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Abstract—In real time strategy games, optimizing the order
in which units and other items are built is essential to high
level play. A sequence of such build actions is referred to as a
build order. In StarCraft, pro players have developed many build
orders for specific situations, but the task of creating an optimized
build order given an arbitrary goal remains open. We approach
this problem using the depth first search branch and bound
algorithm, which uses an upper bound to decrease search time.
Ordering the search in different ways has the potential to lower
this bound earlier, speeding up the algorithm. We devised 17
such ordering methods and compared their performance across
10 build order goals. We show that this technique, depending on
the chosen ordering, significantly reduces the search time. This
provides an advantage in a real time game setting.

Index Terms—Video Games, Heuristic Search, Artificial Intel-
ligence, Planning.

I. INTRODUCTION

A. StarCraft

StarCraft is a real time strategy game developed by Bliz-
zard Entertainment. Players choose from three factions: Zerg,
Terrans, and Protoss, each with their own distinct units and
mechanics. Each player starts with a handful of units with
which they must collect resources and build up an army to
crush their opponents. When devising a strategy, a player
must consider the strengths and weaknesses of their faction,
the factions chosen by their opponents, and the layout of the
map, among other factors. As a result, developing an effective
strategy to win a game of StarCraft is highly challenging.

StarCraft’s strategic depth attracted the attention of arti-
ficial intelligence researchers, who identified the game as
a suitably complex environment to develop and test new
models. Research into StarCraft revolves around designing
and improving upon bots that can play the game against each
other or humans. Multiple tournaments have been organized
for such bots, such as the Artificial Intelligence and Interactive
Digital Entertainment (AIIDE) StarCraft AI Competition or
IEEE’s Computational Intelligence and Games (CIG) StarCraft
RTS AI Competition [1]. For a detailed review of these
competitions and the history of early research in this field
we refer the reader to [1].
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B. Build Order Optimization

Artificial intelligence systems made for StarCraft must
account for numerous aspects of the game, from unit micro-
management to army composition. In this research we focus
on one such aspect: build order optimization.

In StarCraft, each unit and building has requirements that
must be met before they can be made, usually the construction
of a certain building. These requirements form an implicit
tech tree that the player must progress through to unlock
high level units. The player must also manage the number
of worker units necessary to build buildings and collect the
game’s two resources: gas and minerals. Each race also has
unique mechanics for construction, such as the Zerg needing
to consume a worker unit for each building they make. Fur-
thermore, StarCraft being a real time game, multiple actions
can be taken at once and each takes time to complete. When
combined, these factors make the task of planning construction
quite difficult. That is where build order optimization takes the
stage.

A build order is a series of actions related to construction
that a player takes in sequence. The types of actions contained
within a build order (build actions) are those that cost resources
and time to produce: either a unit, building, technology, or
upgrade. Upon completion of a build order, the player will
have achieved some goal in terms of army composition or
base construction.

Our research focuses on a specific form of build order: a
series of actions that result in the completion of a given goal.
The goal is a set of build actions that must be completed in a
given state. For example, a goal could be “Five Hydralisks”,
which would be fulfilled by a state where the player has built
five Hydralisk units.

In this context an optimal build order is one that produces
the goal in the shortest makespan, or total time. Quickly
finding optimal build orders gives a strategic edge in real
time strategy games like StarCraft. Thus, it is imperative to
minimize the computational time required to find an optimal
build order. The build order optimization we present here is
the process of doing just that: devising efficient methods to
find optimal build orders given a user-defined goal.
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Fig. 1: A tree of game states that represents some initial Zerg
build orders.

C. Heuristic Search

The primary method we use for build order optimization is
heuristic search. Heuristic search is the process of navigating
the possible states of a system, called the search space, through
use of heuristics. The heuristics can guide the search and limit
the size of the search space that must be considered. Search
can be represented as graph traversal, and uses algorithms such
as depth-first search, best-first search, and A* search.

