
 

Comparison of Reinforcement Learning 
Hyperparameters in the 3D Game Rocket 

League 

Jacob Critch 

Department of Computer Science 

Memorial University 

Supervised by Dave Churchill 

A dissertation submitted to the Department of Computer Science in 
partial fulfillment of the requirements for the degree of Bachelor of 

Science (Honours) in Computer Science 



 

April 2023 



Abstract 

This dissertation explores the use of reinforcement learning to train a machine learning 

agent to play Rocket League, a 3D video game. 

 The study evaluates the effectiveness of various hyperparameters in training 

agents to control Rocket League at a rudimentary level. The study's methods include a 

Windows 10 PC, Rocket League, RLGym, Stable-Baselines 3, Bakkesmod, and Python. 

 In conclusion, a learning environment was successfully established to train 

reinforcement learning agents to control Rocket League at a rudimentary level, and 

several agents were trained before being compared and tested. The agents showed 

promising results, and given sufficient training time and tuning, these agents could 

become competent players of the game. 

Acknowledgements 

Thank you to my supervisor, Dr. Churchill, for his advice and guidance through this 

research and helping to make this dissertation possible. Thank you to the Memorial 

University faculty for the excellent Computer Science education I received these past 

years. Thank you to my friends, my family, and my partner Emily for enduring many late 

nights and my absentmindedness as I attempted to balance schooling, work, and other 

pursuits. 

 i



Table of Contents 

Abstract i 

Acknowledgements i 

Table of Contents ii 

List of Tables iv 

List of Figures v 

Chapter 1: 6 

Introduction 6 

Chapter 2: 8 

Background 8 

2.1 Reinforcement Learning 8 

2.2 Rocket League 8 

2.2.1 Description of Play 9 

2.3 Bakkesmod 11 

2.4 OpenAI Gym 12 

2.5 Stable Baselines 3 13 

2.6 RLGym 14 

2.6.1 Technical Requirements 14 

2.6.2 Game Control 15 

2.6.3 Environment 15 

2.6.4 RLGym Reward Functions 16 

 ii



2.6.5 Observation Builders 20 

2.6.6 Terminal Conditions 20 

2.6.7 Action Parser 20 

2.7 RLBot 21 

2.7.1 Technical Details 21 

Chapter 3: 23 

Methodology 23 

3.1 RLGym Training Environment 23 

3.1.1 Configuration 23 

3.1.2 RLGym Python Script 23 

3.1.3 Training Agents 24 

3.1.4 Evaluating Agent Performance 26 

Chapter 4: 28 

Results and Discussion 28 

4.1 Observations While Training 28 

4.2 Training Metrics 29 

4.2.1 Velocity Agent (5e-5 learning rate, ~10 hours) 29 

4.2.2 Velocity Agent (0.001 learning rate, 30 hours) 30 

4.2.3 Liu Agent (0.001 learning rate, 30 hours) 30 

4.2.4 Comparison Graphs 31 

4.2.5 Analysis 36 

4.3 Play Test (RLBot) 37 

 iii



List of Tables 

Table 4-1: Training Metrics for Velocity Agent 29 ......................................................

Chapter 5: 38 

Conclusion 38 

5.1 Future Work 38

 iv



List of Figures 

Figure 2-1: Rocket League Gameplay 7 .....................................................................

Figure 2-2: Bakkesmod Window in Rocket League 9 ................................................

Figure 2-3: Flow of RLGym Environment 16 .............................................................

Figure 3-1: Executing RLGym Python Script 25 ........................................................

Figure 3-2: Agent Training in Rocket League 26 ........................................................

Figure 3-3: Tensorboard View of Agent Performance Metrics 27 ..............................

Figure 4-1: Training Metrics Overview (all agents) 31 ...............................................

Figure 4-2: Entropy Loss (all agents) 32 .....................................................................

Figure 4-3: Loss (all agents) 33 ...................................................................................

Figure 4-4: Policy Gradient Loss (all agents) 34 .........................................................

 v



 

Chapter 1: 

Introduction 

Reinforcement learning is a subfield of machine learning that deals with the development of 

intelligent agents capable of making optimal decisions in complex environments. It involves 

training an agent through trial and error, where the agent receives feedback in the form of 

rewards or penalties for its actions. Reinforcement learning has found applications in several 

fields, including robotics, gaming, and finance. 

