UCT and the basic scripted player in Cribbage without 

using any game-specific enhancements. SO-IS MCTS wins against the scripted player in 

64.5% of games, and against the Determinized UCT player in 93.8% of games. SO-IS 

MCTS wins 36% of games against the Cheating UCT player. The strength of the algorithm 

for this game appears to be in its model of the player to act’s information set and the 

opponent model, since increased search time, or variation of other parameters, could not 

improve the performance of Determinized UCT.  

5.1 Future Work 

In this research, the emphasis was on investigating the performance of MCTS algorithms 

for an imperfect information game while using a minimum of domain-specific knowledge. 

There are several simple enhancements that could be made to the algorithms already 

implemented that would likely offer some improvement at little cost. 
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5.1.1 Endgame Play 

Playing MCTS simulations only until the end of a hand is convenient, but in fact the current 

implementation should lead to bad strategy in the last one or two hands of a game. Cribbage 

games end as soon as any player reaches 121 points, even mid-hand, so the optimal strategy 

in a hand that could be the final one is often to prioritize cards that are good for scoring 

points in the play stage of the hand, rather than the count stage. Also, because the dealer 

counts their hand and crib last, often the non-dealer can win in the final hand before the 

dealer counts, even if the dealer could also reach 121 points in the same hand. 

The solution would be to switch the algorithm to a version that values simulations 

as either a win or a loss instead of net point gain whenever the score of one player gets 

within a certain range of 121 points. Rather than having to simulate future hands with 

completely random deals, future hands could just award a fixed number of points to each 

player. The amount per hand could be drawn from a database of games played by a good 

AI player. The current implementations of the MCTS-based AI players will instead play to 

maximize net point gain over the entire hand, regardless of how likely it is that a player 

may win part-way through the hand. 

5.1.2 Simulation Policy 

The simulation default policy used in all MCTS players for this research is random play. 

That isn’t a requirement for MCTS. One easy enhancement to try would be to play with the 

scripted player instead of random for the simulation “default” policy. 
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5.1.3 Analysis of Game Tree Properties of Cribbage  

In [9], Long et al. propose properties of game trees that can be used as predictors of the 

success of Perfect Information Monte Carlo (PIMC) Search. The Determinized UCT player 

used in this research is a type of PIMC search. Future work on the game of Cribbage could 

involve analyzing the properties of Cribbage game trees to explain the performance of the 

Determinized UCT player. 

5.1.4 Other Ways to Handle Player Information Sets 

Cowling et al. propose enhancements to SO-IS MCTS, including Multi Observer-IS MCTS 

(MO-IS MCTS), which builds a separate tree for each player in a game [8]. Each node in a 

tree in MO-IS MCTS corresponds to an information set for that player. This algorithm 

would address the strategy fusion and information leak issues highlighted in section 4.5 [8]. 

Implementing the MO-IS MCTS algorithm for Cribbage could be considered for future 

work on Cribbage. Implementing SO-IS MCTS and MO-IS MCTS for more complicated 

games with larger search trees is another area for potential future work. 
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