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Abstract

We consider the problem of shape formation in a decentralised swarm of robots

trained using a subfield of machine learning called reinforcement learning. Shapes

are formed from ambient objects which are pushed into a desired pattern. The

shape is specified using a projected scalar field that the robots can locally sample.

This scalar field plays a similar role to the pheromone gradients used by social

insects such as ants and termites to guide the construction of their sophisticated

nests. The overall approach is inspired by the previously developed orbital con-

struction algorithm.

Reinforcement learning allows one or more agents to learn the best action

to take in a given situation by interacting with their environment and learning

a mapping from states to actions. Such systems are well-suited to robotics, as

robots often interact with complex environments through a variety of sensors and

actuators. When reinforcement learning is applied to a multi-agent system, it is

called ’multi-agent reinforcement learning’ (MARL). The main feature that MARL

offers is flexibility — a multi-agent decentralised system can have agents added,

removed, or reconstructed without need for rewriting the system. This allows for

more robust solutions due to its ability to cope with failure.

With the use of simulators paired with MARL, we can effectively learn policies

that result in the formation of unique shapes. This is a vast improvement over

hand-coded solutions, as it removes dependence on hard-coded actions. Reinforce-

ment learning eliminates the need for writing control algorithms in the first place

— which tend to be be extremely task-specific and time-consuming.
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1 Introduction

Shape formation is a generic term for the problem of determining how a desired

geometrical pattern can be both obtained and then maintained by a swarm of

robots without any centralized coordination [42]. We are interested in the capac-

ity of swarms of robots to form shapes using objects in their environment. This

has direct application to topics such as cleaning (merging all waste objects into

a single cluster) and recycling (segregating objects by type and moving them to

desired collection points). It is also a useful tool in construction–related tasks such

as forming walls and enclosures. In our research, shapes are formed from ambi-

ent objects which are pushed into a desired shape specified by a projected scalar

field that robots can sample locally. This scalar field plays a similar role to the

pheromone gradients used by social insects such as ants and termites to guide the

construction of their sophisticated nests. We take inspiration from the previously

developed Orbital Construction (OC) algorithm [52], its objective, and the envi-

ronment that it acts within. In our research, we use reinforcement learning to learn

a state to action mapping (called a policy) that allows agents to construct forma-

tions without the need for hand-coding algorithmic solutions, reduces parameter

tuning and testing, and increases abstraction.

1.1 Orbital Construction

One mechanism that has been proposed to explain some aspects of social insect

construction is the use of a template, often consisting of some sensed environmental

parameter or pheromone emitted by the insects themselves [50].

A well-known example of such a template is the pheromone emitted by the queen
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Figure 1: A figure showing the layout of a typical termite mound provided by PBS
[34]. Pheremones used by insects to create this structure are used as inspiration
in the OC algorithm. The royal chamber can be seen at point 3 of the digram.
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in a colony of termites (genus Macrotermes). The concentration of this pheromone

is used to guide the construction of a “royal chamber” that encloses the queen,

which can be seen in the bottom of Figure 1.

In a recent review of collective robot construction, a number of different orga-

nizing principles were identified, including the use of such templates [35]. Exper-

iments have been conducted on physical robots showing the construction of walls

where the template is sensed as a light field [47] or through sensing landmarks

combined with odometry [45]. An example of this construction is demonstrated

in [24]. Ladley and Bullock simulate the construction of a royal chamber using a

fixed-rate source of queen ‘pheromone’, seen in Figure 4. The approach that we

take is to assume that a set of robots can sense such a template within an enclosed

environment. In this environment, circular agents are free to move around in a

rectangular enclosed space which is also occupied by circular puck objects whose

position can only be changed by applying a force to them via an agent collision.

In addition to the rectangular boundary, it contains a scalar field grid projected

onto the ‘floor’ surface, where the grid values range between 0 and 1. This grid

is what is used as the template. The scalar field is illustrated in Figure 2 where

lightest spaces have a scalar value of 1, while the darkest have a scalar value of 0.
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Figure 2: Scalar field template used to create annulus (ring-shaped) shapes in
both the OC algorithm and in our RL research. The small squares within the grid
compose the environment’s projected scalar field, with each square ranging from
a value of 0 (black) to 1 (white), which guides shape formation.

Figure 3: Three states of our environment demonstrating the progression of orbital
construction annulus formation using outies (blue circles), innies (green circles)
and 250 pucks (red circles). Shown are an initial randomized configuration of
pucks (left), an intermediary state during construction (middle), and a successfully
constructed shape (right).

In [52], an algorithm is proposed which can form various enclosed shapes based

on sensing scalar values from a field that serves as template to specify the shape.
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Figure 4: The simulated construction of a termite royal chamber (Ladley et al.,
2004. Used with permission).

This algorithm, Orbital Construction (OC), is guided by the scalar field to orbit the

growing structure, pushing objects inward or outward to join the structure. The

OC algorithm is intentionally minimalistic which allows for ease of implementation

and reduces the need for parameter tuning.

The OC algorithm, demonstrated running in Figure 3 is based on the ability of

agents to locally sample the scalar field with the use of sensors. A fixed threshold

value, τ (0 ≤ τ ≤ 1) specifies a contour line of the scalar field. If two thresholds

are specified then we can define a region which is to be filled in with objects. In

the simplest case, the scalar field is defined by a single seed point (a point on the

scalar field given by a pseudo-random number generator to ensure randomness)

at scalar value 1 with every other point having a value of 1 − d where d is the

Euclidean distance from the seed point. In this case, specifying two thresholds

defines an annulus — a shape that can be seen forming in Figure 3.

There are two types of sensors that each agent is equipped with, each positioned

symmetrically about the forward heading of the robot. Within the simulator, these

sensors do not have any physics associated with them and do not collide with

agents, pucks, or walls in the environment. The first sensors are the 4 circular
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Puck Sensors

Left Scalar Field
Sensor

Figure 5: The sensor configuration for each agent. Agent shown on bottom as a
teal circle with its current heading (black line). Sensors are rigidly fixed relative
to the position and heading of the agent, moving with the agent as it moves.

puck sensors which give a reading of 0 or 1, representing whether a puck in the

environment currently intersects the sensor’s area. Next, there are 3 scalar field

sensors which can read the floating point value of the scalar field directly below

the center of each sensor.

For the OC algorithm, two different types of agents were defined—innies which

nudge objects outwards from the seed point, and outies which nudge objects in-

wards. Both innies and outies are equipped with the same sensors in the same

configuration as described above. The puck and scalar field sensor layout for each

of these agents can be seen in Figure 5. The OC algorithm combines the use of

a scalar field for guidance with the minimalistic approach to clustering objects

discovered by Gauci et al [12]. OC uses the scalar field to define the direction of

these movements so that robots can nudge objects inwards or outwards depending

upon what is required. For outies, sensed objects are nudged inwards until the

threshold value of the scalar field is reached.

For innies, sensed objects are nudged outwards until the threshold value of the

scalar field is reached. To do this, an agent must first figure out its direction orien-
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Figure 6: Three example configurations of agents within the environment. The
arrows on the bottom and right-hand-side represent the transition of scalar values
between 0 and 1. The three teal circles represent three agents, ‘A’, ‘B’, and ‘C’.
The three red circles in front of each represent the left, center, and right scalar
field sensors. Agents ‘A’ and ‘C’ are positioned to navigate in a clockwise orbit,
while agent ‘B’ is not, and must adjust its alignment to return to a clockwise orbit.
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tation, and then make a decision based on whether there are pucks surrounding it.

Agents observe the sensor values for the left, center, and right scalar field sensors

(floorl, floorc, and floorr respectively). If floorr ≥ floorc and floorc ≥ floorl

like agent ‘A’ or ‘C’ in Figure 6, then the agent is aligned to orbit the scalar field

in a clockwise manner. If the agent is an innie, it checks its right puck sensor

(puckr) for any pucks to its right. If it returns 1, it nudges them outwards. If the

agent is instead an outie, it checks its left puck sensor(puckl) for any pucks on its

left. If it returns 1, it nudges them inwards as it continues moving clockwise. If

the agent is not positioned clockwise (i.e, it is not true that floorr ≥ floorc and

floorc ≥ floorl) like agent ‘B’ in Figure 6, it realigns itself to return to a clockwise

orbit.

The OC algorithm has a number of attractive properties: (1) it is minimalistic

and requires only a coarse sensing of whether objects lie in the left or right field-

of-view; (2) the shape constructed can be varied by changing the scalar field; (3)

robots tend to circumnavigate clockwise about the growing structure, therefore

moving in the same direction and avoiding collisions; and (4) no special grasping

capability is required—the robots just bump into the objects to move them (as-

suming sufficient mass). The control algorithms for orbiting and construction are

demonstrated in Algorithms 1 and 2, respectively. These algorithms are carried

out by n agents with various sensors shown in Figure 22 and reference the following

variables:
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ωmax : The maximum angular speed permitted.

φ: The coefficient for ωmax, factoring the angular speed.

τ : The threshold value defining our shape’s distance from the center (0-1).

obsl : The value of the left obstacle sensor (0 or 1).

floorx : Float value of the left(l), right(r), or center(c) scalar value (0-1).

pucksx : The value of the left(l), or right(r) puck sensor (0 or 1).