 One of the most significant challenges in reinforcement learning is the tuning of 

hyperparameters such as reward functions, learning rates and more. Notably, the design of 

reward functions that provide appropriate feedback to the agent is especially important in 3D 

gaming contexts. 

 This dissertation explores the application of reinforcement learning in a 3D game 

environment using the popular video game Rocket League. Rocket League is a soccer game 

played with cars, making it an ideal platform to test the effectiveness of reinforcement learning 

in a 3D game environment. 

 The study evaluates the impact of different reward functions and learning rates in training 

an ML agent to control Rocket League at a rudimentary level. It employs the Rocket League 

Gym (RLGym), a Python API that treats Rocket League as an OpenAI Gym-style environment 

for Reinforcement Learning projects, in combination with Stable-Baselines 3 and BakkesMod. 

RLGym provides a standardized framework for testing the performance of agents in Rocket 

League, enabling comparisons of different agents' performance. 

6



 

 This dissertation aims to contribute to the growing body of research on reinforcement 

learning, especially in the context of Rocket League, and its application in gaming and other 

fields that require strategic decision-making. 

7



 

Chapter 2: 

Background 

2.1 Reinforcement Learning 

Reinforcement learning is a type of machine learning that involves an agent learning to make 

decisions by interacting with an environment. In this approach, the agent is not given labeled 

data to learn from, but instead, it learns by receiving feedback in the form of rewards or 

punishments based on its actions. The goal of the agent is to learn a policy that maximizes its 

long-term expected reward. 

 In reinforcement learning, the agent observes the current state of the environment and 

selects an action based on its current policy. The environment then transitions to a new state, and 

the agent receives a reward based on the quality of its action. The agent uses this feedback to 

update its policy, so that it can make better decisions in the future. 

 Reinforcement learning has been successfully applied to a wide range of tasks, such as 

game playing, robotics, and autonomous driving. One of the key strengths of reinforcement 

learning is its ability to learn from experience and adapt to new situations, making it a promising 

approach for solving complex and dynamic problems. 

2.2 Rocket League 

Rocket League is a popular video game that combines soccer and racing. The game is played 

with cars instead of human players, with the aim of hitting a ball into the opponent's goal while 

8



 

preventing the opponent from doing the same. The game is fast-paced and highly dynamic, with 

players using boosts, jumps, and flips to control their cars and hit the ball. The game's 

complexity and dynamic nature make it an ideal candidate for testing the effectiveness of 

reinforcement learning in gaming.  

Figure 2-1: Rocket League Gameplay 

2.2.1 Description of Play 

Rocket League is played in a 3D environment, with players able to move their cars in any 

direction and perform complex maneuvers. The game involves physics simulations, with the ball 

and cars reacting realistically to the environment and each other. The objective of Rocket League 

is to use your car to hit a ball into the opposing team's goal while defending your own goal from 

the other team's attempts to score. Players can perform a “demolition” by impacting another 

9



 

player at high speeds, causing an explosion and death of said player. The game is typically 

played in matches of five minutes, with the team that scores the most goals at the end of the 

match declared the winner. Each team consists of up to four players, each controlling their own 

car. 

 The controls in Rocket League are simple and intuitive, with players using the analog 

sticks to move and steer their car, and the trigger buttons to accelerate and brake. The game also 

includes a boost feature, which allows players to gain speed quickly or make quick jumps by 

using a limited amount of boost meter. 

 In Rocket League, there are different game modes to choose from, including 1v1, 2v2, 

3v3, and 4v4. There are also special modes such as “Hoops" which is played on a basketball 

court, and "Dropshot" which involves breaking the floor tiles of the opposing team's side to 

score. Rocket League also includes a ranking system, which allows players to compete against 

others of similar skill levels. As players win matches and improve their skills, they can climb the 

ranks and compete at higher levels. One of the most important aspects of Rocket League is 

teamwork. Players must communicate and work together to score goals and defend their own 

goal. Successful teams often have players with different roles, such as a striker who focuses on 

scoring goals or a defender who stays back to prevent the other team from scoring.  

 This paper will focus mostly on the 1v1 “Training” mode of Rocket League which has a 

highly customizable environment, and no time limit. 

10



 

2.3 Bakkesmod 

Bakkesmod is a popular third-party mod for Rocket League that adds a range of features and 

tools to enhance the gameplay experience. Developed by a community of Rocket League 

enthusiasts, Bakkesmod is free to download and use, and is compatible with both Windows and 

Mac operating systems. 

