
Approximate Scheduling of Final Exams at Memorial University

Edward Brown, David Churchill and Manrique Mata–Montero
Memorial University of Newfoundland, Canada

brown@cs.mun.ca, manrique@cs.mun.ca

May 4, 2007

Abstract

We describe one type of scheduling problem, that of
scheduling final exams at Memorial University (MUN),
a comprehensive Canadian university. It is well-known
that the general scheduling problem is NP-complete [1].
Over the years, this problem has attracted a lot of at-
tention and many different approaches have been tried
in finding approximate solutions [2]. Here we propose an
approximate solution to the problem at MUN.We use an
evolutionary programming approach [4] implemented on
a commercial grid computing environment; for our ex-
periments we used a system including 1 master and 10
slaves. The grid algorithm, not accounting for the com-
munication complexity, achieves optimal parallelization,
i.e., reduces the time complexity of its serial implemen-
tation t(n), where n is the number of evolution steps,
to t(n)/NumOfSlaves. The communication complex-
ity on a network implementing a grid computing system
may be the most important factor in the complexity of
the algorithm. We alleviate the communication com-
plexity using a feature of the software that allows for
global virtual variables. These are variables that can
be accessed by any of the computers on the grid and
maintained by the master. On each slave we run 2 pro-
cesses, since the slaves are based on dual core processors.
We generate schedules better than those obtained by the
current system in use. While the system is intended to
be used at MUN, many universities impose very similar
constrains on the scheduling of their exams. We expect
the same approach to yield similar results to ours.

keywords: grid computing, combinatorial optimization,

evolutionary programming, NP-completeness, approxima-

tion algorithms, scheduling.

1 Introduction

In this document we report the results of using an evolu-
tionary programming approach to finding approximate
solutions for the Scheduling of Final Exams at MUN. We
used a commercial grid computing system to implement

the algorithm. We ran our experiments on a system in-
cluding 1 master and 10 slaves, but the number of slaves
can be tailored to the available hardware. Each slave
runs 2 identical processes to fully utilize the dual core
technology on which the slaves are based. Apart from
the communication complexity in the network, given
the properties of the genetic programming methodology,
we obtain optimal parallelization, i.e., without counting
the communication complexity, we reduce the time from
t(n), on a single processor, to t(n)/NumOfSlaves on 1
master and NumOfSlaves slaves, where n is the num-
ber of steps of evolution. We use one of the capabilities
of the grid computing system to reduce the communica-
tion between the master and the slave processes. The
master is able to maintain a global virtual variable that
is accessible to all the processors in the grid. In our
application this feature allows for quick communication
between the master and the slaves.

In subsequent sections we describe the problem, de-
scribe our evolutionary algorithm and finally present our
results and open questions.

We do not describe the evolutionary programming
methodology nor the terms and concepts it uses. We
follow standard definitions and concepts found in the
literature, for instance, in [4].

2 Description of the Scheduling
of Final Exams Problem

MUN offers around 1500 courses during regular terms
-Fall and Winter- and there are approximately 15000
registered students. The exam period has been tradi-
tionally set to 10 days and during each of those 10 days
there are 4 time slots when students write their final ex-
ams. Some of the courses are night courses and exams
for these night courses must be written during the last
slot of the day -the night slot. Exams for day courses
must be written during the day slots -the first three slots
of each day.

There are two other fundamental restrictions, no stu-

1

dent must be required to write two or more exams at the
same time -during the same time slot- (2-conflicts) and
no students must be required to write three or more ex-
ams during a 24 hour period -in our case this means no
student must write three or more exams during any pe-
riod corresponding to four consecutive slots (3-conflicts).

A secondary requirement is to have as many exam
papers written as early in the exam period as possible.

Solving the problem entails finding a ordered partition
of at most 40 elements (the number of exams days times
the time slots per day) of the set of courses fulfilling the
conditions described before. This partition is called a
schedule.

Clearly, a partition fulfilling the conditions stated may
not exist. So, we aim at finding a schedule that mini-
mizes the number of 2 and 3-conflicts.

3 Algorithm for Solving the
Problem

We implement a grid computing evolutionary program-
ming algorithm where each individual -phenotype- cor-
responds to one schedule and the genotype is a function
mapping courses to time slots. So, if C represents the
set of all courses and S the set of all time slots, each
genotype is a function g : C → S. This function induces
a natural partition of C corresponding to the phenotype
-schedule.

The fitness of each individual is a certain constant K
plus a number of rewards minus weighted values for the
number of 2-conflicts and 3-conflicts.