Algorithm 1: The Orbiting Algorithm. Processes sensory state and re-

turns angular speed, ω

Input : obsl, f loorl, f loorc, f loorr

Output: The angular speed, ωmax

1 if obsl then

2 return ωmax

3 if floorr ≥ floorc ∧ floorc ≥ floorl then

4 if floorc < τ then

5 return φ ∗ ωmax

6 else

7 −φ ∗ ωmax

8 else if floorc ≥ floorr ∧ floorc ≥ floorl then

9 return −ωmax

10 else

11 return ωmax

9



Algorithm 2: The orbital construction algorithm. Processes sensory

state and returns angular speed, ω

Input : obsl, f loorl, f loorc, f loorr, pucksl, pucksr

Output: The angular speed, ωmax

1 if obsl then

2 return ωmax

3 if floorr ≥ floorc ∧ floorc ≥ floorl then

4 if innie ∧ pucksr then

5 return ωmax

6 else if outie ∧ pucksl then

7 return −ωmax

8 if floorc < τ then

9 return φ ∗ ωmax

10 else

11 −φ ∗ ωmax

12 else if floorc ≥ floorr ∧ floorc ≥ floorl then

13 return −ωmax

14 else

15 return ωmax

10



Figure 7: A figure representing the flow of a reinforcement learning model. The
agent takes an action, At, and the environment returns both a reward, Rt+1 and
the next state, St+1 to the agent based on the action it took. The policy is then
updated, the agent moves to state St+1 and the process is repeated [49].

1.2 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning. It is the prob-

lem faced by agents that must learn specific behaviours through trial-and-error

interaction with the dynamic environment it exists within [19]. RL consists of five

primary elements – environment, state, reward, policy, and value, defined below.

Environment: Physical world that the agent(s) operates in.

State: The agent’s belief of a configuration of the environment.

Reward: Feedback from the environment.

Policy: A mapping from the agent’s state to actions.

Value: Future reward an agent receives taking an action in a certain state

Before discussing the particular implementation of RL that we decided to use,

we must first justify our decision to use RL as opposed to other machine learn-

ing techniques. Machine interactions usually involve a number of self-interested
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entities. Interactions within this type of dynamic inherently have significant com-

plexity. Lately, there has been interest in using machine learning techniques to

deal with this heightened complexity. Using RL to handle this type of problem has

attracted interest due to its generality and robustness [10]. Both the generality

and robustness of RL were major factors in our decision to implement it over other

machine learning techniques. When we discuss generality, we are referring to an

algorithm’s ability to be effective across a range of inputs and applications. In

RL, the computer is only given a goal that it is expected to achieve. It has no

prior knowledge about the environment of the problem at hand, and is therefore

very malleable and can fit into the mold of other problems. This is an extremely

important advantage of RL for our research, as we often want to adjust factors of

the environment to accomplish a unique task. When we discuss robustness, we are

referring to the sensitivity of an algorithm to discrepancies between the assumed

model and reality. This is especially important in systems containing multiple

agents, as a poor model of reality may lead to imperfect decision-making [14].

In robotics, RL is used to enable one or more agents to create an efficient control

system which learns from its own experience and behavior. It offers the appealing

promise of enabling autonomous robots to learn large repertoires of behavioral

skills with minimal human intervention [15]. This is another main reason why we

chose RL — we wanted to remove the need for human interaction and intervention

as much as possible while still ensuring the system accomplishes a given task.

Within RL, there exist a number of unique algorithms. For example, temporal

difference (TD) learning, Q-learning, State-Actions-Reward-State-Action (SARSA),

and Deep Q-Network (DQN). Our main requirements were that the algorithm we

picked be relatively straightforward to implement, and be powerful enough to

12



quickly construct an effective policy. Because of these requirements, we decided

to implement the foundational algorithm of Q-learning [53]. Q-Learning is an off-

policy (learns the value of the optimal policy independently of the agent’s actions)

TD control policy. It does not follow a policy to find the next action, but instead

chooses the action in a greedy fashion. If we view Q-learning as updating values

within a 2D array (action-space * state-space), we see that having large action and

state spaces may be disadvantageous as the size of the array increases. If we were

dealing with a large state-space or action-space, we might consider instead using

a more complex algorithm like DQN [17], which is more robust. However, because

our state and action spaces are kept quite small, Q-learning fits our requirements

well.

The value function for Q-Learning is stored as a mapping of state-action pairs

Q(s, a) = v, the expected future return (sum of rewards) of taking action a at state

s. The Q-Learning policy π(s) = a maps states to actions, with action a being

chosen as the one which maximizes the value Q(s, a). One iteration of Q-Learning

happens with each time step t of the environment simulation. For a given state st

an action is chosen separately for each agent from the current policy and carried

out, advancing the current state st to st+1. Then, the reward Rt is calculated, and

the Q-values are updated with the following rule:

Q(st, at)
′ = Q(st, at) + α(Rt + γmaxaQ(st+1, at)−Q(st, at))

Using the new Q-values the policy is then updated, and the process repeats itself.

This update is applied once for every agent at every time step using the global

reward function Rt. In the above equation, α is the learning rate (or step size).

13



The learning rate refers to the extent that newly acquired information overrides

previously aquired information. γ is the discount factor. The discount factor refers

to how much future events lose their value in accordance with how far away in time

they are.

1.3 Multi-Agent Systems and Multi-Agent Reinforcement

Learning

Multi-Agent System (MAS) are defined as distributed systems of independent

actors, called ‘agents’ that cooperate or compete to achieve a certain objective.

These agents could be computer games characters, robots, or even human beings

[51]. There is often a lack of knowledge of the existence of other agents, known

as ‘social awareness’, within MAS. Because of this, agents often lack the ability

to understand and respond to the needs of other agents. While it may seem

beneficial for agents to have maximum social awareness, it is not always necessary

to achieve optimal or near-optimal performance [20] as long as agents do not require

information from other agents and they have a method to avoid collisions. In the

cases where social awareness is not a priority, RL is a fitting technique to use.

When reinforcement learning is applied to an MAS, it is called Multi-Agent

Reinforcement Learning (MARL). One of the main features that MARL offers is

flexibility — a multi-agent decentralized system can have agents added, removed,

or reconstructed without the need for rewriting control algorithms. There are some

unique challenges that come with MARL, however. Some of these challenges are

inherited from RL itself, such as the curse of dimensionality and the issue of explo-

ration versus exploitation. The curse of dimensionality refers to the phenomena
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that occurs when the dimensionality of the data increases. The more dimensions

that are added to the data, the more difficult it becomes to find patterns [13].

Exploration versus exploitation refers the tradeoff between systems acquiring new

knowledge versus maximizing their reward. Other issues are introduced solely by

combining MAS with RL, such as the partial observability problem (the inability

to know details on all aspects of the environment), costly communication between

agents, and a possible need for coordination and communication between agents.

1.4 Hardware of Individual Agents

Our research was done with specific hardware in mind to implement our findings

on. Using RL, we aimed to train a policy in simulation with online learning

(learning as the data comes in) and then apply that policy offline (using a static

dataset) on the physical robots due to agents not currently having the capacity for

on-board learning. To do this, we aimed to create a version of our simulator that

uses agent shapes similar to that of the physical robots (i.e, pointed wedge shape

at the front). The physical robots consisted of a Zumo32U4 base which contain

line sensors consisting of infrared emitter-detector pairs for sensing a black line on

a white surface. We replaced these sensors with visible-light photo-transistors to

read the pattern projected from below by a 75” LG 4.0 Smart TV. Visual input

comes from a Pixy vision sensor which does on-board colour-based segmentation

and connected components labeling (i.e, blob detection). There is a skirt formed

from layers of foam board laser cut into a circular profile with a pointed wedge

shaped at the front. Links to these products are listed below:
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• Zumo32U4: https://www.pololu.com/category/170/zumo-32u4-robot

• LG 75” 4K HDR LED webOS 4.0 Smart TV: https://www.lg.com/us/tvs/

lg-75UK6190PUB-4k-uhd-tv

• Pixy: https://pixycam.com/pixy-cmucam5/

Figure 8: Design of the physical robot intended to be used for multi-agent shape
formation. The angular skirt is laser-cut, with a Zumo32U4 placed in the centre
and a Pixy placed near the front of the robot for sensing.
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2 Literature Review

2.1 Overview of Related Works

With the increasing interest in research and practical applications of MARL and

MAS, there has been a lot of focus on providing some solutions to the challenges

facing these types of systems [56]. A big part of the success of MAS lies in Multi-

Agent Learning (MAL). The last 30 years have seen immense progress in the field

of MAL, which we will discuss in this section.

2.1.1 Biologically-Inspired Systems

Nature offers plenty of extremely powerful mechanisms, refined by millions of years

of evolution [32]. These mechanisms are well-suited to handle evolving environ-

ments. Throughout history, humans have sought to mimic the functionality, think-

ing process, and operations of these biological systems [2]. In biology, these com-

plex systems can be viewed as a collection of simple entities that work in unison

displaying seemingly straightforward behaviors. This type of multi-entity behav-

ior found in many colonies of insects can be defined as “the emergent collective

intelligence of groups of simple and single entities” [5]. In this thesis we have fo-

cused primarily on the behaviors of ants and termites using pheromones to create

mounds and nests, however this type of conduct can also be seen in bird flocking,

bacterial growth, and fish shoaling/schooling [30]

There has long been a potential to use biologically-inspired systems to solve

complex problems in the real-world. The MAS paradigm has already inherited

biological insights [32]. These insights can be broken down into three distinct

types, as described in [3]. The first of these is the distributed nature of MAS.
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The systems are based on a number of autonomous agents within the system, and

functioning of the system is focused on interaction or collaboration between these

agents. The second type is the division of labor. MAS often have distinct types of

agents with distinct responsibilities and skills. Typically, an agent does not have

to perform all tasks but instead specializes in smaller, distinct tasks. Finally, the

MAS paradigm utilizes the emergence from collective straightforward behavior

of entities. MAS applications that capture these insights offer a unique way of

designing adaptive systems, replacing those with traditional centralized control

[32].