Applying search to video games implies taking each possi-
ble state of the game as a vertex, and the actions that transition
the game between these states as edges. In the context of
StarCraft build orders, the edges between states are build
actions and the states record what the player has built, their
resources, and the current time. It is thus possible to construct
a tree where the path from one state to another is the build
order required to transition between them. These infinite trees
are the space in which the search for the optimal build order
is conducted.

Making this infinite space efficiently searchable is the role
of the heuristics. The goal of our research is to develop a
heuristic method to cut down the size of this search space as
much as possible.

D. Build Order Search System

This paper follows research by Churchill and Buro [2] that
deployed the depth first branch and bound (DFBB) algorithm
to search for optimal build orders. To run this search they
developed the Build Order Search System (BOSS), a simulator
of StarCraft’s build mechanics. StarCraft is a video game that
runs in real time, with many mechanics besides building. It is
not possible or at all desirable to perform a search using the
game itself, so a simulator such as BOSS is necessary.

BOSS neglects all aspects of the game not strictly necessary
for build order simulation. It accounts for only a single player
and ignores irrelevant mechanics like combat. It abstracts away
decisions such as worker management or building placement
such that the only actions the system accepts are build actions.
BOSS also accounts for resource collection and undertaking
multiple actions simultaneously. This makes BOSS easy to
use and much faster than the real game. The computational
efficiency this affords makes search possible.

E. StarData

The other project we use in our research is StarData,
a database of StarCraft replays compiled by researchers at
Facebook [3] (now Meta). StarCraft replays are recordings
of all actions taken within a match. They are produced and
replayed through StarCraft itself. Thousands of these replays
have been uploaded online, forming a database of knowledge
on how StarCraft is played. The problem is that replays record
low level actions such as clicks, not high level actions like
building. This necessitates running the replays in the game
itself to analyse them, and also sometimes results in replays
recorded on one version of the game being unreadable on
others. Processing this data in an efficient manner is nearly
impossible.

To remedy this, Facebook’s researchers collected a set of
65646 replays of real human games and went through the
trouble of running them all. As each one ran, they converted
it into a format more conducive to data analysis. They gave
the resulting dataset the name StarData [3].

StarData is a part of a larger StarCraft project called
TorchCraft, which acts as an interface between the machine
learning library Torch (also PyTorch) and StarCraft [4]. Star-
Data was created using TorchCraft and must be read through
TorchCraft. We had no intention of using TorchCraft in our
research, so we developed a standalone program to extract
information from StarData containing only those parts of
TorchCraft that were strictly necessary to read replays. We
use that extractor in this research to get data on which to base
new heuristics for search.

II. METHODS

We base our algorithm on Churchill and Buro’s depth first
branch and bound approach. DFBB is identical to normal
depth first search, except it applies an upper bound. In this
case the upper bound is the makespan of the best solution
encountered so far in the search. Any potential build orders
whose makespans exceed the upper bound are discarded. This
bounds the otherwise infinite search space, making depth first
search possible.

In depth first search, the order in which adjacent vertices are
visited is usually arbitrary. For depth first branch and bound
however, the order becomes significant. If a DFBB search
encounters a better solution earlier, the upper bound will be
lower, culling more search nodes, and saving more time. As a
result, changing the order in which the algorithm considers
actions has the potential to speed it up by finding better
solutions [5]. For example, a perfect ordering that always
chooses optimally would find the best build order first and
render the search linear time rather than exponential. We
devised 17 ordering methods and compared their performance
in various scenarios to demonstrate the effectiveness of this
technique.

A. Naive Build Order

Before listing the search orderings it is necessary to explain
another method we use: naive build orders. StarCraft’s build



mechanics are completely known, such that it is a trivial task
to find a build order from any state to any valid goal. These
naive build orders are rarely optimal, but they are very useful
in finding the optimal solution. Before starting the search,
determining a naive build order can provide an initial lower
bound that limits the search space. Naive build orders can also
be used for search ordering, as we will show.

Deriving naive build orders for StarCraft involves identi-
fying all the goal’s prerequisites on the tech tree, how many
workers are needed to build everything, and accounting for
other mechanics such as supply. This process runs in linear
time relative to the prerequisites, providing sufficient build
orders in a short time frame.