Notice that the fitness function reflects a slight over-
estimation of the number of students that have conflicts
since 2 and 3-conflicts may overlap.

When there are no students with any conflicts, the
fitness function reaches a value K + r. The constant
K is an arbitrary positive integer number designed
to maintain the fitness always positive and and r ≤
maximumNumberOfRewards is a value corresponding
to the numbers of rewards obtained.

Since it is desirable to have as many exams written
as early as possible, we implement this condition by re-
warding schedules that during the first 2, 4, 6 and 8
days of exams enable the writing of s1, s2, s3 and s4 ex-
ams with r1, r2, r3 and r4 rewards, respectively, where
r1+r2+r3+r4 ≤ maximumNumberOfRewards. Care
is taken to make sure the value of the rewards does not
overwhelm the value of 2 and 3-conflicts, i.e., the rewards
are a secondary goal.

As usual, our algorithm attempts to find schedules
that maximize this fitness.

3.1 Computing the Fitness Function

In computing the fitness function for a particular sched-
ule it is necessary to find out instances of rule violations
among the 15000 students. This might be a time con-
suming task. So, we preprocess the student registration
information and create a d-ary tree, where d corresponds
to the number of courses, as follows.

Let the multi-set D = {Sn : 0 < n ≤ k, k > 0},
where Sn is a sequence of course numbers taken by some
student. To make the computation of the fitness function
as efficient as possible, we set |Sn| ≤ 3, for all n, and
these sequences include all permutations of any given
sequence of courses taken by a student. The value of k
is then the number of all sequences of courses of lengths
one, two and three -and their permutations- taken by
students. Notice that a group of two or three courses is
represented many times in D. This redundancy allows us
to reduce the time complexity of computing the fitness
function.

We recursively define a d-ary tree T , where each node
includes a sequence of items {c, {m}, P}. The value c is
a course number, the value m is the number of all the
sequences in D whose prefix is given by the path in T
ending with the node including c, and the third item P
is a d-ary tree including all the tails of such sequences.
So, given the above constraint, T has depth three.

T is large but does not change during the computa-
tion, so, it can be held in memory and it is transmitted
to the slaves only once at the begining of the computa-
tion.

The tree T can be used to determine if a particular se-
quence of three courses -in any order- whose exams have
been scheduled in any four consecutive slots has been
registered by any students. The value m in the leaf node
of a path of three courses specifies exactly how many stu-
dent have registered that combination of courses.

In addition, the same tree T can be used to determine
if a given pair of courses scheduled in a time slot -in any
order- is taken by a student.

For instance, the tree T representing the registration
of the courses {1, 2, 3, 4} and {1, 2, 4, 5} by two students
is:

{{{1,{2},{{2,{2},{{3,{1},{}},{4,{2},{}},
{5,{1},{}}}},

{3,{1},{{2,{1},{}},{4,{1},{}}}},
{4,{2},{{2 {2},{}},{3,{1},{}},

{5, {1}, {}}}},
{5,{1},{{2,{1},{}},{4,{1},{}}}}}},

{2,{2},{{1,{2},{{3,{1},{}},{4,{2},{}},
{5, {1}, {}}}},

{3,{1},{{1,{1},{}},{4,{1},{}}}},
{4,{2}, {{1,{2},{}},{3,{1},{}},

{5, {1}, {}}}},

{5,{1},{{1,{1},{}},{4,{1},{}}}}}},
{3,{1}, {{1,{1},{{2,{1},{}},{4,{1},{}}}},

{2,{1},{{1,{1},{}},{4,{1},{}}}},
{4,{1},{{1,{1},{}},{2,{1},{}}}}}},

{4,{2},{{1,{2},{{2,{2},{}},{3,{1},{}},
{5, {1}, {}}}},

{2,{2},{{1,{2},{}},{3,{1},{}},
{5, {1}, {}}}},

{3,{1},{{1,{1},{}},{2,{1},{}}}},
{5,{1},{{1,{1},{}},{2,{1},{}}}}}},

{5,{1},{{1,{1},{{2, {1},{}},{4,{1},{}}}},
{2,{1},{{1,{1},{}},{4,{1},{}}}},
{4,{1},{{1,{1},{}},{2,{1},{}}}}}}}

}

Using the tree T , the serial computation of the fitness
of a schedule is fairly efficient; so,we do not parallelize
the computation of the fitness function.

Since we defined the fitness function as a constant
K plus some reward points minus weighted values of 2
and 3-conflicts, the complexity of computing the fitness
function lies in detecting such conflicts.