2.1.2 Multi-Agent Systems

MAS can often be used to solve tasks that are difficult to accomplish when using

a Single-Agent Systems (SAS), especially considering the presence of incomplete

information and uncertainties. Agents in SAS are seen as independent entities

with their own goals, actions, and knowledge. In SAS, other agents that may be

present within the environment are not seen as having their own goals, but rather

as part of the environment. Conversely, MAS can have multiple agents modeling

each others’ goals and actions. The most noticeable difference between SAS and

MAS is that the environment’s attributes can be determined by multiple other

agents in a MAS, therefore making MAS inherently dynamic. This distinction is

shown in Figure 9.

The methods used by MAS often allow problems to be solved in a more practical

and financially cheaper way. Recently, there have been many practical solutions

to real-world problems using MAS. For example- unmanned aerial vehicle (UAV)

coordinated flight [16], scheduling systems for swarms of Earth remote sensing
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(a) Single-Agent System (b) Multi-Agent System

Figure 9: Single-agent framework versus multi-agent framework. In (a), the agent
models intself, the environment, and their interactions. Other agents that may
exist are considered to be part of the environment. In (b), agents model each
other’s goals, actions, and domain knowledge and may also interact directly [48].

satellites [44], and disaster search-and-rescue teams [22].

As discussed in [48], there are a number of specific benefits to solving a task

using MAS, for example:

– Parallelism

– Simpler Programming

– Cost Effectiveness

– Geographic Distribution

When creating a MAS, it is difficult to consider all potential situations that an

agent may find itself in. Agents within these systems must have a way of learn-

ing from and adapting to their environment and robot counterparts. Therefore,

control and learning become two important avenues of research in MAS. There

are a multitude of techniques that have been proposed for dealing with control
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and learning in this type of system, however we will be focusing on the Machine

Learning (ML) subset of these solutions, which we will discuss later. Spears [46]

raised four questions that need to be addressed when dealing with learning agents:

1. Is learning applied to one or more agents?

2. If multiple agents, are the agents competing or cooperating?

3. What element(s) of the agent(s) are adapted?

4. What algorithm(s) are used to adapt?

The way in which researchers have answered these questions has established the

majority of research directions in the domain [21] however classifications of these

numerous directions is difficult. Weiss and Dillenbourg [55] proposed a classifica-

tion scheme for MAL in order to work out key differences in MAL. This schema

split MAL into three primary types: 1) multiplied learning, 2) divided learning,

and 3) interactive learning [55]. In ‘multiplied learning’, there exist several agents

learning independently of one another. They may interact with each other; how-

ever this does not change the way that any agent is learning. Thus, each individual

agent is capable of carrying out all activities that, when combined, make up the

learning process. Divided learning involves dividing a single-agent learning task

amongst multiple agents before the learning process starts. These tasks may be

split by different aspects (i.e, location of an agent). Unlike multiplied learning, the

agents within the system have a shared overarching learning goal. In divided learn-

ing, interaction between agents is required in order to put the individual learning

results together. This interaction only involves the input and output of agents’
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individual learning processes. Finally, interactive learning involves all agents be-

ing engaged in a single learning process that becomes possible through a shared

understanding of the learning task and goal. The purpose of interaction between

agents is to construct a successful path to learning a solution to a task. Each

agent in an interactive learning process works together with equal importance to

construct a solution — no agent has any unique role within the system.

Within our MAS problem, a modified version of multiplied learning was decided

to be the best fit. Assigning each agent with equal importance allows us to add

or remove any agent at will. As well, MARL requires all agents to work together

to solve an overall problem without knowing anything about other agents in the

system. Rather than splitting each agent into groups or relying on other agents to

develop a reliable set of instructions (like in divided and interactive learning), we

want each agent to benefit from the discoveries of other agents while also having

limited to no information about them [51]. Dissimilar to classic multiplied learning,

the agents are not necessarily learning ‘independently’, but instead contributing to

a shared policy (π) using a shared reward signal, (R) that allows for faster policy

convergence.

In a team of agents solving a task with combined forces, it often seems useful

to have agents with individually unique sensors and effectors split into different

subtasks in order to share the effort to finish the overarching task. This type of

method is explored in [33] — however, this is not always the best solution. It is

not always obvious what the best distribution method is for types of sensors or

effectors between agents. It is also expensive to design a team of distinct agents

to interact with the environment. Because of this, we chose to use identical agents

within our system.
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2.1.3 Machine Learning Techniques for Multi-Agent Systems

Machine Learning

Supervised
(regression/classification)

Unsupervised
(clustering)

Reinforcement
(Algorithm learns to react to

environment)

Figure 10: Breakdown of Machine Learning Subcategories.

In MAS, it is important to distinguish between two types of learning: 1) cen-

tralized (isolated) learning, and 2) decentralized (interactive) learning. Learning

is centralized if the learning process is executed by a single agent and does not re-

quire any type of interaction with other agents. Conversely, decentralized learning

involves several agents engaged in the same learning process. Thus, compared to

centralized learning, decentralized learning requires the presence of several agents

capable of carrying out specific activities. Centralized and decentralized learn-

ing are best thought of as two distinct paths in an MAS that cover a range of

possible forms of learning. There are six relevant aspects for characterizing learn-

ing in MAS: 1) The degree of centralization, 2) Interaction-specific aspects, 3)

Involvement-specific features, 4) Goal-specific features, 5) The learning method,

and 6) The learning feedback [54]. Agent learning partially relies on the under-

lying algorithm being used. This algorithm is often one of several relevant ML

techniques, all of which fall under one of three categories: supervised learning,

unsupervised learning, and reinforcement learning. These categories are distin-

guished by what kind of feedback the critic provides to the learner [21].
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2.1.3.1 Supervised Learning Supervised learning in ML is the task of learn-

ing a model that maps an input to an output based on example labeled input-

output pairs [40]. Algorithms such as classification, regression, and estimation

fall under this category. Supervised learning derives a model from training data

consisting of a set of training examples [31]. In MAS implementing supervised

learning, the accuracy of the system at each iteration is usually decided by an

external teacher that evaluates the system output. Furthermore, the inputs are

separated into two distinct sets — one for training and one for testing. In general,

supervised learning tends to be easier to implement than unsupervised due to the

consistancy of the data throughout iterations [37]. Supervised learning is not fea-

sible for our problem because while we have training data for annulus construction

through the OC algorithm, we do not have training data for any other potential

scalar fields. Without data to learn from, supervised learning is not practical.

2.1.3.2 Unsupervised Learning Unsupervised machine learning algorithms

infer patterns from a dataset without reference to known, or labeled, outcomes [4].

Instead of learning from feedback, unsupervised learning identifies commonalities

and patterns in the data and proceeds based on similarities or dissimilarities within

each new piece of data. Clustering and data-compression algorithms fall under the

category of unsupervised learning. Unsupervised learning techniques are used on

occasion within MAS. For example, in [38], Pugh uses unsupervised learning in an

MAS so agents learn obstacle-avoiding behaviours within a noisy environment. In

[8], agents learn a model of their opponent’s strategy based on past behaviour, and

uses the model to predict its future behavior by using an unsupervised learning

algorithm termed ‘US − L∗’.
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2.1.3.3 Reinforcement Learning As discussed previously, RL was originally

studied from the perspective of simplistic animal behaviors [39]. It has since

become a major class of ML methods to solve decision-making problems that

contain uncertainties [19]. Although we have described RL in Section 1.2, we will

discuss it here in the framework of MAS. In general, RL is the most commonly

studied technique for MAL. Some RL algorithms (Q-learning, for example) are

guaranteed to converge to the optimal behaviour eventually, assuming that the

environment an agent is experiencing is Markovian and the agent is allowed to

try out all actions [51]. Unlike the supervised and unsupervised learning ML

techniques described above, the learner does not need to be supplied with any data

before learning begins during RL. It allows an agent that has no knowledge of a task

or environment to learn more efficient behaviours by progressively improving its

performance based on being given positive or negative reward signals (determined

by the environment) [41]. These reward signals were separated into three distinct

types by Balch [1]:

1. Local performance-based reinforcement: Each agent receives rewards

individually after achieving the task.

2. Global performance-based reinforcement: All agents receive a reward

when one of the team members achieves the task.

3. Local shaped reinforcement: Each agent receives rewards continuously

while it gets closer to accomplishing the task.

Balch applied these different reward functions to MARL systems in the context of

multi-agent foraging, robotic soccer, and formation movements. He observed that
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globally reinforced agents converge towards a heterogenous (agents specializing in

different subtasks) team, while local reinforcement leads to homogeneous agents

(specializing in the same task). As well, in multi-robot foraging, a locally reinforced

team outperforms a globally reinforced team — however, robotic soccer showed

the opposite effect [20].

The reward signal approach discussed in this thesis lies between global perfomance-

based and local shaped reinforcement. Each agent in our system receives the same

reward as all others, but also the rewards are delivered each time step as the system

gets closer to accomplishing the task (formation of the prescribed shape).

2.2 Discussion

MAL still has many open research challenges and issues. These challenges include

goal setting, scalability, communication bandwidth, dynamic systems, and do-

main problem decomposition [21]. While there has been a fair amount of research

within shape formation and object manipulation in MAS using MAL, few have

delved into the distinct comparisons between hand-coded and MARL solutions.

In our research, we also discuss the outcomes of creating a state representation

using information provided by agent sensors working atop a projected scalar field.

Although this scalar field was created initially for a hand-coded solution, we would

like to prove the versatility of RL and how it can adapt to new environments (even

if those environments were not made with RL in mind).