 

Figure 2-2: Bakkesmod Window in Rocket League 

 One of the key features of Bakkesmod is the ability to customize training scenarios. 

Players can create their own training packs, or download and share packs created by others. This 

allows players to practice specific skills and techniques, such as aerial shots, wall hits, or 

dribbling. The mod also includes a range of training tools, such as ball physics settings, shot 

randomization, and replay analysis. 

11



 

 In addition to training tools, Bakkesmod offers several gameplay enhancements. For 

example, the mod allows players to create and join private matches with custom settings, such as 

unlimited boost, infinite time, or low gravity. It also includes a variety of game modes, such as 

"Speed Demon” which increases the speed and boost power of all players, and "Boomer Ball" 

which replaces the regular ball with a larger, faster ball. 

 Another notable feature of Bakkesmod is its replay system. The mod allows players to 

save and analyze replays from their matches, and includes a range of tools for editing and 

viewing replays. This can be useful for identifying mistakes or weaknesses in gameplay, as well 

as for creating highlights or montages to share with others. This is particularly useful for 

researchers and developers looking to create algorithms that can analyze and predict gameplay 

strategies, or to create intelligent agents that can play Rocket League at a high level. 

2.4 OpenAI Gym 

OpenAI Gym is an open-source platform that provides a standardized environment for 

developing and testing reinforcement learning algorithms. The platform offers a wide range of 

simulated environments, or "environments," that developers can use to train and evaluate their 

algorithms. 

 Each environment in OpenAI Gym consists of a set of observations and actions that the 

algorithm can take. For example, the "CartPole" environment simulates a cart with a pole 

balanced on top, and the algorithm must learn to move the cart left or right to keep the pole from 

12



 

falling over. Other environments include classic video games like Atari, as well as more complex 

scenarios like robotics simulations. 

 OpenAI Gym has the ability to benchmark algorithms against each other. The platform 

provides a standardized set of performance metrics, or "benchmarks," that developers can use to 

compare the effectiveness of their algorithms. This makes it easier to evaluate the strengths and 

weaknesses of different approaches to reinforcement learning, and to identify areas for 

improvement. 

2.5 Stable Baselines 3 

Stable Baselines 3 is a popular open-source library for developing and training reinforcement 

learning algorithms. It is built on top of the TensorFlow library and provides a wide range of pre-

implemented reinforcement learning algorithms, making it easier for developers to get started 

with training their own agents. 

 The library is structured into three main components: the environment, the policy, and the 

algorithm. This modular design allows developers to mix and match different components to 

create custom reinforcement learning models tailored to their specific needs. 

 Stable Baselines 3 also includes several advanced features for training reinforcement 

learning agents. For example, it supports multi-environment training, allowing developers to 

train agents on multiple environments simultaneously. It also includes support for distributed 

training, allowing developers to train agents across multiple machines or processors. 

13



 

 In addition to its advanced training features, Stable Baselines 3 also provides several 

tools for evaluating and visualizing the performance of trained agents. These include built-in 

metrics for tracking training progress, as well as tools for visualizing the behaviour of trained 

agents in different environments. 

 The library can be used with OpenAI Gym environments, making it easy to test and 

compare agents across different environments. 

2.6 RLGym 

The Rocket League Gym (RLGym) is a Python API that can be used to treat the game Rocket 

League as though it were an OpenAI Gym-style environment for Reinforcement Learning 

projects. 

2.6.1 Technical Requirements 

- A Windows 10 PC 

- Rocket League (Both Steam and Epic are suppported) 

- Bakkesmod 

- The RLGym plugin for Bakkesmod 

- Python between versions 3.7 and 3.9. 

14



 

2.6.2 Game Control 

RLGym communicates with a Bakkesmod plugin to control the game while it is running. This 

enables the Python API to manipulate the game just like a standard Gym environment, with 

familiar functions like make(), reset() and step(). Bakkesmod also enables RLGym to control the 

rate at which the physics engine updates while the game is running, so matches inside the game 

can be run much faster than real-time. 

2.6.3 Environment 

The default configuration of RLGym will not produce a competent game-playing agent. This 

configuration is meant as a testing ground for users to quickly verify that they have installed 

RLGym successfully, and their learning algorithm is working. When the default reward is 

maximized, the agent should have zero angular velocity at all times. To train a game-playing 

agent, users will need to configure an RLGym environment with an appropriate Reward 

Function, Observation Builder, and a set of Terminal Conditions. 