B. Search Orderings

Search orderings sort the actions that are legal at each step
of the search. The orderings we devised are: ID-Increasing and
Decreasing; F1-4; Naive Preferred ID-Increasing and Naive
Preferred F2; Most amd Least Prerequisites; Greatest and
Least Mineral + Gas Cost; Longest and Shortest Build Time;
Latest and Earliest Completion Time; and Random. These
orderings are all listed in Table L.

ID-Increasing and ID-Decreasing are based off the order in
which the actions are stored in the system. ID-Increasing is
effectively the default ordering, as a depth first search iterating
over actions arbitrarily in the order they are stored will follow
it. ID-Decreasing is the reverse.

The F1, F2, F3, and F4 orderings are based on frequency
data extracted from StarData. Our intention with these order-
ings was to guide the search based off real players’ build
orders. StarData contains full StarCraft replays from which
we were able to extract a wide variety of build orders. We
sorted the actions from these build orders into bins based
on their type and the time at which they took place, in 500
frame intervals. This created a two-dimensional matrix of each
action’s frequency data. A cell in this matrix is represented as
M;; where 4 indicates the type of the action and j indicates
the time interval.

From this dataset we derive four metrics, labeled F1, F2,
F3, and F4. Each of these metrics serves as the basis for its
own ordering scheme.
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F1 is the ratio of a build action’s appearances in a given
interval to the total number of build actions, of all types, taken
during that interval.
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F2 is the ratio of a build action’s appearances in a given

interval to the total number of times that action was taken
across all intervals.
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Both F3 and F4 are attempts to combine the effects of F1 and
F2.

These orderings compute the metric values for each action
based on its type and the game state’s current time, then ranks
them from greatest to least.

The Naive Preferred methods are alterations on ID-
Increasing and F2 that run a naive build order from the current
state to the goal, then move the first action in that build order to
the front of the list. The other actions are then sorted according
to the base ordering. The idea is to first check the most obvious
option, as that is often correct. ID-Increasing was chosen as
a baseline, and F2 was chosen due to it performing well in
early tests.

Besides random, the rest of the orderings are based off the
inherent properties of the actions, each with greatest to least
and least to greatest versions.

The Most Prerequisites and Least Prerequisites orderings
were devised as a way of considering how “High Tech” an
action is. These orderings sort actions based off the sum of
the recursive prerequisites of an action. For example the Zerg
Lair building has as its prerequisite the Spawning Pool, which
has as its prerequisite the Hatchery, which has no prerequisite.
The Lair thus has two total prerequisites and is sorted based
on that.

Greatest Mineral + Gas Cost and Least Mineral + Gas Cost
sort based on the action’s expense (minerals and gas being the
only resources to spend in StarCraft).

Longest Build Time and Shortest Build Time sort by the
time required to finish a build action. However, because BOSS
may need to wait for something else to finish before it can
build a given action, the actual completion times may be
longer than the build time. This is where the Latest Completion
Time and Earliest Completion Time orderings come in, which
account for such delays. These were all designed to minimize /
maximize action duration, which may affect the total duration
of build orders found early in the search.

The last ordering is Random, which shuffles the actions
randomly at each step. This was added as another point of
comparison besides ID-Increasing.

C. The DFBB Algorithm

The depth first branch and bound algorithm we use is
described in Algorithm 1. In addition to search ordering, we
also apply a landmark lower bound heuristic. This calculates
a minimum amount of time it will take to reach the goal from
each state and prunes the state if the total time exceeds the
upper bound. The lower bound is calculated by finding the
length of the longest chain of prerequisites (landmarks) that
must be built in succession before the goal can be reached.
This heuristic helps keep down computation times, especially
for longer build orders.



