
361

30
Hierarchical Portfolio
Search in Prismata
David Churchill and Michael Buro

30.1 Introduction

Many unique challenges are faced when trying to write an AI system for a modern online

strategy game. Players can control groups of tens or even hundreds of units, each with their

own unique properties and strategies, making for a gigantic number of possible actions

to consider at any given state of the game. Even state-of-the-art search algorithms such as

Monte-Carlo Tree Search (MCTS) are unable to cope with such large action spaces, as they

typically require the exploration of all possible actions from a given state in a search tree.

In addition to the difficulty of dealing with large state and action spaces, other design fea-

tures must be considered such as varying difficulty settings, robustness to game changes,

and single player replay value.

In this chapter we will discuss the AI system designed for Prismata, the online strat-

egy game developed by Lunarch Studios. For the Prismata AI, a new algorithm called

Hierarchical Portfolio Search (HPS) was created which reduces the action space for com-

plex strategy games, which helps deal with all of the challenges listed above. This results

in a powerful search-based system capable of producing intelligent actions while using a

modular design which is robust to changes in game properties.

30.1 Introduction

30.2 AI Design Goals

30.3 Prismata Gameplay

Overview

30.4 Hierarchical Portfolio

Search

30.5 Evaluation of HPS Playing

Strength

30.6 Conclusion

References

362 30. Hierarchical Portfolio Search in Prismata

30.2 AI Design Goals

In addition to creating an intelligent AI system for strategy games, other design decisions

should also be considered in order to ensure an enjoyable user experience. When design-

ing Prismata, the following design goals were laid out for the AI system:

 • New Player Tutorial: Strategy games often have complex rules, many different unit

types, and a variety of scenarios that the player must adjust to. All of this leads to a

steep learning curve. Our primary goal with the Prismata AI was to aid new play-

ers as they learned to play the game, so that they would eventually become ready

to face other players on the online ladder. This required the creation of several

different difficulty settings so that players could continue to be challenged from

beginner all the way up to expert play.

 • Single Player Replay Value: Single player missions in video games are sometimes

designed as rule-based sequences of events that players must navigate to achieve

some goal. In Prismata, that goal is to destroy all of the enemy units, which can

become quite boring if the AI does the same thing every time it encounters simi-

lar situations. Our goal was to build a dynamic AI system capable of using a vari-

ety of strategies so that it does not employ the exact same tactics each time.

 • Robust to Change: Unlike games in the past which were finalized, shipped, and

forgotten about, modern online strategy games are subject to constant design

and balance changes. Due to their competitive nature, designers often tweak unit

properties and game rules as players find strategies that are too powerful, too

weak, or simply not fun to play against. We required an AI system that is able to

cope with these changes and not rely on handcrafted solutions that rely on specific

unit properties which would be costly to update and maintain as units continue

to change.

 • Intuitive/Modular Design: Often times when creating a game, the behavior of the

AI system, although intelligent, may not fit with the designer’s views of how the

AI should act. By designing the AI in such a way that its structure is modular and

intuitive, designers are better able to understand the capabilities of the AI system

and thus can more easily make suggestions on how behaviors should be modified.

This leads to a much smoother overall design process than if the AI system was

simply viewed as a magic black box by designers.

30.3 Prismata Gameplay Overview

Before diving into the details of the AI system, we need to understand the characteris-

tics of the game it is playing. Here we will briefly describe the high-level game rules for

Prismata.

Prismata is a two-player online strategy game, best described as a hybrid between a

real-time strategy (RTS) game and a collectible card game. Players take turns building

resources, using unit abilities, purchasing new units, and attempting to destroy the units

of their opponents. Unlike many strategy/card games, there is no hidden information in

Prismata—no hands of cards or decks to draw from. Units that players control are glob-

ally visible and players can purchase additional units from a shared pool of available units

36330.4 Hierarchical Portfolio Search

which changes randomly at the start of each game (similar to the board game Dominion

(Vaccarino 2009)). The rules of Prismata are also deterministic, meaning that there is no

possible way for the AI to cheat by magically drawing the right card from the top of the

deck, or by getting some good “luck” when most needed. In game theoretic terms, this

makes Prismata a two-player, perfect information, zero-sum, alternating move game. This

means that the AI does not need any move history in order to pick its next move—it can

act strictly on the visible game state at any time.

Due to these properties, the Prismata AI was designed as a module that is separate

from the rest of the game engine, accepts a current game state as input, and as output pro-

duces an ordered sequence of actions for the current player to perform. This architecture

also gives the developer an option of where to run the AI calculations—a game state could

be sent over a network to be calculated (if the game is being run on a platform with limited

computational power), or run locally on a user’s hardware (as they are in Prismata).