 At their core, RLGym environments are configured with 3 basic objects: A 

RewardFunction, an ObsBuilder, and a list of TerminalCondition objects. RLGym uses these 

objects at every step to determine what reward should be assigned to each action, what 

observation should be returned to the agent, and when an episode should be terminated. The  

flowchart in Figure 2-3 depicts how each of these objects is used by RLGym. 

15



 

 

Figure 2-3: Flow of RLGym environment 

2.6.4 RLGym Reward Functions 

A RewardFunction is an object used by RLGym to compute the reward for each action every 

step. These methods are called by an RLGym environment during an episode. A 

CombinedReward is an object that allows several reward functions to be used in conjunction, for 

example, a CombinedReward object might consist of VelocityPlayerToBall,VelocityBallToGoal 

and EventReward. An EventReward object is a reward that is awarded on some specific events 

16



 

(team goals, conceding, shooting, saving, demolition). The following are the common reward 

functions that are included with the RLGym library:  

2.6.4.1 Ball To Goal 

Ball to goal rewards are functions that measure some relationship between the ball and the 

opponent's goal: 

Liu Distance Ball To Goal Reward 

1. Determine which team the agent is on, and set the opponent's goal as the objective. 

2. Compute the normalized distance between the position of the ball, and the center of the 

opponent's goal. Note that the point returned is in the center of the net, shifted to the back wall 

inside the net, such that the distance between the ball and the objective can never be zero. 

Velocity Ball To Goal Reward 

1. Determine which team the agent is on, and set the opponent's goal as the objective. 

2. Get the linear velocity of the ball. 

3. Determine the difference between the objective (goal from step 1) and the current ball 

position. 

4. Return the scalar projection of the ball's velocity vector on to the objective vector. 

Ball Y Coordinate Reward 

17



 

Incentivize higher ball heights 

2.5.6.2 Conditional Rewards 

Conditional rewards are rewards issued when a condition is met: 

Reward If Closest To Ball 

Return True if the current player is the closest player to the ball 

Reward If Behind Ball 

Return True if the current player is behind the ball 

2.5.6.3 Misc Rewards 

Velocity Reward 

Velocity Reward is a simple function to make sure models can be trained. The velocity reward 

function returns either the positive or negative magnitude of the agent's velocity, determined by 

the negative flag in the constructor. 

Save Boost Reward 

Each step the agent is rewarded with sqrt(player.boost_amount). We take the square root here 

because, intuitively, the difference between 0 and 20 boost is more impactful on the game than 

the difference between 80 and 100 boost. 

18



 

Constant Reward 

Provides a constant reward of 1 to agent every step. 

Align Ball To Goal 

1. Determine which team the agent is on (and by extension which net we should be attacking / 

defending) 

2. Compute defensive reward for when the agent aligns the ball away from their goal 

3. Compute offensive reward for when the agent aligns the ball towards the opponents goal 

4. Sum defensive and offensive rewards and return the total 

2.5.6.4 Player Ball Rewards 

Reward functions that measure relationships between the agent and the ball: 

Liu Distance Player To Ball Reward 

Provides a constant reward of 1 to agent every step. 

Velocity Player To Ball Reward 

Returns the scalar projection of the agent's velocity vector on to the ball's position vector. 

Face Ball Reward 

Returns positive reward scaled by the angle between the nose of the agent's car and the ball. 

19



 

Touch Ball Reward 

Returns positive reward every time the agent touches the ball with an optional scaling factor for 

how high the ball was in the air when touched. 

2.6.5 Observation Builders 

An ObsBuilder is an object used by RLGym to transform the game state into an input for the 

agent at every step. Observation builders are used similarly to Reward Functions by the 

environment. At each step, the observation builder will be called once for every player in the 

current game state. 

2.6.6 Terminal Conditions 

A TerminalCondition is a simple object that examines the current game state and returns True if 

that state should be the final state in an episode, and False otherwise. Terminal conditions can be 

paired together in a list, in which case an episode will be terminated if any of the provided 

terminal conditions are evaluated to True. 