We give the details of detecting these violations using
the tree T .

Let there be a schedule consisting of 40 time slots (ten
days of four slots each), where each time slot i, where
1 ≤ i ≤ 40, includes all the courses x ∈ C such that
f [x] = i. Since in our case a 24-hour period expands
4 slots, then to detect 3-conflicts we slide a window of
length 4 from the first slot to the 37th, see Figure 1.
At each positioning of the window we find the number
of students who are taking three courses appearing in
different slots.

Suppose that the window is located at position 1 <
i ≤ 37 and all slots up to slot i + 2 have been inspected.
It follows that for detecting 3-conflicts it suffices to con-
sider 3 slots at a time, since we are detecting possible
students registrations that include 3 courses exactly, one
per slot.

To every pair of slots from among slots i, i+1 and i+2,
we add slot i + 3 and test for 3-conflicts. In this way we
can detect all 3-conflicts that have not been detected in
previous window positions. There are 3 pairs of slots
from among slots i, i + 1 and i + 2, this means that we
need to probe three groups of three slots, namely, all
pairs from among i, i + 1 and i + 2 plus slot i + 3. Too
start the process we find all 3-conflicts in the slots 1, 2
and 3, and position the window in slot 1.

Given three slots, we can use the tree T to detect 3-
conflicts as follows. Let the slots under test be slots A,B
and C. We search the tree T and find which courses in
A are courses belonging to roots of sub-d-trees in T in
the root node. Then we find which immediate descen-
dants of such roots include courses in B and identify

those sub-d-trees. Finally, we test which of the imme-
diate descendants of these latter trees include courses
in C. Nodes including courses in C also include the
number of students that have registered the 3-sequences
found among the slots A,B and C.

To detect students required to write two or more ex-
ams in the same time slot we scan slots 1 to 40 of a
schedule. For a given slot we identify in the root of T
all those sub-d-trees whose roots include course num-
bers in the slot. Then we identify which of these have
descendants that include courses belonging to the slot.
The values of m in these nodes indicate the numbers
of students who have registered for the corresponding
2-sequnces of courses.

So, to detect instances of 3-conflicts we slide a window
from locations 1 to 37 and at each location we perform 3
tests. To detect 2-conflicts we inspect each of the 40 slots
and perform one test. These tests use the tree T . So,
the complexity of the fitness computation is dominated
by detection of 3-conflicts, i.e., NumberOfSlots ∗ 3 ∗
3 ∗ CostOfAnIntersection. The cost of an intersection
refers to the cost of intersecting the list of courses in
a time slot with the list of courses in the roots of the
appropriate subtrees.

Figure 1: Sliding a Window Down a Schedule to
Detect 3-Conflicts

3.2 Recombination, Self-reproduction
and Mutation

We implemented a two point recombination scheme
where for each recombination the break points are de-
termined randomly, as described in [4].

The mutation operator changes the value of the func-
tion g defined before -genotype- in one point, i.e., for
a value x ∈ C determined at random, redefine g[x] to
a value y, where y is a randomly generated slot num-
ber compatible with the course number x. Recall, day
courses write their exams during the first three slots of
any day and night courses must write their exam in the
fourth slot of any day.

We set the probabilities of self-reproduction and mu-
tation to 8% and 27%, respectively. A probability of
mutation of almost 30% goes against what many text-
books recommend. Generally, mutations are performed
with low probability, around 5%. We believe that our
success with a high rate of mutation is due to the way
we chose to represent the individuals.

3.3 The Tasks of the Master and the
Slaves

According to the evolutionary programming princi-
ples [3], an initial random population of genotypes -in
our case of size 120- is used to simulate the evolution-
ary process of creating better adapted populations, i.e.,
schedules with less student conflicts -higher fitness. To
create new -hopefully better adapted populations- we
use the typical genetic operators, namely, recombina-
tion, self-reproduction, fitness based selection and mu-
tation [4]. Since the process of creation of a new gener-
ation is essentially a parallel process, this is the step we
choose to parallelize. We use a grid of 1 master and 20
slave processes like the one shown in the Figure 2.

Figure 2: Architecture of a Grid with 1 Master
and 8 Slaves

The following are the steps of the algorithm followed
by the master of the grid.

• The master creates and broadcasts the tree T
encompassing the student registrations to all the
slaves. The master also broadcasts to the slaves
all functions necessary for their task, the current
population of genotypes and the fitness of their as-
sociated phenotypes.