In this brief review of related history, we have discussed a variety of distin-

guishing features between different types of MAS. We have also discussed the

assortment of algorithms available for systems using ML, and which type is best-
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suited for achieving specific goals. From there, we discussed the benefits of using

RL, a form of ML, in MAS (resulting in MARL). From choosing a type of reward

signal to deciding on using a centralized versus decentralized system, there are

a considerable amount of factors to take into consideration when constructing a

MARL system, as we have previously discussed. Due to the unique nature of our

environment, we decided upon a decentralized system using global reward signals

and having each agent be completely independent and unaware of the positions

and actions of all other agents. These were all decisions that were made based

on the type of environment we were working within, and the overall goal we were

looking to achieve. In this thesis, we will discuss the outcomes of the techniques

we chose, and whether they proved to be the most effective measures to attain the

types of results we were anticipating.
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3 Framing the Orbital Construction Problem in

a Reinforcement Learning Framework

To eliminate the need for hand-coding algorithms such as the OC algorithm, we

have chosen to use RL in an attempt to automatically learn the robot actions

necessary to construct desired shapes. In order to apply RL methods to the OC

problem, we must frame it in an RL context. An RL problem is defined by several

key elements, described in Section 1.2. The solution method to that problem is

some algorithm which carries out the process of generalized policy iteration to

learn a policy for the agent(s) to follow. In this section, we will describe how we

initially frame each of these elements within the context of the OC problem.

3.1 Environment

The environment of an RL problem is the physical or simulated world in which

the agent(s) operate. The environment used for our OC experiments is the same

as described by Vardy in [52], an example of which can be seen in Figure 11. This

environment is identical to that discussed in 1.1; it is an enclosed space with a

projected scalar field template on the floor for agents to sense. The simulation of

this environment is implemented via the CWaggle1 open-source software project.

Cwaggle supports static and dynamic circle-circle and circle-line collision resolu-

tion, with each agent and puck having mass, radius, and velocity, with constant

deceleration. Scalar fields, discussed in Section 3.1.1, can be defined in CWaggle

manually, or loaded from an image saved in jpg or png format. CWaggle is written

in C++, and is based on the existing Waggle Javascript simulator described in

1https://github.com/davechurchill/cwaggle
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Figure 11: Three states of our environment demonstrating the progression of RL
annulus construction using 8 robots (blue circles) and 250 pucks (red circles).
Shown are an initial randomized configuration of pucks (left), an intermediary
state during learning/construction (middle), and a successfully constructed shape
(right). The background color of each state shows the value of the environment’s
projected scalar field, ranging from a value of 0 (black) to 1 (white), which guides
shape formation.

[52]. The Q-Learning algorithm was implemented within the CWaggle framework

from scratch, and supports the saving and loading of learned values and policies

to disk.

3.1.1 Scalar Fields

The projected scalar fields used for all experiments were composed using MAT-

LAB, and are comprised of attractive potential, repulsive potential, and total

potential as demonstrated in Figure 12. Based on these potential field values, we

use a distance transform function to calculate the distance between pixels. This

results in a potential field similar to that shown in the bottom right of Figure 12.

A variation of this procedure that can be used to create non-symmetrical shapes

will be described later in this thesis.
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Figure 12: 3-dimensional graphs of the attractive potential (top left), total poten-
tial (top right), repulsive potential(bottom left), and the potential field (bottom
right) that they create using the distance transform function provided by MAT-
LAB.
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3.2 State

A state of an environment is the instantaneous perception of the current config-

uration of the environment from some viewpoint. MARL methods typically use

one of two forms of state representation: a global state recording the positions of

all agents and objects in the environment, or a local state storing just the sensory

information available to any given agent at some time step. As global state in-

formation is rarely available in a real-life robot setting, we chose the latter local

representation for our implementation. One key result of this choice is that our

RL method will learn a single policy that will be followed by each agent in the en-

vironment, a much simpler task than using global states to learn a separate policy

for each agent. In Chapter 5 of this thesis, we discuss the results of changing this

technique and learning a separate policy for each agent.

In most RL problems, the smaller the state representation, the easier the learn-

ing task becomes [49]. Also, the less complex the sensor configuration, the more

feasible it becomes to implement as a real-world swarm robot system. For both of

these reasons, we wish to implement the smallest possible set of sensors that can

facilitate the task. This minimum functionality requires that our agent a) be able

to sense pucks in its vicinity, and b) detect its scalar field values. Using the scalar

field values, we can implicitly deduce the heading of an agent by comparing scalar

values to each other. Having the minimal possible state representation does come

at a cost, however. Less sensors means compromising specific state information,

so we have to be sure that the information we are not encoding does not have a

significant impact on the performance of our system.

The sensory configuration that was used for our experiments was introduced in
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Section 1.1. For our experiments, we combine the two left of center puck sensors as

the ‘left puck sensor’ and the two right of center sensors as the ‘right puck sensor’,

which approximates the left and right rectangular puck sensors described in [52]

As well, we require each state to have a finite length binary representation, and so

we discretize this real number scalar field value svr into into an integer svi, based

on dividing the range of [0, 1] into n equally sized areas using the equation:

svi = bsvr ∗ nc

Next, instead of simply encoding all three field sensor values in the state, we

employ a hash function to both minimize the state representation and determine

the relative agent orientation without having to include all three sensed scalar

values into the state representation. We use the middle field sensor to obtain the

agent’s scalar field position value, and the relative values to the middle sensor of

the left and right field sensors to determine the agent’s heading within the scalar

field. For example, if both the left and right field sensors have a value less than the

middle sensor, we know the agent is heading towards a ‘lighter’ area of the scalar

field. Our final state representation is then formed as a binary string of length

4 + log2(n) with the following bits:

PL PR FM FL FR
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• PL (puck left): 1 bit representing if either of the 2 left puck sensors is active

(1) or inactive (0)

• PR (puck right): 1 bit representing if either of the 2 right puck sensors is

active (1) or inactive (0)

• FM (field mid): an integer of log2(n) bits representing the svi of the middle

field sensor

• FL (field left): 1 bit representing if the left field sensor is less than the field

mid sensor (1) or not (0)

• FR (field right): 1 bit representing if the right field sensor is less than the

field mid sensor (1) or not (0)

If we use n = 16 field divisions, this would yield 24+log2(16) = 28 = 256 pos-

sible states for an agent. If we then have an agent with: left puck sensor ac-

tive (PL=1), right puck sensor inactive (PR=0), field mid sensor value of 0.4

(FM=b0.4 ∗ 16c=6=0110), field left sensor value of 0.35 (FL=1), and field right

sensor value of 0.45 (FR=0), this would yield a state presentation of 10011010 (154

of 256 possible). The state observed by an agent at time step t of the environment

simulation is denoted as st. In Chapter 5 of this thesis, we discuss the results of

altering this state representation and why this type of representation is the most

efficient.

Our simulations are run under ideal conditions. When applied to real-world

robots, these state representations may not be ideal due to noise in the environment

or any array of issues that could arise. Thus, while a specific state representation

may work best in simulation, it may need adjustments in order to work outside of

simulation.

32



Figure 13: Representation of the unicycle model (left) and the differential drive
model (right). Our agents use the unicycle model with a constant forward velocity
(v) and a changing w value to avoid having to incorporate two changing velocities
VL and VR like in the differential drive model, which significantly reduces the
complexity of our problem [29].
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3.3 Actions

In our OC environment, each agent moves maintains a constant linear speed, but

alters its angular speed. The only action that an agent can take is to rotate on

every time step (i.e, there is not an option for no movement, which cuts down

on our action space, thus reducing the size of the RL problem). The agents are

modeled after the ‘unicycle model’, shown in Figure 13. The unicycle model is

one step simpler than using a ‘differential drive’ which assumes independent wheel

control. For our RL framework, we discretized the real-valued space of angular

speeds into a finite set of turning angles that can be chosen to guide the agent.

3.4 Reward

A reward function, R : SxA→ R specifies an agent’s task [27]. It is arguably the

most important element of any RL problem, as it defines the objective measure

that is to be optimized by the learning process. As we will talk about later in

this thesis, altering the reward function can be beneficial depending on the type of

shape the system is trying to form. In this section, we will discuss just our initial

implementation. Intuitively, the reward for our RL framework should become more

positive as the pucks in the environment get closer to the desired formation. The

desired formation for our OC environment is defined by a given scalar field, along

with two threshold values: an inner threshold Ti that defines the inner limit of

our desired shape, and an outer threshold To that defines the outer limit of our

desired shape. Due to the nature of the scalar field, we must be sure to choose

these thresholds such that Ti > To. We can therefore construct our reward signal

as a function of the distances of the pucks in the environment from the desired
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location within the scalar field.

In an environment with P pucks, we define SVt(Pi) as the scalar field value

located at the center of puck i with 1 ≤ i ≤ P at simulation time step t. Next we

define a distance function Dt(Pi) which yields 0 if the puck is inside the desired

thresholds Ti and To at time step t, or the difference from the closest threshold if

outside it:

Dt(Pi) =


SVt(Pi)− Ti, if SVt(Pi) > Ti

To − SVt(Pi), if SVt(Pi) < To

0, otherwise

We then define a global evaluation function Evalt(E) on an environment E

with which averages Dt(Pi) for all pucks:

Evalt(E) = 1− 1

P

P∑
i=1

Dt(Pi)

which ensures 0 ≤ Evalt(E) ≤ 1. An ideally constructed shape will therefore yield

a reward Evalt(E) = 1. Our final RL reward function Rt for an environment at

time step t then simply subtracts the current evaluation from the evaluation of the

previous time step t− 1. If the environment has come closer to the desired shape

then the reward will be positive:

Rt = Evalt(E)− Evalt−1(E)
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4 Shape Formation

To evaluate the overall performance of RL versus the OC algorithm, we must pro-

vide and test both algorithms on an array of distinct scalar field backgrounds.