2.6.7 Action Parser 

RLGym expects an array of 8 actions per agent on the pitch. Each action corresponds to one 

control input: throttle, steer, yaw, pitch, roll, jump, boost, handbrake. The first five values are 

20



 

expected to be in the range [-1, 1], while the last three values should be either 0 or 1. To allow a 

variety of action inputs while still adhering to requirements of RLGym, we use an ActionParser. 

2.7 RLBot 

RLBot is a framework that enables custom bots to be developed and used in Rocket League. The 

framework handles retrieval of game data (such as positions and rotations for the players and the 

ball), so developers only need to develop the bot’s logic and give RLBot the controller inputs we 

want to use. Most RLBots are hardcoded and do not use machine learning, however since the 

release of RLGym, there are several RLBots which are ML-based (Nexto, Levi, TensorBot, 

Element, Eagle). RLBot supports Python (most common), Java, Scratch, C#, Rust, C++, 

JavaScript, and Go. There is also a graphical view for RLBot: RLBotGUI, a streamlined user 

interface for RLBot. 

2.7.1 Technical Details 

RLBot uses an API in Rocket League specifically made for RLBot. This API is activated when 

the game is launched with the '-rlbot' flag, which simultaneously disables all online play. The 

RLBotCore dll communicates with the game through this API. Communication with bots are 

done through sockets (shared memory in the past) which allows support for a wide range of 

programming languages. 

21



 

The GameTickPacket is a packet sent to your bot each tick. It contains information about 

everything that tends to update during the game. For instance, the location and velocity of all 

cars and the ball, the state of boost pads, the time elapsed. 

The FieldInfo contains information that is static throughout the game. For instance, the location 

and size of boost pads and the location of goals. 

22



 

Chapter 3: 

Methodology 

3.1 RLGym Training Environment 

3.1.1 Configuration 

For the purposes of this project, a virtual machine running Windows 10 was configured with the 

Epic Games Launcher version of Rocket League, Python 3.7, Bakkesmod, and the RLGym 

plugin for Bakkesmod. 

3.1.2 RLGym Python Script 

A Python project was created using a starter template for a Rocket League reinforcement 

learning bot [1]. This script sets up and trains a reinforcement learning model using the Stable 

Baselines library and the Rocket League Gym environment. The script imports several packages 

and libraries including NumPy, RLGym, Stable Baselines 3, and various modules from the 

RLGym Utils and RLGym Tools packages. 

 The script sets up a Match object from the Rocket League Gym environment and defines 

several variables such as the frame_skip and half_life_seconds. It then creates a 

SB3MultipleInstanceEnv object from the Match object to train the reinforcement learning model 

on. The environment is wrapped with a VecMonitor object to log mean reward and episode 

length to Tensorboard, and a VecNormalize object to normalize rewards. The script then checks 

23



 

whether a saved model exists and loads it if it does or creates a new model if it doesn't. The new 

model is set up using the Proximal Policy Optimization (PPO) algorithm [2]. The PPO object is 

instantiated with the MlpPolicy [3], the SB3MultipleInstanceEnv object, and various 

hyperparameters such as the number of epochs, learning rate, and batch size. Finally, the script 

sets up a callback to save the model every so often. 

3.1.3 Training Agents 

Several models were defined, each using a CombinedReward consisting of different reward 

functions. The first agent (which will be referred to as ‘Velocity Agent’) was defined using a 

CombinedReward consisting of VelocityPlayerToBallReward, VelocityBallToGoalReward, and 

EventReward. The second agent (which will be referred to as ‘Liu Agent’) was defined using a 

CombinedReward consisting of LiuPlayerToBallReward, LiuBallToGoalReward, and 

EventReward. 

 To initiate the training of a model, it must be ensured that Bakkesmod is running. Then, 

the Python script is executed (as seen in Figure 3-1). The Python script launches Rocket League, 

and uses Bakkesmod to inject into Rocket League using the Bakkesmod RLGym plugin. The 

game is typically run at a much faster rate than during normal play, so as to speed up the training 

process (by default, game speed is set to 100). In this case, a frame skip of 8 was initialized to 

improve performance. The environment was configured for two agents to compete against each 

other (one on each team) such that both agents are learning concurrently. The model uses the 

Stable Baselines 3 implementation of the OpenAI Proximal Policy Optimization algorithm 

24



 

(PPO) [2], and a multilayer perceptron (MLP) policy [3]. The target number of steps to perform 

before optimizing the network was set to 1,000,000. The training interval was set to 100,000,000. 