30.4 Hierarchical Portfolio Search

The algorithm that was used to form the basis of the Prismata AI is hierarchical portfolio

search (Churchill and Buro 2015). HPS was designed to make decisions in games with

extremely large state and action spaces, such as strategy games. It is an extension of the

portfolio greedy search algorithm, which is a hill climbing algorithm that has been used

to guide combat in RTS games (Churchill and Buro 2013). The main idea behind these

“portfolio-based” search systems is to reduce the branching factor of the game tree by

using a portfolio of algorithms to generate a much smaller, yet hopefully intelligent set

of actions. These algorithms can range from simple hand-coded heuristics to complex

search algorithms. This method is useful in games where a player’s decision space can be

decomposed into many individual actions. For example, in an RTS game in which a player

controls an army of units, or in a card game where a player can play a sequence of cards.

These decompositions are typically done tactically, so that each grouping in the portfolio

contains similar actions, such as attacking, defending, and so on.

HPS is a bottom-up, two-level hierarchical search system which was originally inspired

by historical military command structures. The bottom layer consists of the portfolio of

algorithms described above, which generate multiple suggestions for each tactical area of

the game. At the top layer, all possible combinations of those actions sequences generated

by the portfolio are then iterated over by a high-level game tree search technique (such as

alpha–beta or MCTS) which makes the final decision on which action sequence to per-

form. While this method will not produce the truly optimal move on a given turn it does

quite well (as we will show in Section 30.5). Furthermore, the original problem may have

contained so many action possibilities that deciding among them was intractable.

30.4.1 Components of HPS

HPS consists of several individual components that are used to form the search system.

We define these components as follows:

 • State s containing all relevant game information

 • Move m = <a1, a2, …, ak>, a sequence of Actions ai

 • Player function p [m = p(s)]

364 30. Hierarchical Portfolio Search in Prismata

 • Takes as input a State s

 • Performs the Move decision logic

 • Returns Move m generated by p at state s

 • Game function g [s’ = g(s, p1, p2)]

 • Takes as input state s and Player functions p1, p2

 • Performs game rules/logic

 • Implements Moves generated by p1, p2 until game is over

 • Returns resulting game State s’

These components are the same as those needed for most AI systems which work on

abstract games.

In order to fully implement HPS, we will need to define two more key components. The

first is a Partial Player function. This function is similar to a Player function, but instead

of computing a complete turn Move for a player in the game, it computes a partial move

associated with a tactical decomposition. For example, in a RTS game if a player controls

multiple types of units, a Partial Player may compute moves for only a specific type of unit,

or for units on a specific part of the map.

 • Partial Player function pp [m = pp(s)]

 • Takes as input State s

 • Performs decision logic for a subset of the turn

 • Returns partial Move m to perform at state S

The final component of HPS is the portfolio itself, which is simply a collection of Partial

Player functions:

 • Portfolio P = <pp1, pp2, …, ppn>

The internal structure of the portfolio will depend on the type of game being played, how-

ever it is most useful if the Partial Players are grouped by tactical category or game phase.

Iterating over all moves produced by combinations of Partial Players in the portfolio is done

by the GenerateChildren procedure in Listing 30.1. Once we have created a portfolio,

we can then apply any high-level game tree search algorithm to search over all legal move

combinations produced by the portfolio.

30.4.2 Portfolio Creation

An important factor in the success of HPS is the creation of the Portfolio itself, since only

actions generated by partial players within the portfolio will be considered by the top-level

search. Two factors are important when designing the portfolio: The tactical decomposi-

tion used to partition the portfolio and the variety of Partial Players contained within

each partition.

In Table 30.1, we can see an example tactical decomposition for the portfolio of partial

players in Prismata, which is broken down by game phase. The Defense is the “blocking”

phase of the game, and contains partial players that decide in which order to assign block-

ing units. The ability phase involves players using the abilities of units to do things such

as gather resources or attack the opponent. The buy phase involves purchasing additional

36530.4 Hierarchical Portfolio Search

units to grow the player’s army. Finally, the breach phase involves assigning damage to

enemy units in order to kill them. Each of these partial players only compute actions which

are legal in that phase of the game—so in order to generate a sequence of actions which

comprises the entire turn we must concatenate actions produced by one of the Partial

Players from each phase.