These backgrounds should vary in shape and complexity. Two primary experi-

ments were carried out to demonstrate the effectiveness of reinforcement learning

for shape formation. These experiments tested the overall performance of rein-

forcement learned policies versus the original OC algorithm on: (1) an annulus

shape, and (2) a collection of letters. We decided on using letters because they

present a unique combination of curved segements, straight segements, and angles

in each different letter.

4.1 Performance Metric

For each experiment, all agents and pucks were initially set to random positions

within the environment, and each agent was also randomly oriented. Agents moved

forward at a constant speed each time step, with the decision of angular speed given

by different planar formation methods. Each simulation was executed for a given

maximum number of time steps, and two metrics were kept to determine the effec-

tiveness of each method during that time period: (1) the number of formations that

were successfully formed, and (2) the number of times the method got ‘stuck’ and

could not form a formation for a specific number of time steps. A formation was

‘successfully formed’ if the environment E reached Eval(E) > 0.94, a threshold

value determined experimentally by observing repeated shape formations.

We wanted to ensure that the shape the agents were forming was clearly iden-

tifiable, and we also wanted to ensure that the threshold was achievable, as there
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Figure 14: Number of simulation steps achievable per second using 1 to 32 robots
and 250 pucks with the GUI turned on for visualization.

may be a small number of pucks that were lost around the periphery of the en-

vironment. Upon trial and error, 0.94 seemed a good balance. Once a successful

formation was completed, the number of formations was recorded and the environ-

ment was ‘reset’, with each puck and agent placed in a random position within the

environment. A simulation was deemed to be ‘stuck’ if the agents could not cre-

ate a configuration of pucks that reached the threshold evaluation within a given

number of time steps. Once the simulation was declared stuck, the environment

was reset again. Within this framework, we consider one method to be more suc-

cessful than another if it is able to successfully construct more formations than

another within a given amount of time steps. All experiments were run on an Intel

i7-7700K CPU processor running at 4.20GHz with 32GB of RAM using Ubuntu

18.04.
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4.2 Experiment 1: Annulus Formation

Our first experiment was run to test the effectiveness of our RL solution to that of

the original OC algorithm on the annulus shape shown in Figure 11 to see which

method could successfully construct more formations in a given amount of time

steps. In this experiment, the environment contained 8 agents and 250 pucks.

We chose these numbers because 1) we wanted to have a significant number of

agents to show that agents in RL could work together efficiently while following

the same policy without interfering with each other too much, and 2) we wanted

the environment to be densely populated with pucks so that agents were hitting

the maximum number of possible states. The number of time steps was set to

5,000,000, as the RL policy converges quickly and additional simulation steps were

deemed unnecessary in annulus formation. As well, we depending on the goal

shape, we keep or remove the innies from the OC simulations. This is because

they serve no purpose in shapes that do not have a cavity in the center, as there

are no pucks to push out. The ’innie’ row in each configuration table will address

whether the innies have been removed or not. Additional variables values can be

seen in Table 1.

The results of this experiment can be seen in Figure 15, with the x-axis de-

noting simulation time steps, and the y-axis denoting the number of successfully

constructed formations by time step t. Three separate plots are visible, which

show the performance of the following solutions over 10 trials: (OC) the original

orbital construction algorithm, (RL) the on-line performance of the RL method as

it was learning from scratch, and (RL2) the on-line performance of the RL method

using a pre-trained policy as a starting point. The pre-trained policy used for RL2
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Configuration Value Reinforcement Learning Orbital Construction
Number of Robots 8 8
Number of Pucks 250 250
Forward Speed 2.0 2.0
Angular Speed 0.3 0.3
Outie Threshold 0.6 0.6
Innie Threshold 0.8 0.8
Hash Function Original -
Actions 0.3, 0.15, -0.15, -0.3 0.3, 0.15, -0.15, -0.3
Max Simulation Steps 5,000,000 5,000,000
Initial Q 1.0 -
Alpha 0.2 -
Gamma 0.9 -
Epsilon 0.0 -
Reset Percentage (%) 94 94
Q-Learning On -
Innies? - Yes
Steps Before ‘Stuck’ 150,000

Table 1: Configuration values used while testing the performance of both RL and
OC on an annulus-shaped scalar field.
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was trained using the same variables shown for RL in Table 1. The line shown is

the average performance of each method, with the shaded area enclosing a 95%

confidence interval defining a range of values that you can be 95% certain contains

the population mean. As expected, the hand-crafted OC algorithm produces for-

mations at a constant rate over time, with its first formations appearing around

t = 5000. The on-line learning of the RL algorithm requires a longer time period

before the first shape is created later at t = 34000, while the pre-trained RL2 cre-

ates its first formation around t = 9000. The RL2 line demonstrates that seeding

the RL algorithm with a pre-trained policy yields better results than seeding it

from scratch — an intuitive result which demonstrates the increase in performance

of RL as more training steps are allowed.

This experiment showed that the RL method is a viable solution for shape

construction, yielding 73% as many annulus formations as the OC algorithm, which

was specifically designed and tuned by hand to construct only this specific shape.

Using a single CPU core the experiment ran at around 8500 simulation time steps

per second for a total of 9.8 minutes for the 5,000,000 total time steps. It is

important to note that simulations steps per second decreases while the number

of agents increases. While learning from scratch, the RL method took less than

10 seconds to successfully construct its first shape.

4.3 Experiment 2: Transfer of Learned Policies

In our second experiment, we wanted to test whether a policy learned on a single

agent could be applied to multiple agents to construct formations. Because an

increase in agents means an increase in running time, as shown in Figure 14,
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Configuration Value Reinforcement Learning
Number of Robots 1 - 32
Number of Pucks 250
Forward Speed 2.0
Angular Speed 0.3
Outie Threshold 0.6
Innie Threshold 0.8
Hash Function Original
Actions 0.3, 0.15, -0.15, -0.3
Max Simulation Steps 2,000,000
Initial Q 1.0
Alpha 0.2
Gamma 0.9
Epsilon 0.0
Reset Percentage (%) 94
Q-Learning On
Innies -
Steps Before ‘Stuck’ 100,000

Table 2: Configuration values used while testing the performance of 2, 4, 8, 16,
and 32 agents loading a policy learned during a single-agent simulation.
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Figure 16: Policy learned on single agent and transferred to 2, 4, 8, 16, and 32
agents with Q-Learning on. Shaded areas above and below each line represent the
maximum and minimum values of each trial of the experiment. Exact numbers
shown in Table 3.
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it would be beneficial if we could train a policy on a smaller number of agents and

then apply that policy to a larger number of agents. In this experiment we tested

the most extreme case by learning a policy with a single agent and then we applied

that same policy to 2, 4, 8, 16, and 32 agents. Using the configuration variables

shown in Table 2, the results of this experiment are demonstrated in Figure 16.

We can see that the policy transfer was successful, as multiple agents were

able to use the single-agent trained policy and complete more formations in fewer

time steps than the single agent. This increase is not linear however. By doubling

the number of agents within the simulation, we are not necessarily doubling the

productivity of the system as a whole. For example, by increasing the number of

agents from 1 to 2, we see an increase of 91.1% (from 56 to 107) in the number

of formations. By increasing the number of agents to 32, we see just a 392.9%

increase in the number of formations (from 56 to 276). This is likely due to agents

getting in the way of each other, colliding, and having to maneuver around each

other. This all takes time that could have been spent pushing pucks to the goal.

The policy learned initially on a single agent is not accounting for the number of

agents within the system.

Despite not having a linear increase, these results are still very promising.

Policies learned quickly by fewer agents can be carried out by a larger number

of robots with impressive results. This significantly reduces the amount of time

needed to learn policies from scratch in systems with large numbers of agents, and

also allows us to reuse policies that we have previously learned within a separate

system containing a different number of agents. This allows us to save time as we

do not need to learn a unique policy for each system containing a different number

of agents.
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Number of Agents Total Number of Formations
1 56
2 107
4 176
8 199
16 192
32 276

Table 3: Results from experiment 2 showing the averaged results of all 10 trials.

4.4 Experiment 3: Letter Formation

Our final set of experiments were run to test the effectiveness of our reinforcement

learning solution relative to that of the original OC algorithm on a multitude of

letter-shaped scalar fields shown in Figure 17 to see which method could success-

fully construct more formations in a given amount of time steps, similar to the

previous experiment on the annulus shape. In these experiments, however, the en-

vironments contained 200 pucks instead of 250. This is due to the decreased surface

area of these shapes compared to the annulus. Often, all 250 pucks would not fit

inside of the optimal section of the field. Aside from the alteration in the number

of pucks, we still used 8 agents and the maximum number of time steps was set to

5,000,000. In this set of experiments, we changed the ‘steps before stuck’ variable

from 150,000 simulation steps to 50,000 simulation steps. This change was made

solely to aid with the results of OC algorithms and ensure simulations created at

least a single formation in the allotted number of simulation steps. Often times,

OC would get stuck with a formation that did not reach the reset percentage and

would then waste 100,000 simulation steps performing non-effective actions. This

greatly impacted the final results. The reduction of this value fixed that issue.

Additional configuration values can be seen in Table 4.

45



Configuration Value Reinforcement Learning Orbital Construction
Number of Robots 8 8
Number of Pucks 200 200
Forward Speed 2.0 2.0
Angular Speed 0.3 0.3
Outie Threshold 1.0 1.0
Innie Threshold 1.0 1.0
Hash Function Original Original
Actions 0.3, 0.15, -0.15, -0.3 0.3, 0.15, -0.15, -0.3
Max Simulation Steps 5,000,000 5,000,000
Initial Q 1.0 -
Alpha 0.2 -
Gamma 0.9 -
Epsilon 0.0 -
Reset Percentage (%) 94 94
Q-Learning On Off
Innies - No
Steps Before ‘Stuck’ 50,000

Table 4: Configuration values used while testing the performance of both RL and
OC on multiple letter-shaped scalar fields.
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(a) T-shape (b) I-shape (c) L-shape

(d) V-shape (e) X-shape (f) Z-shape

Figure 17: Collection of letter-shaped scalar fields used as projected backgrounds
in experiments testing RL versus OC performance.
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Figure 18: Graph of OC versus RL formations on an L-shaped scalar field (left),
and OC algorithm construction example (middle), and an RL construction example
(right).