The number of epochs was set to 10.  

 For the first round of training, the learning rate was set to 5e-5. This Velocity Agent was 

trained for approximately 10 hours. A Liu Agent was also trained at a 5e-5 rate for approximately 

3 hours (training ended early due to a technical error, so data was no collected for this round). 

After this, two more agents were trained; the first was a Velocity Agent with a learning rate of 

0.001, and the second a Liu Agent also with a learning rate of 0.001. These agents were trained 

for approximately 30 hours each. 

 

Figure 3-1: Executing RLGym Python Script 

25



 

 

Figure 3-2: Agent Training in Rocket League 

3.1.4 Evaluating Agent Performance 

Agent performance is recorded by Stable Baselines 3’s VecMonitor. By default, mean reward and 

episode length are logged. These logged metrics are viewable via Tensorboard (Figure 3-3). 

Additional logs and metrics are also logged and printed to the console running the Python script 

at each iteration, such as loss, entropy loss, and policy gradient loss.  

 Agent performance was also be evaluated by wrapping the models as RLBot agents. In 

this way, the agents can be loaded into the Rocket League using the RLBot GUI, and the agents 

can play against real players or compete against other ML or non-ML bots. 

26



 

 

Figure 3-3: Tensorboard View of Agent Performance Metrics 

27



 

Chapter 4: 

Results and Discussion 

Since the three agents were trained for a relatively short time (<=30 hours), they were not 

expected to be able to play Rocket League at a competent level. However, we can observe that 

they were able to take actions, control their movement, and make progress towards learning. 

Several learning metrics were logged and graphed using Tensorboard.  

4.1 Observations While Training 

 The Velocity Agents - during the early phases of training - were spinning around, not 

appearing to take intelligent actions. However, when observed near the end of the training 

sessions, the 5e-5 agent was inclined to go for a tap on the ball if it was already near it, and the 

0.001 agent was able to line up with the ball and strike it towards the net. Interestingly, this agent 

would commonly do one pass towards the ball, missing it, and then doing a “u-turn” before 

coming back and impacting the ball in a pendulum-like fashion. In the case of the 5e-5 Velocity 

Agent, a goal was scored approximately every 15 minutes of observed time (at around 10 hours 

of training time). When observing the 0.001 agent, a goal was scored approximately every 30 

seconds (at 100x normal speed), leading to a score of approximately 1000-1000 at the end of 

training. 

28



 

 The Liu Agent, when observed, appeared to control the car more sanely (less wild 

spinning, driving in a specific direction more often, more ball taps early on, more goals faster), 

with a slightly higher number of goals scored per hour than the Velocity Agent.  

4.2 Training Metrics 

4.2.1 Velocity Agent (5e-5 learning rate, ~10 hours) 

On average, training took approximately 0.8 hours per iteration (1M steps). Since the number of 

iterations was so small, it is difficult to draw meaningful observations from this model alone. 

However, the data signifies that the methods for training were operating correctly. It can be noted 

that as iterations continue, entropy loss moves closer to 0 (initially starting from negative 

values). Higher entropy loss sometimes correlates with an agent taking more exploratory actions, 

exploring the state space more thoroughly, and being less deterministic.

Iterations (1M 
steps)

Mean Reward Entropy Loss Loss Mean Episode 
Length

1 -0.11 -7.57 0.00285 705

2 -0.14 -7.56 0.00285 670

3 0.10 -7.56 -0.00334 710

4 -0.16 -7.56 0.0151 699

5 -0.27 -7.56 0.0251 743

6 -0.17 -7.55 0.0365 755

7 0.32 -7.55 0.029 691

8 0.23 -7.55 0.029 717

9 -0.10 -7.55 0.0612 769

Iterations (1M 
steps)

29



 

Table 4-1: Sample of Training Metrics for 5e-5 Velocity Agent 

4.2.2 Velocity Agent (0.001 learning rate, 30 hours) 

After training the Velocity Agent at a 5e-5 learning rate for 10 hours and analyzing the results, it 

was decided to experiment by training a new Velocity Agent at a higher learning rate. A new 

Velocity Agent was defined with a new learning rate of 0.001, and trained for approximately 30 

hours. Additionally, more metrics were enabled to be logged for Tensorboard.  