This “game phase” decomposition works well for games that can be broken down tem-

porally, however not all games have such abstract notions. Depending on the game you

are writing AI for, your decomposition may be different. For example, in a RTS game set-

ting categories may involve different types of units, or a geometric decomposition of units

placed in different locations of the map. In strategy card games these categories could

be separated by different mechanics such as card drawing, card vs. card combat, or spell

casting. It is vital that you include a wide variety of tactical Partial Players so that the high-

level search algorithm is able to search a wide strategy space, hopefully finding an overall

strong move for the turn.

30.4.3 State Evaluation

Even with the aid of an action space reducing method such as HPS, games that go on for

many turns produce very large game trees which we cannot hope to search to completion.

We therefore must employ a heuristic evaluation on the game states at leaf nodes in the

search. Evaluation functions vary dramatically from game to game, and usually depend

on some domain-specific knowledge. For example, early heuristic evaluations for Chess

involved assigning points to pieces, such as 1 point for a Pawn and 9 points for a Queen,

with a simple player sum difference used as the state evaluation.

These formula-based evaluations have had some success, but they are outperformed by a

method known as a symmetric game playout (Churchill and Buro 2015). The concept behind

a symmetric game playout is to assign a simple deterministic rule-based policy to both play-

ers in the game, and then play the game out to the end using that policy. Even if the policy is

not optimal, the idea is that if both players are following the same policy then the winner of

the game is likely to have had an advantage at the original evaluated state. The Game func-

tion is used to perform this playout for evaluation in HPS. We can see a full example of the

HPS system using NegaMax as the top-level search in Listing 30.1.

30.4.4 HPS Algorithm

Now that we have discussed all of the components of HPS, we can see a sample imple-

mentation of HPS in Listing 30.1, which uses the NegaMax algorithm as the high-level

search algorithm. NegaMax is used here for brevity, but could be replaced by any high-

level search algorithm or learning technique (such as MCTS, alpha–beta, or evolutionary

Table 30.1 A Sample Portfolio Used in Prismata

Defense Ability Buy Breach

Min cost loss Attack all Buy attack Breach cost

Save attackers Leave block Buy defense Breach attack

Do not attack Buy econ

Note: Organized by tactical game phase.

366 30. Hierarchical Portfolio Search in Prismata

algorithms). The core idea of HPS is not in the specific high-level search algorithm that

you use choose, but rather in limiting the large action space that is passed in to the search

by first generating a reasonable-sized set of candidate moves to consider.

30.4.5 Creating Multiple Difficulty Settings

In most games, it is desirable to have multiple difficulty settings for the AI that players can

choose from so that they can learn the game rules and face an opponent of appropriate

skill. One of the strengths of HPS is the ease with which different difficulty settings can be

created simply by modifying the Partial Players contained in the portfolio, or by modify-

ing the parameters of the high-level search. There are many difficulty settings in Prismata,

which were all created in this way, they are as follows:

 • Master Bot: Uses a Portfolio of 12 Partial Players and does a 3000 ms MCTS search

within HPS, chosen as a balance between search strength and player wait time

 • Expert Bot: Uses the same Portfolio as Master Bot, with a 2-ply Alpha–Beta search,

typical execution times are under 100 ms.

 • Medium Bot: Picks a random move from Master Bot’s Portfolio

 • Easy Bot: Same as Medium, but with weaker defensive purchasing

 • Pacifist Bot: Same as Medium, but never attacks

 • Random Bot: All actions taken are randomly

An experiment was performed, which played 10,000 games between each difficulty set-

ting pairing, the results of which can be seen in Table 30.2. The final column shows

Listing 30.1. HPS using NegaMax.

procedure HPS(State s, Portfolio p)
return NegaMax(s, p, maxDepth)

procedure GenerateChildren(State s, Portfolio p)
m[] = empty set
for all move phases f in s

m[f] = empty set
for PartialPlayers pp in p[f]

m[f].add(pp(s))
moves[] = crossProduct(m[f]: move phase f)
return ApplyMovesToState(moves, s)

procedure NegaMax(State s, Portfolio p, Depth d)
if (d == 0) or s.isTerminal()

Player e = playout player for evaluation
return Game(s, e, e).eval()

children[] = GenerateChildren(s, p)
bestVal = -infty
for all c in children

val = -NegaMax(c, p, d-1)
bestVal = max(bestVal, val)

 return bestVal

36730.5 Evaluation of HPS Playing Strength

the average scores of each difficulty setting (100 meaning unbeatable, 0 meaning never

wins), from which we can see that the difficulty settings perform in line with their intui-

tive descriptions. The modular design of HPS allowed us to make slight changes to the

portfolio and search settings to create multiple difficulty settings, which satisfied our

design goals of creating both a new player tutorial for beginners, and strong opponents

for expert players.