The results of these experiments can be seen in Figure 19, and are detailed

in Table 5. In each of the six graphs in Figure 19, two separate plots are visible,

showing the performance of the OC and the on-line RL method as it was learning

from scratch. For each letter, the hand-crafted OC algorithm produces formations

very slowly in comparison with RL, and on-line learning repeatedly takes less time

to create its first formation.

These experiments provide strong evidence to back our claim that the RL

approach is more maleable and is often better suited than hard-coded algorithms

to form miscellanious shapes within multi-agent systems.
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Figure 19: Resulting performance of using RL versus OC algorithms on the letters
T, I, L, V, X, and Z.
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RL OC

Shape Formations Stuck Steps/Form Formations Stuck Steps/Form

T 113.7 58.1 43,975 7 96.7 714,286

I 250.2 28.8 19,984 8 97.4 625,000

L 339.2 15 14,740 102.6 80.5 48,732

V 209.6 37.8 23,854 107.9 77.1 64,850

X 200 43.2 25,000 28 93.1 178,571

Z 180 38.4 27,777 48.7 83.4 102,669

Each experiment was run 10 times and then averaged to retrieve the final result
displayed within the table.

Table 5: Numerical results for RL versus OC letter formation on the letters T, I,
L, V, X, and Z.

4.5 Summary of Results

In this chapter, we investigated three distinct themes — RL versus OC in annulus

formation, the transfer of a policy learned on n agents to a system using p agents,

and RL versus OC in unique shape formation. In all of our experiments, we focused

entirely on the number of successful formations that a system could create within

a given number of time steps.

In our first set of experiments, we noticed that by starting with an empty policy

using RL, OC began creating successful formations about 6.8 times faster than RL.

However, on a pre-trained policy (RL2), OC only began creating formations about

1.8 times faster. We learned that pre-training a policy helps the system start

creating formations much faster, thus increasing the chances that it will create

more formations in the time frame allotted. In terms of overall formations, RL

created about 71% as many successful formations as OC in the same amount of

time steps, while RL2 created about 76% as many successful formations as OC.

Clearly, OC outperforms RL in annulus formation, however it is important to note

that by pre-learning a policy, the performance of RL is improved.
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In our second set of experiments, we explored the effects of policy transfer

between systems containing different numbers of agents. We learned a policy on a

single agent and then applied that policy to system containing 2, 4, 8, 16, and 32

agents. We wanted to know both how the number of agents in a system affected

performance, and how applying a policy learned on n agents to a system containing

p agents (where p > n) affected performance. The results of this experiment

showed us two things. First, an increase in agents does increase performance. This

seems intuitive because with more agents following the same policy, the amount of

work done should be increased at a rate equivalent to the number of agents in the

system. While an increase in agents does improve performance, it is not linear.

The more agents added, the more they tend to get in the way of each other, slowly

impairing the productivity. We also learned that the transfer of a policy learned

on a single agent to systems containing multiple agents is beneficial. It allows for

systems to begin creating successful formations earlier, and removes the need for

each different system to learn a brand new policy from scratch.

Our final experiment look at the performance of RL versus OC with forming a

variety of letters. We created scalar fields depicting the letters T, I, L, V, X, and Z

and RL significantly outperformed OC on each shape. Many of these shapes had

distinct angles and curves that OC was not written to handle. This resulted in the

agents circling angles instead of following the turns tightly, which forced pucks to

build up inside of the angles. In this experiment we see one of the biggest benefits

of RL in action — its adaptability. We did not need to write six new hand-coded

algorithms for these shapes, but instead RL learned policies on its own to handle

the unique turns and angles we included in the scalar fields.

In multi-robot planar construction, the ability of agents to create a variety of
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shapes containing varying angles, curves, and concavities is extremely important.

The ability to deviate from familiar shapes and create new, unique ones with rel-

ative ease is a major benefit of using RL. In this chapter, we determined that OC

does outperform RL in the forming of annulus shapes. However, OC was hand-

coded to do just that — create a singular shape. When it came to forming different

shapes with a myriad of unique angles and curves, RL significantly outperformed

OC every time. Using RL, agents began creating successful formations almost

immediately while OC struggled with forming a newly proposed shape while also

following an algorithm designed for annulus formation. Through these experi-

ments, we noticed that because RL learns a unique policy for each new scalar field

it is presented with, it is superior in handling features like straight lines and angles

within shapes.
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5 Altering the State Representation

In Section 3.2, we introduced the concept of a ‘state’, and discussed the five main

elements within the environment that our primary ‘original’ hash function (the

function responsible for converting factors of an agent’s perceived environment

into a state) is comprised of. A more specific description of our primary state

representation can be shown as:

PL PR FL FR FM(bit 0) FM(bit 1) FM(bit 2) FM(bit 3)

• PL (puck left): 1 bit representing if either of the 2 left puck sensors is active

(1) or inactive (0)

• PR (puck right): 1 bit representing if either of the 2 right puck sensors is

active (1) or inactive (0)

• FM (field mid): an integer of 4 bits representing the scalar field value (trans-

lated to an integer between 0 and 15) of the middle field sensor

• FL (field left): 1 bit representing if the left field sensor is less than the field

mid sensor (1) or not (0)

• FR (field right): 1 bit representing if the right field sensor is less than the

field mid sensor (1) or not (0)

Thus, we can easily deduce the state value of any agent in the system at any given

point in time. Picturing an agent on an annulus-shaped grid with multiple pucks

detected in each of its puck sensors, an orientation of a 90◦ angle, and a center

scalar field value of 0.71345, we can create an exact state value to reference within

our policy. In this case, both PL and PR are 1 due to the puck sensor values, FM

is b0.71345∗16c = 11 which in binary is 1011, and since the agent is at a 90◦ angle,
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everything directly to the left will have a smaller scalar field value than FM and

everything directly to the right will have a larger scalar field value than FM. This

results in FL having a value of 1 and FR having a value of 0. Combining all of

these values together, we get an 8-bit state of 11101110 using our ‘original’ hash

function.

There is still the question of why, and even if, this is the best state represen-

tation to use. In this chapter, we will discuss alternatives to the ‘original’ hash

function that we have considered, and their effects on the performance of RL.

5.1 Experiment 1: Modifying Bits Representing the Scalar

Value

By adding or removing bits to the binary representation of the agent’s current

greyscale location within our state representation, we can increase or decrease the

granularity of where an agent believes it is in the environment. Currently, as

mentioned above, we have 4 bits representing the scalar field value of an agent.

This allows 24 possible greyscale values. Having n bits representing the scalar field

value underneath an agent correlates to 2n distinct contours of the scalar field that

an agent could be in. In this experiment, we wanted to explore the best balance

of specificity and compactness. We wanted to keep our state space small, while

still giving the agents enough information to create an efficient policy.

5.1.1 Decreasing the Number of Bits

First, we removed a single bit from the representation of the scalar field value.

Thus, our new state representation consisted of 7 bits and was structured as shown
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in the diagram below:

PL PR FL FR FM(bit 0) FM(bit 1) FM(bit 2)

This results in 23 = 8 distinct contours of the scalar field.

As we can see from Figure 20, there is an increase in the average number of

formations made when using just 3 bits to represent the greyscale value underneath

an agent. The 7-bit state representation creates an average of 520 formations

over 10 trial runs, while the original 8-bit state representation only creates an

average of 461 formations. Within our simulations, agents cannot possibly visit

all states with equal frequency. Thus, convergence of a policy depends on focusing

only on the relevant parts of a state and maximizing the amount of information

learned from each trial. The smaller the state space, the fewer learning trials are

required [28]. Thus, we see that by reducing the state space from 28 = 256 to

27 = 128, (cutting it in half), we can still efficiently represent the relevent parts

of the environment and formulate an effective policy. By reducing the number

of bits detecting the scalar value, we also begin creating formations faster than

our ‘Original’ state representation. While this reduction in state space proved to

be beneficial, it is possible to reduce the granularity to a point where the shapes

cannot be formed.
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Figure 20: RL using the original 8-bit state representation versus RL using the
altered 7-bit state representation. The altered 7-bit state representation uses just
3 bits to represent the scalar field value.
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5.1.2 Increasing the Number of Bits

Next, we increased the number of bits used to represent the scalar field value from

4 to 5. Thus:

PL PR FL FR FM(bit 0) FM(bit 1) FM(bit 2) FM(bit 3) FM(bit 4)

This results in 25 = 32 variations in the scalar field.

As we can see in Figure 21, there is a decrease in performance when we add

an extra bit to represent the scalar field value underneath an agent. The 9-bit

state representation creates an average of 356 formations over 10 trial runs, while

the original 8-bit state representation creates an average of 461 formations. Our

new state representation increases the state space from 28 = 256 to 29 = 512,

resulting in more states to explore and the construction of a larger policy. In

our case, increasing the accuracy of an agent’s scalar value had a negative effect

in performance. The policy constructed was less accurate due to the increased

number of states to visit. The nature of our environment implies that, given

identical values for scalar field and puck sensor readings, the action taken by two

agents in two very similar scalar value positions will often be the same. When

we increase the accuracy of our scalar value representation, two states that would

have been identical in a less-specific state representation become unique, and thus

now we have to learn an optimal action for two unique states (which will likely

end up being the same). This is one explanation for the decrease in performance

in this new state representation.
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Figure 21: RL using the original 8-bit state representation versus RL using the
altered 9-bit state representation. The altered 9-bit state representation uses 5
bits to represent the scalar field value.
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5.2 Experiment 2: Incorporating Obstacle Sensors

In this experiment, we added two additional sensors to each agent. We call these

new sensors ‘obstacle sensors’, and they are placed on the left and right of each

agent. We experimented with the reach of these sensors, as we required they be

broad enough to be effective but also not so large as to detect agents too far

away. We began with using obstacle sensors the same size as our floor sensors.