4.2.3 Liu Agent (0.001 learning rate, 30 hours) 

A final agent was defined using the Liu reward functions (as mentioned in the Background 

section of this paper) with a learning rate of 0.001, and trained for approximately 30 hours. 

10 -0.15 -7.55 0.0376 685

11 -0.07 -7.54 0.0421 726

12 -0.17 -7.54 0.0371 717

Mean Reward Entropy Loss Loss Mean Episode 
Length

Iterations (1M 
steps)

30



 

4.2.4 Comparison Graphs 

 

Figure 4-1: Training Metrics Overview (all agents)  

 [Pink = ‘5e-5 Velocity Agent’,  Black = ‘0.001 Velocity Agent’, Blue = ‘0.001 Liu Agent’] 

Figure 4-1 charts the training results for all three agents. From top left to bottom right, the 

metrics graphed are: Approximate Kullback-Leibler Divergence [4], Clip Fraction, Clip Range, 

Entropy Loss, Explained Variance, Learning Rate, Loss, Policy Gradient Loss, and Value Loss. 

31



 

 

Figure 4-2: Entropy Loss (all agents)  

 [Pink = ‘5e-5 Velocity Agent’,  Black = ‘0.001 Velocity Agent’, Blue = ‘0.001 Liu Agent’] 

Figure 4-2 charts the entropy loss for all three agents. The 5e-5 Velocity Agent was shown to 

have a markedly lower entropy loss than the other two 0.001 learning rate agents, suggesting that 

the 5e-5 agent was being less exploratory in its actions. 

32



 

 

Figure 4-3: Loss (all agents)  

 [Pink = ‘5e-5 Velocity Agent’,  Black = ‘0.001 Velocity Agent’, Blue = ‘0.001 Liu Agent’] 

Figure 4-3 charts the loss for all three agents. The 0.001 Liu Agent had the lowest loss, while the 

two Velocity Agents had similar loss. 

33



 

 

Figure 4-4: Policy Gradient Loss (all agents)  

 [Pink = ‘5e-5 Velocity Agent’,  Black = ‘0.001 Velocity Agent’, Blue = ‘0.001 Liu Agent’] 

Figure 4-4 charts the policy gradient loss for all three agents. The 0.001 Liu Agent had the lowest 

loss, while the 5e-5 Velocity Agent had the highest. 

34



 

 

Figure 4-5: Value Loss (all agents)  

 [Pink = ‘5e-5 Velocity Agent’,  Black = ‘0.001 Velocity Agent’, Blue = ‘0.001 Liu Agent’] 

Figure 4-5 charts the value loss for all three agents. The 0.001 Liu Agent had the lowest loss, 

while the 0.001 Velocity Agent had the highest. 

35



 

 

Figure 4-6: Explained Variance (all agents)  

 [Pink = ‘5e-5 Velocity Agent’,  Black = ‘0.001 Velocity Agent’, Blue = ‘0.001 Liu Agent’] 

Figure 4-6 charts the explained variance for all three agents. The 0.001 Liu Agent had the lowest 

explained variance, while the 0.001 Velocity Agent had the highest variance. 

4.2.5 Analysis 

In summary, the 0.001 Liu Agent showed the most promising results as a candidate for future 

training and tuning. This agent demonstrated the lowest loss, and a fast rate of entropy loss 

growth. These are important factors to keep in mind when training an agent on such a complex 

space. 

36



 

4.3 Play Test (RLBot) 

The 0.001 Velocity Agent and 0.001 Liu Agent were wrapped as RLBots and imported into 

RLBotGUI. The game was set to 5x speed, and then 10x speed using Bakkesmod. We intended 

to set the game speed to 100x similar to the training script, but the Bakkesmod console did not 

allow this (max of 10x). Several rounds were started and observed for some time (~30 in-game 

minutes each). One of these runs was recorded (screen captured) for approximately 6 minutes, 

and uploaded to YouTube (linked here: https://youtu.be/A70NOuNnFzw). On the first run, 2 

goals were quickly scored, but for the rest of this run and for the subsequent runs, no goals were 

scored, although the agents did hit the ball several times. The agents frequently performed flips, 

side rolls, boosts, and other movements. Interestingly, both agents would frequently get ‘stuck’ in 

a spot, moving only small amounts for extended periods of time (even up to an hour of in-game 

time). I theorize that this could be a case of the model reaching a local minima/maxima.  