Algorithm 1 Search Algorithm

1: function DFBB(startState, goal, ordering)

2: bestBuildOrder = NaiveBuildOrder(startState, goal)
3 bestMakespan = bestBuildOrder.makespan()

4: stack = new Stack()

5: stack.push(startState)

6: while stack not empty do

7 state = stack.pop()

8 if state meets goal then

9: makespan = state.finishTime()
10: buildOrder = state.buildOrder()
11: if makespan < bestMakespan then
12: bestMakespan = makespan
13: bestBuildOrder = buildOrder
14: end if
15: else
16: for act in state.actions().sort(ordering).reverse() do
17: next = state.copy()
18: next.doAction(act)
19: lowerBound = next.frame + Landmark(next, goal)
20: if lowerBound < bestMakespan then
21: stack.push(next)
22: end if
23: end for
24: end if

25: end whilereturn bestBuildOrder
26: end function

D. Experiment Design

To test the various orderings, we ran multiple searches for
each one. We chose ten goals for the search, which are as
follows: four marines, one siege tank, one control tower, two
firebats, one medic, four hydralisks, two mutalisks, one high
templar, one carrier, and four zealots. These goals are from all
three factions and were kept simple for the sake of reasonable
computation times.

For each goal we ran DFBB with every search ordering. We
measured the performance of each search by time elapsed, the
number of search nodes expanded, and nodes per second. In
the case of the Random ordering, we ran the search 50 times
and took the average results.

III. RESULTS

We found that search ordering gave significant improve-
ments, though its effectiveness varied based on the ordering
and the goal.

Table I shows the results in terms of time elapsed by
the search. Each value has been divided by the time ID-
Increasing elapsed searching for the same goal. This is to show
improvement over the default and to facilitate comparisons
across goals.

In general, the Naive Preferred F2 ordering and normal
F2 ordering performed the best, coming first in terms of
nodes expanded and time elapsed respectively. Our results
demonstrate the utility of search ordering as a technique
and the relative strengths of different methods in a StarCraft
context.

The best orderings for time elapsed are F2, Random, and
F3. F2 took, on average, 40% of the time ID-Increasing did.

It was at worst 121% of ID-Increasing, for Marines x4, and
at best 3%, for both High Templar x1 and Mutalisk x2. For
Random the average was 43%, the worst was 133% (Hydralisk
x4), and the best was 1% (Mutalisk x2). For F3, the average
was 50%, the worst was 101%, and the best was 10%.

Importantly, the goals that these orderings worked best
on were generally those that required longer build orders to
complete, such as Mutalisk x2. This implies that savings may
become more pronounced with more complex goals.

Measured by nodes expanded, which is the number of
nodes the search visited and didn’t prune, the results are
slightly different. On average, the best orderings in terms of
nodes expanded were Naive Preferred F2, Naive Preferred
ID-Increasing, and F2. Naive Preferred F2 expanded 30%
of the nodes of ID-Increasing on average. It had the worst
performance for the goal of four Hydralisks, at 80%, and the
best performance for the goal of two Mutalisks, at 4%. For
Naive Preferred ID-Increasing the average was 32%, the worst
was 87% (Hydralisk x4), and the best was 6% (Medic x1). For
F2 the average was 43%, the worst 95% (Zealot x4), and the
best 3% (Mutalisk x2).

Here we see the advantage of the Naive Preferred method,
which results in more nodes being pruned from the search than
orderings without it.

The third metric, nodes per second, helps explain the
difference between the time elapsed and nodes expanded
results. Nodes per second is equal to the nodes expanded
divided by time elapsed. In general, the search orderings
ran at similar nodes per second, with two exceptions: Naive
Preferred ID-Increasing and Naive Preferred F2. These two
were significantly slower processing each node, even if they
resulted in less nodes needing to be searched. This ultimately
resulted in them falling behind other metrics in time elapsed.

IV. CONCLUSION AND FUTURE WORK

StarCraft build order optimization is a deceptively difficult
problem. The game’s tech tree, different types of build actions,
and racial mechanics all serve to frustrate any simple approach
to solving it. This very complexity is what makes StarCraft
worth researching: it demands robust solutions to its problems.