This seemed too small, as by the time the agent was detected, they were already

incredibly close. Then, we tried using obstacle sensors half the size of the puck

sensors. The performance was slightly increased; however we wanted to see how

increasing the sensor size even more would affect the system. Ultimately, we

decided on using obstacle sensors the same size as the puck sensors. The model we

stuck with is shown in Figure 22. Like puck sensors, each obstacle sensor can have

a binary reading of 0 or 1. 0 means there is another agent sensed, 1 means there is

not. These sensors are used to detect agents to the left and right of a robot, and

will be used later in this paper to try and help reduce the number of agent-agent

collisions. In this experiment, we were interested in the performance gap resulting

from incorporating the obstacle sensor readings into the state representation.

We added the binary values from the obstacle sensors into a new state repre-

sentation, ‘Original Obstacle’. ‘Original Obstacle’ appends to the ‘Original’ state

representation. It turns the 8-bit state representation into a 10-bit state by adding

both ‘obstacle left’(OL) and ‘obstacle right’(OR) bits, thus resulting in a state rep-

resentation of:

PL PR FL FR FM(bit 0) FM(bit 1) FM(bit 2) FM(bit 3) OL OR
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Puck Sensors

Right Obstacle
Sensor

Left Floor Sensor

Figure 22: The updated sensor configuration for each agent (obstacle sensors
added). Agent shown on bottom as a teal circle with its current heading (black
line). Sensors are rigidly fixed relative to the position and heading of the agent,
moving with the agent as it moves.

As demonstrated in Figure 23, the ‘Original Obstacle’ state representation sig-

nificantly outperforms the ‘Original’. The system using the ‘Original Obstacle’

state representation averaged at 682 successful formations, while the ‘Original’

state representation averaged at 421 successful formations. This translates to a

62% increase in formations when we include the results from obstacle sensors into

our state representation. One explanation for this is that agents learn to avoid

each other, thus having more time to focus on puck transfer.

By using the ‘Original Obstacle’ state representation, a policy is developed

that incorporates the consequence of colliding with another agent. For example,

if choosing to turn right while OR = 1 results in less pucks being moved towards

the threshold, our policy eventually learns to avoid turning right in that particular

state. This becomes helpful in later chapters when we are trying to reduce damage
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Figure 23: Averaged Results from 10 runs of RL using the original 8-bit state rep-
resentation versus RL using the altered 10-bit state representation incorporating
the left and right obstacle sensors.

done to physical robots through agent-agent collision.

5.3 Summary of Results

The way in which we represent the state of an agent in our system is very impor-

tant. The state encompasses everything that an agent knows about its environ-

ment, and bases its decisions off of that. We wanted to keep our state represen-

tation as concise as possible while also maintaining all of the critical information

about an agent’s surroundings.

In our first experiment, we altered the amount of bits being used to represent

the scalar field value within the state representation. First, we decreased the num-

ber of bits being used from 4 to 3, resulting in 23 (128) possible scalar field values.
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Doing this resulted in a 13% increase in the number of successful formations. This

demonstrated to us that using 4 bits to represent the scalar field value might be

excessive. By using only 3 bits, there are less possible states that an agent can

be in, and thus the policy becomes viable at a faster rate. Next, we increased the

number of bits used to represent our scalar field value from 4 to 5. This had the

opposite effect that decreasing the number of bits did. By increasing the granu-

larity, there was a 29% decrease in the number of formations. It is likely that the

agents were not ending up in certain states often enough to build a robust policy

equivalent to our ‘Original’ state representation.

Next, we wanted to explore what kind of impact including binary information

from object sensors to the left and right of each agent would have on the per-

formance of our system. We hypothesized that the agents would learn to avoid

each other and thus increase the efficiency of the system — and it did just that.

Adding information from these object sensors increased the complexity of our state

representation but had a positive impact on the number of successful formations

completed. We saw a 62% increase in performance when using a state represen-

tation using obstacle sensors versus our ‘Original’ state representation that did

not.

In this chapter we larned the importance of carefully selecting the way in which

we represent our states. By providing too much or too detailed information, our

performance can suffer. However by providing too little, our system may fail

to function in the way that we want. We found that when deciding on a state

representation, there is a balance between detail and minimalism that should be

reached in order to achieve optimal efficiency.
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6 Agent-Agent Collision

The performance of large groups of robots is often limited by a commonly shared

resource [36]. This effect, termed interference, can have a large impact on the

effectiveness of robotic swarms. Interference is one of the key problems in large

cooperating groups. The time each robot spends doing behaviours not related to

the main task increases whenever the density of individuals increases, effectively

reducing the performance of the system as a whole [36]. These behaviours could

be things like obstacle avoidance or colliding into each other.

The goal of simulation softwares is to model a real phenomenon with a set

of mathematical formulae so that we do not have to use real (often expensive)

hardware for testing. We would like to eventually transfer what we have learned

to real hardware so that it can have tangible benefits in the real world. In previous

experiments, we did not track the number of collisions between objects within the

environment; however, exploring methods in which we can decrease agent-agent

collisions is vital in preparing for the transfer of our research to real robots. The

less agent-agent collisions we have, the less damage our robots incur, and the more

efficient our system is due to agents spending less time being stuck.

Three experiments were carried out to both explore the natural incline and

decline of agents colliding into each other throughout a simulation, and find ways in

which it can be reduced without interfering with the RL algorithm: (1) analysis of

the frequency of agent-agent collisions in learned policies with no alterations made,

(2) adding obstacle sensors to each agent so it can detect whether there is another

agent on the left or right, then adding those values to the state representation,

and (3) altering the reward function so that an increase in agent-agent collisions
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decreases the returned reward, and a decrease in agent-agent collisions increases

the returned reward.

6.1 Performance Metric

Instead of focusing on the exact number of collisions during every simulation, we

decided to count the number of agent-agent collisions that occurred every 1000

time steps. Initially, we wanted to record the percentage of collisions that were

specifically one agent colliding with another, however this percentage would de-

crease based on unchanging numbers of agent-agent collisions and an increasing

number of any other type of collision often resulting in inaccurate readings. Thus,

for the entirety of our simulations, we recorded the number of agent-agent collisions

that occurred during the previous 1000 simulation steps.

6.2 Experiment 1: Agent-Agent Collisions in Unaltered

Systems

First, we wanted to determine the typical number of agent-agent collisions through-

out a simulation without making changes to the system. This data acted as a

benchmark to compare with the performance of future alterations made to de-

crease collisions between agents. During this experiment, we used configuration

values identical to those in Table 1. The average collision results after forming

an annulus shape are shown by the green line of best fit in Figure 24. From this

graph we see that there is a trend towards increased collisions as learning pro-

gresses. Further, the average number of collisions per 1000 time steps is high at

1528 collisions. This means it took about 0.65 time steps for a collision to occur.
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6.3 Experiment 2: Inclusion of Obstacle Sensors into State

Representation

In our second experiment, we wanted to determine the effect that adding in obstacle

sensors (and adjusting our state representation accordingly) would have on agent-

agent collisions. While keeping all other sensors the same, we added a left and

right obstacle sensor to the agent, shown in Figure 22. These obstacle sensors were

discussed previously in greater detail in Section 5.2.

Aside from incorporating new obstacle sensors into the state representation,

this experiment does not focus on doing anything to explicitly reduce the number

of agent-agent collisions. Our goal was to determine if the agents learned to avoid

each other naturally. Based on the nature of RL, this should happen if agents

learned that avoiding collisions resulted in a higher reward. Since our reward

function has not been altered, the reward would only increase if avoiding other

agents resulted in more pucks being pushed towards the defined threshold(s). This

seems plausible, as avoiding interference leaves extra time to accomplish puck-

related tasks. The results of this experiment are demonstrated by the blue line of

best fit in Figure 24. The average number of collisions per 1000 time steps during

this experiment was 752. This means it took on average 1.33 time steps for an

agent-agent collision to occur, which is a clear improvement over not having the

obstacle sensors included.

In Figure 24, we can see the difference caused by incorporating obstacle sensors.

The agents learn to avoid each other better than when there was no sense of the

location of other agents relative to a single agent. As stated previously, this is likely

due to agents learning that a decrease in interference correlates to an increase in
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Figure 24: Agent versus agent collisions occurring every 1000 simulation steps.
The blue line represents the line of best fit determined (using the polyfit function
for numpy) for agent-agent collisions using the obstacle sensors, while the green
line represents the line of best fit for agent-agent collisions that are not using
obstacle sensors, but instead just the ‘Original’ state representation discussed in
Chapter 5.
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reward. This is a result of agents having more time and space to push pucks

towards the goal instead of colliding with each other.

6.4 Experiment 3: Adjusting the Global Reward Function

As discussed in Section 3.4, reward functions are one of the most important ele-

ments of any RL problem. The reward function describes how the agent(s) should

behave and stipulates what we want the agent to accomplish. By changing the

reward function, we change how much of a positive or negative reward our agents

receive for performing certain actions. In our current reward function, we focus

solely on the movement of pucks within the environment — the reward signal is not

affected by any type of collision (be it agent-agent collision, agent-puck collision,

or puck-puck collision).