30.5 Evaluation of HPS Playing Strength

To test the strength of the AI system in Prismata in an unbiased fashion, an experiment

was run in which the AI secretly played against human players on the ranked Prismata

ladder. Prismata’s main competitive form of play is the “Ranked” play mode, where play-

ers queue for games and are auto-matched with players of similar ranking. Player skill is

determined via a ranking system that starts at Tier 1 and progresses by winning games

up until Tier 10. Once players reach Tier 10, they then ranked using a numerical system

similar to those used in chess.

To test against humans, a custom build of the client was created in which the AI queued

for a ranked play match, played the game against whichever human it matched against, and

then requeued once the match was finished. The AI system was given randomized clicking

timers in order to minimize the chances that the human players would suspect that they

were playing against an AI. The AI used was the hardest difficulty setting, “Master Bot,”

which used MCTS as its top-level search with a think time of 3 seconds. After 48 hours

and just over 200 games played, the AI had achieved a rank of Tier 6 with 48% progression

toward Tier 7, and stayed at that rank for several hours. This placed the AI’s skill level within

the top 25% of human players on the Prismata rank ladder, the distribution of which can

be seen in Figure 30.1.

Since this experiment was performed, many improvements have been made to the

AI, such as improved tactical decision-making in the blocking and breaching phase, an

improved playout player, and fixing some obvious blunders that the bot made in its attack

phase. Master Bot is estimated to now be at Tier 8 skill level, which is stronger than all but

the top 10%–15% of human players.

Table 30.2 Results of 10,000 Rounds of Round Robin between Each Difficulty Setting

UCT100 AB100 Expert Medium Easy Random AVG

UCT100 — 52.1 67.3 96.4 99.7 99.9 83.1

AB100 47.9 — 68.0 94.7 99.5 99.9 82.0

Expert 32.7 32.0 — 90.7 98.9 99.8 70.8

Medium 3.6 5.3 9.3 — 85.9 97.4 40.3

Easy 0.3 0.5 1.1 14.1 — 86.3 20.5

Random 0.1 0.1 0.2 2.6 13.7 — 3.3

Note: Score = win%+ (draw%/2) for row difficulty versus column difficulty. UCT100 and AB100 refer to UCT

(MCTS with UCB-1 action selection) and Alpha–Beta each with 100 ms think times. Pacifist Bot was omit-

ted, since it is designed not to attack and therefore cannot win.

368 30. Hierarchical Portfolio Search in Prismata

30.6 Conclusion

In this chapter, we have introduced HPS, a new algorithm which was designed to make

strong decisions in games with large state and action spaces. HPS has been in use for

over two years as the basis of the Prismata AI system, with nearly a million games played

versus human opponents. Because of its modular design, search-based decision-making,

and intuitive architecture, it has been robust to over 20 game balance patches, producing

intelligent actions even with major changes to many of units in Prismata.

The search-based nature of the AI has yielded a system which has high replay value, in

which the bot will have different styles of play depending on the given state of the game.

Creating different difficulty settings using HPS was merely a matter of changing the algo-

rithms in the underlying portfolio, which resulted in a total of seven different difficulties—

from pacifist punching bag to the clever Master Bot. These difficulty settings have proved

to be a valuable tool for teaching players the rules of the game as they progress to new skill

levels. The hardest difficulty of the Prismata AI, Master Bot, was played in secret on the

human ranked ladder and achieved a skill within the top 25% of human players, showing

that HPS is capable of producing strong moves in a real-world competitive video game.

References

Churchill, D., Buro, M. 2013. Portfolio greedy search and simulation for large-scale

 combat in starcraft. CIG 2013.

Churchill, D., Buro, M. 2015. Hierarchical portfolio search: Prismata’s robust AI architec-

ture for games with large search spaces. AIIDE 2015.

Vaccarino, D. X. 2009. Dominion. Rio Grande Games.

Top 25%

Ladder ranking tier

Prismata human ladder tier distribution

P
er

ce
n

ta
g

e
p

la
ye

rs
 i

n
 r

an
k

1
0

35

30

25

20

15

5

10

2 3 4 5 6 7 8 9 10

Figure 30.1

Distribution of player rankings in “Ranked” play mode in Prismata. After 48 hours of testing,
Master Bot had achieved a rank of Tier 6 with 48% progress toward Rank 7, which placed its
skill level in the top 25% of human players.