37

https://youtu.be/A70NOuNnFzw


 

 

Chapter 5: 

Conclusion 

In conclusion, we successfully set up an environment for training reinforcement learning models 

in Rocket League, visualizing and comparing their training metrics, and testing them in actual 

game scenarios. The resulting training metrics showed that these agents were indeed learning, 

and when comparing the Velocity Agent(s) and Liu Agent, the data showed marked differences in 

their approaches. The play test was revealing in that it demonstrated the skill level of the agents 

tested in an actual match setting. Even after 30 hours of training, the bots still have a long way to 

go before they could be considered “competent” in Rocket League. Still, the agents were able to 

hit the ball, and sometimes score, which is impressive given that Rocket League is such a 

complex space. The study’s findings show that the 0.001 Liu Agent would be a promising 

candidate for future training and tuning due to its low loss and exploratory nature. Additionally, a 

Liu-like reward function has already been shown to be successful when used in a study on 

reinforcement learned agents in simulated humanoid soccer [5], in an environment not so 

different than Rocket League. 

5.1 Future Work 

These agents will continue to be trained for a much longer time - on the order of months rather 

than days. In future training, a more powerful computer system will be used as a host (potentially 

38



 

cloud based), in which many instances of training could be run concurrently (for example, 50 

clients all training at 100x speed). This would greatly improve results, and allow for many 

models with differing hyperparameters to be trained simultaneously. Moreover, there are new 

open-source ‘Rocket League environment simulators’ being developed that could be used to 

drastically improve compute performance.  

39



 

Bibliography 

[1] Impossibum, rlgym_quickstart_tutorial_bot, (2022), GitHub repository, https://github.com/

Impossibum/rlgym_quickstart_tutorial_bot 

[2] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017, August 28). 

Proximal policy optimization algorithms. arXiv.org. Retrieved April 14, 2023, from 

https://arxiv.org/abs/1707.06347  

[3] Popescu, Marius-Constantin & Balas, Valentina & Perescu-Popescu, Liliana & Mastorakis, 

Nikos. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on 

Circuits and Systems. 8.  

[4] S. Kullback, R. A. Leibler. "On Information and Sufficiency." The Annals of Mathematical 

Statistics, 22(1) 79-86 March, 1951.  

 https://doi.org/10.1214/aoms/1177729694  

[5] Liu, S., Lever, G., Wang, Z., Merel, J., Eslami, S. M. A., Hennes, D., Czarnecki, W. M., 

Tassa, Y., Omidshafiei, S., Abdolmaleki, A., Siegel, N. Y., Hasenclever, L., Marris, L., 

Tunyasuvunakool, S., Song, H. F., Wulfmeier, M., Muller, P., Haarnoja, T., Tracey, B. 

D., … Heess, N. (2021, May 25). From motor control to team play in simulated 

humanoid football. arXiv.org. Retrieved April 21, 2023, from https://arxiv.org/abs/

2105.12196  

40

https://github.com/Impossibum/rlgym_quickstart_tutorial_bot
https://github.com/Impossibum/rlgym_quickstart_tutorial_bot

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1:
	Introduction

	Chapter 2:
	Background
	2.1 Reinforcement Learning
	2.2 Rocket League
	2.2.1 Description of Play
	2.3 Bakkesmod
	2.4 OpenAI Gym
	2.5 Stable Baselines 3
	2.6 RLGym
	2.6.1 Technical Requirements
	2.6.2 Game Control
	2.6.3 Environment
	2.6.4 RLGym Reward Functions
	2.6.5 Observation Builders
	2.6.6 Terminal Conditions
	2.6.7 Action Parser
	2.7 RLBot
	2.7.1 Technical Details

	Chapter 3:
	Methodology
	3.1 RLGym Training Environment
	3.1.1 Configuration
	3.1.2 RLGym Python Script
	3.1.3 Training Agents
	3.1.4 Evaluating Agent Performance

	Chapter 4:
	Results and Discussion
	4.1 Observations While Training
	4.2 Training Metrics
	4.2.1 Velocity Agent (5e-5 learning rate, ~10 hours)
	4.2.2 Velocity Agent (0.001 learning rate, 30 hours)
	4.2.3 Liu Agent (0.001 learning rate, 30 hours)
	4.2.4 Comparison Graphs
	4.2.5 Analysis
	4.3 Play Test (RLBot)

	Chapter 5:
	Conclusion
	5.1 Future Work