In our third experiment, we wanted to write a new reward function so that

our environment learned not only to push the pucks into a desired shape, but also

to avoid colliding into each other in the process. Recall from Section 3.4 that in

an environment with P pucks, we define SVt(Pi) as the scalar field value located

at the center of puck 1 ≤ i ≤ P at simulation time step t. As well, we define

a puck distance function PDt(Pi) which yields 0 if the puck is inside the desired

thresholds Ti and To at time step t, or the difference from the closest threshold if

outside it:

PDt(Pi) =


SVt(Pi)− Ti, if SVt(Pi) > Ti

To − SVt(Pi), if SVt(Pi) < To

0, otherwise
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Next, assuming A agents in the environment, we define an agent distance func-

tion ADt(Aj) where 1 ≤ j ≤ A which gets the summed distance between an agent

j and all other agents in the environment and divides by A to get the average dis-

tance between agent j and other agents in the environment. SVt(Aj) is defined as

the scalar field value located at the center of agent j. The pseudocode describing

ADt(Aj) is shown below in Algorithm 3:

Algorithm 3: The Agent-Distance Algorithm. Finds the distance be-
tween an agent and all other agents, returns the average distance

Input : Agent j, total number of agents A
Output: The average distance between agent j and all other agents

1 sum ← 0
2 for k ← 0 to A by 1 do
3 sum += abs(SVt(Aj)− SVt(Ak))

4 return (sum/A)

We then define a new global evaluation function, Evalt(E) on an environment

E with which averages PDt(Pi) for all pucks, and ADt(Aj) for all agents. This

function uses two variables, ϕ and ν, that when summed add up to one and

prescribe weights to both of our goals:

Eval′t(E) = ϕ

(
1− 1

P

P∑
i=1

PDt(Pi)

)
+ ν

(
1− 1

A

A∑
j=1

ADt(Aj)

)
The higher the value of ϕ in Eval′t(E), the more importance (or ‘weight’) we

place on the task of moving pucks towards a defined threshold. Conversely, the

higher the value of ν, the more importance we place on having agents avoid each

other. In this experiment, we learned a policy from scratch on 2, 4, and 6, and 8

agents for 5,000,000 time steps. Additional variables can be seen in Table 6.

Initially, we noticed that 8 agents using our new reward function Eval′t per-
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Configuration Value Reinforcement Learning
Number of Robots 2
Number of Pucks 200
Forward Speed 2.0
Angular Speed 0.3
Outie Threshold 0.6
Innie Threshold 0.8
Hash Function Original
Actions 0.3, 0.15, -0.15, -0.3
Max Simulation Steps 5,000,000
Initial Q 1.0
α 0.2
γ 0.9
ϕ 0.6
ν 0.4
Epsilon 0.0
Reset Percentage (%) 94
Q-Learning On
Reward Function Eval′t
Steps Before ‘Stuck’ 150,000

Table 6: Configuration values used while testing the performance of the new reward
function, Eval′t.

69



Experiment Successful Formations Collisions/1000 Steps
1 (Original) 421 1528
2 (Original Obstacle) 682 752
3 (New Reward Function) 47 420

Table 7: Averaged results on successful formations and average collisions collected
from Chapter 6.

formed significantly better than 8 agents using the on-board obstacle sensors. Over

time, as the policy converges, the agents learn not to collide into each other. This

is demonstrated in Figure 25. The average number of collisions per 1000 time

steps is 420. This evens out to about one agent-agent collision every 2.4 time

steps, much better than using just obstacle sensors alone.

While the number of collisions is significantly reduced by using the new re-

ward function, we wanted to see how the performance of the system was affected.

Since the system is spending time learning how not to collide with other agents,

learning a way to push pucks towards the desired threshold will take longer as

there are now two primary goals. As seen in Figure 26, using the new reward

function drastically affects the speed in which formations are created. Using just

the ‘Original Obstacle’ hash function, we averaged 682 successful formations. By

using Eval′t, we averaged just 47 successful formations. From this, it is clear to see

that there huge is a tradeoff between reducing collisions and creating formations.

Our policy learns to create successful formations much slower when we are also

learning to avoid agent-agent collisions.
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Figure 25: Agent versus agent collisions occurring every 1000 simulation steps.
The blue line represents the line of best fit for agent-agent collisions using the
obstacle sensors, while the green line represents the line of best fit for agent-agent
collisions using the updated reward function, Eval′t.
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Figure 26: Performance of using just ‘Original Obstacle’ state representation ver-
sus using the new reward function, Eval′t using 8 agents for 10 trials.
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6.5 Summary of Results

Finding inexpensive ways to reduce the number of agent-agent collisions is vital

when working with real-world MAS. Hardware can be extremely expensive. In our

case each agent would cost approximately $250.00. Because of this, reducing the

amount of contact each agent has with each other helps ensure that hardware on-

board the agents won’t be damaged by constant force being applied to them. In this

chapter, we explored how the system currently fares with agent-agent collisions,

as well as ways to reduce these collisions.

In our first experiment, we wanted to create a benchmark for future alterations

to the system. We wanted to see how many agent-agent collisions our system

experienced on average without any changes made. What we found was that

agents were colliding with each other more than once per time step (1528 collisions

per 1000 time steps). As well, the slope of the line of best fit for collisions was

positive, so the number of collisions were increasing as the policy was progressing.

This showed us that changes needed to be made to our system in order to reduce

collisions between agents.

In our next experiment, we explored the effect that using the ‘Original Obstacle’

hash function and obstacle sensors had on agent-agent collisions. By being able to

sense other agents to the left and right, agents collided with each other 51% less

than they did without the obstacle sensors (752 collisions per 1000 time steps).

The upwards slope demonstrated by collisions occuring from using the ‘Original’

state representation is something to be avoided, as the longer the test runs, the

more frequently collisions occur. Ideally, we want to be able to train our policy for

as long as we wish without worrying about the increase in agent-agent collisions.
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In addition, as we learned in Chapter 5, there is an increase in the number of

successful formations when we use the information retrieved from obstacle sen-

sors. So as the number of agent-agent collisions decreases, our performance is also

positively affected.

Finally, we altered our reward function to increase the returned reward the

further agents are from each other, and decrease the returned reward the closer

they are to each other. This increase or decrease in reward is combined with the

reward given for pushing pucks towards the threshold(s), and both are weighted

using ϕ and ν. This technique resulted in just 420 agent-agent collisions per 1000

time steps. This translates to a 73% decrease in collisions compared to the original

system. As well, the line of best fit for this technique is negative. This means that

as the policy progresses, the amount of agent-agent collisions decreases over time.

Again, performance in terms of shape formation is negatively affected by altering

the reward function. With just 47 successful formations in 5,000,000 time steps, it

seems that the more we emphasize avoiding collisions between agents, the worse

the performance of the system is.

Through the experiments in this chapter, we learned that reducing the number

of agent-agent collisions is a difficult task. There appears to be a trade-off between

reducing collisions and forming successful formations. With this being said, finding

a balance between this two things seems a necessity if we plan to using physical

robots to demonstrate our work. For porting our work to physical robots, we would

likely perform on-line learning in simulation to learn a policy using Eval′t and then

apply that policy to physical agents. Because the average number of collisions is

reduced over time while learning a policy using Eval′t, the policy that we feed the

robots should result in a fairly low number of collisions between agents.
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7 Summary and Conclusions

In this thesis we have proposed a system using RL to improve upon previous

methods of shape construction within MAS. Our system removes the dependence

on hand-coding algorithms and has the benefit of being able to adapt to unique

environments and shape formations. Unlike OC, RL does not need distinct types

of agents to complete a task. Instead, agents learn to adapt and fulfill multiple

roles based on their current state. The RL solution can also form different types of

shapes that the OC algorithm struggles with (likely due to right-angles and concave

features). We have also demonstrated the promising results for policy transfer, in

which policies learned quickly by fewer agents can be carried out by more robots.

Furthermore, we have unearthed some plausible solutions to collision reduction by

including obstacle sensors and altering the reward function. This translates to a

reduction in collisions between agents, and thus a method to reduce financial costs

when policies are loaded onto physical agents.

There were also a number of experiments that were executed but not included

in this thesis. For example, we examined the results of altering the ε value, thus

altering the ratio of agents’ decision to follow the policy or explore a random

action in a given state. We also experimented on a variety of combinations of

possible action spaces and examined how more or less possible actions affected

the system’s ability to function. As well, we examined how RL performed when

the scalar field was modeling open versus closed shapes and symmetrical versus

asymmetrical shapes. There are an array of questions to delve into and explore

within this topic and within our specific environment, however we tried to focus

on what we deemed to be the most imperative.
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Many ideas relating to planar construction using MARL were discussed through-

out the course of this research; however due to time and financial constraints, were

not able to be fully explored. The first of these ideas was implementing deep neu-

ral network state representations coupled with deep RL to test the limits of what

complex shapes can be formed by more modern learning algorithms. We also

would have liked to learn a policy on-line through the Cwaggle simulator and then

apply that policy to the physical agents in our lab. This would have indicated to

us the issues surrounding the transition from simulation to physical hardware. We

would have seen how noise in the physical environment affects performance, and

if latency in data transfer affects agents’ abilities to properly execute the policy.

We believe that these experiments have only scratched the surface of using RL

for swarm shape formation, as we have shown results using the most basic form

of tabular Q-learning. In the future, we would like to expand on the power of

using alternate or multiple reward functions. We would like to look into adjusting

weights attached with specific goals of the reward function and seeing how it affects

the resulting policy. We would also like to implement deep neural network state

representations coupled with deep RL to test the limits of what complex shapes can

be formed by more modern learning algorithms. We believe that there are many

ways to move forward with this research, and much to be uncovered with more

powerful machine learning techniques that will progress the world of multi-robot

planar construction.
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