• The master requests a number -
sizeOfThePopulation/NumOfSlaves- of new
individuals to each slave. We require this number
to be even, because recombination generates two
offspring.

• The master receives the NumberOfSlaves seg-
ments of the new population including their fitness,
genotypes and phenotypes from the slaves and as-
semble them into a new generation.

• The master continues the process described above
until a certain number of generations has been
reached or there is an individual with a fitness
K + maximumNumberOfRewards -an arbitrary
pre-established constant plus the maximum number
of rewards.

The slaves follow the next steps.

• Each slaves receives the fixed tree T , the number of
new individuals it must generate, the genotypes and
the phenotypes’ fitness of the current population,
and the functions necessary to perform its task.

• Each slave selects from the current population two
genotypes -parents- using fitness based selection.

• Each slave creates two new descendants per pair of
parents. New individuals corresponds to a 2-point
recombination and its complementary recombina-
tion or they are identical to the parents selected
-self-reproduction. In addition, these two new indi-
viduals go under probabilistic mutation, i.e., they go
under a mutation based on a certain pre-established
probability of mutation.

• Each slave computes the phenotypes and fitness of
the two new individuals.

• Each slave repeats the process described above until
it finds sizeOfThePopulation/NumOfSlaves new
individuals and returns them to the master.

Notice that the communication complexity is governed
by the transmission of the genotypes and their fitness
to the slaves. Each slave needs the fitness of all the
members of the current population to probabilistically
select, based on fitness, the parents of the individuals it
is going to create. This information is fairly small, in our

case 120 positive integers. There are also 120 genotypes
in our application, but each genotype is a list of around
1500 integers describing a schedule.

We do notice, though, that if a slave is going to create
sizeOfThePopulation/NumOfSlaves new individuals,
it only needs sizeOfThePopulation/NumOfSlaves
parents, i.e., genotypes of the current generation. In
our case, using 20 slave processes and with a popula-
tions of 120 individuals, each slave has to use only 6
genotypes from the current generation. So, the master
does not need to transmit all the genotypes of the cur-
rent generation to the slaves. Rather, it keeps a virtual
global memory variable containing all the genotypes of
the current generation and transmits to the slaves only
the specific parents they request.

In this way we reduce the communication complexity
by transmitting a total of 60 pairs of parents -genotypes-
to the slaves, this, instead of transmitting 2400 geno-
types per generation. The use of the global virtual vari-
ables feature greatly alleviates the communication com-
plexity. We largely reduce the size -and hence trans-
mission time- of the data transmitted which occurs in
bursts, since the master synchronizes the creation of gen-
erations.

4 Results Obtained

Running an evolution of 5000 generations we found a
schedule with fitness 14819 out of 15000. This means
that there are still conflicts. There are 65 out of 13392
students with conflicts. This number of conflicts is well
below the number of conflicts that the current system
generates. One has to remember that there may not be
a schedule with no conflicts.

The amount of time needed for 5000 generations on
the dedicated grid computing system we used is of
around 24 hours. This time is acceptable for the in-
tended use of the system.

In the Figure 3 we show the fitness changes as the
evolutive process takes place. We can notice that in the
last 1000 evolution steps there was very little change, the
conflict of 10 students was resolved. This shape of curve
showing the fitness changes is common in evolutionary
computations.

Even after 5000 generations, our system did not stop
improving of the fitness of new populations, but the im-
provement was marginal and not worthwhile the amount
of time required.

Figure 3: Fitness Changes During 5000 steps of Evolu-
tion

5 Open Questions and Future
Work

The most prominent open question is whether or not we
can speed up the convergence without loosing the quality
of the solution. We intend to investigate this issue in the
near future.

The way in which we defined the fitness function, while
apparently appropriate, may not be the most useful for
the practical use of the system. For instance, we may
want, not only a schedule with a low number of stu-
dent conflicts, but at the same time one that alleviates
the task of re-scheduling the exams of the students with
conflicts. In future implementations of our approach we
will incorporate this extra requirement.

References

[1] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Co., San Fran-
cisco, 1979.

[2] Emma Heart and Peter Ross. Evolutionary schedul-
ing: A review. Genetic Programming and Evolvable
Machines, 8(6):191–220, 2005.

[3] John H. Holland. Adaptation in Natural and Artifi-
cial Systems. MIT, 1994.

[4] Christian Jacob. Illustrating Evolutionary Computa-
tion with Mathematica. Morgan Kaufmann Publish-
ers, 2001.