In this research we have attempted to provide one such
solution. We demonstrated the effectiveness of search ordering
for StarCraft build order optimization using the Depth First
Branch and Bound algorithm. We tested different orderings,
across ten scenarios, and compared the results. On average the
ordering that performed the best was F2, which sorts build
actions based on how likely an action is to be chosen at a
given time compared to how likely it is to be chosen at any
other time. The Naive-Preferred modification, which moves
the first build action in a naive build order to the front of the
sorted list, also showed significant benefits. F2 performed best
in terms of the real-time duration of the search, while Naive-
Preferred F2 performed best in terms of the nodes expanded
by the search.

The effectiveness of search ordering depends on the sce-
nario. For simple goals, applying different orderings often fails



Time FElapsed / 1ID- | Marine  Siege gontrol Firebat ~ Medic Hydralisk Mutalisk High Carrier  Zealot
Increasin: 4 Tank x1 ower 0 el <4 2 Templar “ ! Average
& x x1 x1

F2 1.21 0.09 0.06 0.09 0.27 0.89 0.03 0.03 0.38 0.96 0.40
Random (50 Samples) 0.85 0.45 0.33 0.28 0.22 1.33 0.01 0.02 0.26 0.54 0.43
F3 0.95 0.31 0.29 0.21 0.31 0.70 0.10 0.10 1.00 1.01 0.50
Naive Preferred F2 2.01 0.21 0.12 0.13 0.09 1.74 0.04 0.06 0.37 0.94 0.57
ID-Decreasing 1.00 0.45 0.33 0.10 0.07 1.98 0.52 0.50 0.35 0.47 0.58
Longest Build Time 0.97 0.48 0.37 0.11 0.07 2.00 0.53 0.50 0.35 0.48 0.59
Naive Preferred ID-Increasing | 1.93 0.21 0.12 0.13 0.09 1.87 0.12 0.20 0.43 0.94 0.61
Greatest Mineral + Gas Cost 1.13 0.48 0.37 0.11 0.07 2.05 0.57 0.55 0.37 0.48 0.62
Least Prerequisites 0.96 0.47 0.35 0.15 0.11 1.99 0.52 0.50 0.45 0.84 0.63
Soonest Completion Time 1.18 0.30 0.27 0.95 1.06 0.97 0.18 0.18 0.36 1.06 0.65
Latest Completion Time 1.33 0.52 0.39 0.12 0.08 2.16 0.53 0.53 0.38 0.53 0.66
Least Mineral + Gas Cost 1.61 0.41 0.39 0.86 0.97 0.95 0.13 0.12 0.40 1.01 0.69
Shortest Build Time 1.11 0.42 0.39 0.86 0.97 0.89 0.18 0.17 1.00 1.00 0.70
Most Prerequisites 1.62 0.99 0.97 0.82 0.96 1.00 0.97 0.95 0.35 0.57 0.92
F4 0.99 1.00 0.98 1.00 1.01 1.01 0.94 0.93 0.98 1.01 0.98
F1 1.35 0.99 0.97 0.95 0.81 1.01 0.95 0.94 0.97 1.01 1.00
ID-Increasing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE I: Time elapsed as a fraction of ID-Increasing’s time
shorter than, close to, and longer than ID-Increasing.

to produce meaningful benefits. For difficult goals however,
the better orderings complete the search in a fraction of the
time. Since difficult scenarios are precisely the ones that need
efficient algorithms to solve, this is very convenient.

Search ordering as a technique, and the F2 ordering in
particular, are thus successful in providing meaningful im-
provements in search time. Even so, the orderings that we have
tested here are only a small sliver of those that are possible.
New orderings can yet be devised to surpass those we have
outlined.

We have also only scratched the surface in terms of using
information from StarData to create build orders. Applying a
machine learning approach may produce better search order-
ings than our method. Furthermore, a fundamental assumption
of our work is that we are looking for optimal build orders. If
that requirement is relaxed, and only high quality build orders
are expected, it may be possible to find them using machine
learning methods wholly different from heuristic search.

A definitive solution to StarCraft build order optimization
remains elusive. Even so, the algorithm we have presented here
represents a step towards achieving that goal and adds to the
arsenal of techniques available to video game programmers
and artificial intelligence researchers.
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