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Abstract—Procedural Content Generation (PCG) is not only
the key feature of rogue-like games, but it is also used in a
vast set of applications, including animation, film, and of course
many diverse genres of games. By taking the building blocks of
games such as ground, enemies, and the player, PCG can build
games, maps, and levels. This paper focuses on an explorative
Genetic Algorithm (GA) that is used to generate Mario auto-
levels in a custom 2-D game engine. The generated auto-levels
are compared through randomization, parameter tweaks and
level space restrictions. The results lead to an understanding
that each level; either restricted or unrestricted, has a median
of required blocks along with the necessary generation time to
produce plausible levels. These results are tweaked using a “’least-
blocks” fitness function in the GA in hopes of cleaning up excess
blocks, which provides some positive and negative insight into
cluttered versus scarce level generation.

Index Terms—genetic algorithm, procedural content genera-
tion, video games, level generation

I. INTRODUCTION

The demand for Artificial Intelligence (AI) has reverberated
within all industries and continues to increase. We see various
types of Al systems put in place to learn and generate data used
in crucial decisions, more so in the game industry. Specifically,
character movement/behaviour, music, art, and level design
utilize Al to enhance or create content. Level design is crucial
for a video game’s success as it contains all the mechanics
and interactions for the players.

A. Procedural Content Generation

Map or content generation is extremely important in the
gaming industry and surrounding fields. There are even com-
petitions to create Procedural Content Generation (PCG) Als
and research into general content generation for levels [I1].
The undertaking of creating a AAA (A grading given to high-
budget, conspicuous video game titles, usually created by
larger game studios.) game takes a considerable amount of
time. Al is a promising way of speeding up that development
time and also increasing efficiency overall [2].

In this paper, we will generate content, specifically auto-
play levels for a generic 2D platformer video game engine.
An auto-play level is an environment where the player does
not move the character at all, but with the help of specific
game physics and carefully placed level geometry, propels the
character through the level usually in some interesting fashion.
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Video of our automatic level gameplay can be seen by
clicking either image in Figure [T} Details of our experiments
and 2D game engine will be explained in Section

B. Algorithmic Approaches

When creating game levels, it has been found that designers
find a lot of value in utilizing Al as a tool [3]. An Al could
be programmed to conform to a set of rules or constraints
to produce similar levels as a developer would require, or
the Al could be allowed to explore, to create never imagined
levels or games. A Genetic Algorithm (GA) is an example
of an AI system which replicates the process of natural
selection to solve the problem of optimizing a problem’s
solution space. By creating the correct fitness functions for our
Genetic Algorithm, we can combine GAs and PCG, yielding a
system which automatically generates complex and interesting
content.

In this paper, we will first give a brief background of
previous work using GAs for PCG, followed by a description
of our 2D game engine and its game mechanics. We will then
give the details of our methodology, followed by a description
of our experiments and their results. Finally, we conclude with
some ideas for future research in the area.

II. BACKGROUND

Several researchers have used GAs for PCG, specifically
with a goal of level generation in mind, however, it is typically
for a broad set of game levels where the end goal is for
a human to play [4]-[6]]. It has also been identified that
performance and processing complexity are always the most
common issues we face in this area [7]], [8]]. In this section,
we will explore some related work to better understand other
researchers’ objectives and the issues they faced.

A. Algorithms

All through this field and surrounding area, many algorithms
are being used in an attempt to generate levels, games, and
even player-Al interaction. The genetic algorithm is a popular
choice for generating levels, but researchers have taken many
different approaches with their restrictions and classifications.

! Auto-Play Level Video 1: https:/youtu.be/tVn_qHCmImk
2 Auto-Play Level Video 2: https:/youtu.be/-RcKtYsHwVA
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Fig. 1. Example GA-generated auto-play levels in our custom 2D game engine. On the left is a relatively cluttered level, while on the right is a more sparse
generation. Different levels of sparsity can be adjusted with the GA fitness parameters. In these automatic levels, the player (shown as the MegaMan sprite in
the middle) is automatically propelled forward by conveyor blocks, slides on ice blocks, and jumps when it hits a bounce (music note) block. Click on either
image to see a YouTube video of the automatic level play in action, demonstrating each of the various block physics.

A very common genetic algorithm type seen throughout the
related area of experiments is the Feasible-Infeasible Two-
Population (FI-2Pop) [9]. This GA is the implementation of
two types of populations. One keeps track of the worst evalu-
ated individuals (infeasible) and the other, the best individuals
(feasible). Grammatical Evolution (GE) is another approach
used by some researchers in this area [10], [11]. A grammar
is a way to programmatically link a set of rules or instructions
to a context-free medium such as an integer or integer string.
This idea allows very complex levels to be simplified enough
to viably be used in search-based algorithms without having
a very hefty processing time.

B. Generating Content

In this field, PCG has been explored with a variety of
different approaches. An interesting and popular idea with
PCG is the ability to generate content based on difficulty [8],
[14], [13]. The question of what defines difficulty in games
was explored in these experiments and to generate content
around it, had to be simplified. Usually, the difficulty would
be determined by ideas such as: how many floor tiles there are,
the number of obstacles, or enemies. A formula would have
to be derived from such ideas and then used as an evaluation
for the produced content.

A similar topic to PCG based on difficulty was that of
rhythm. Rhythm is the idea of how much interactivity a player
has with the game over a specific period. Researchers use this
idea to generate content based on a rhythm set or group [5],
[1O], [16]. A rhythm group is a set of actions the player must
complete to beat the level. A typical rhythm would be fewer
interactions at the beginning, and progressively ramping up as
the level continues, usually dipping down throughout the level.

In our literature survey, we have yet to find any research
pertaining to the topic of generating auto-play levels, which
comes with its own set of constraints, such as requiring specific
configurations of the environment that automatically propel the
player forward.

III. CusTOoM 2D GAME ENGINE

Our experimental environment is a custom 2-D game engine
written entirely in C++ and built from scratch, which contains
standard 2D platformer physics such as gravity, walking on
platforms, and various tiles that interact with the player in in-
teresting ways. The architecture used is an Entity-Component-
System (ECS) design, with a modular and efficient design
which allows for the easy creation of new levels based on a
simple input integer format. The rendering system for the game
uses the Simple and Fast Multimedia Library (SFML) library,
which is a very fast and efficient rendering library built on top
of OpenGL. This combination of a custom game engine and
lightweight rendering library yields a very fast custom game
engine capable of simulating thousands of game frames per
second, a necessary speed feature when using game simulation
as a measure of fitness for a GA.

Sample screenshots from the game engine can be seen
in Figure [TI The tile entities (blocks) used in generating
levels are one of several types (explained later) and given
a fixed size (64x64 pixels) and texture. Each block’s texture
representation is rendered on a grid, constrained to the given
size parameters and loaded within a single playable scene.
While our game engine is capable of implementing many
different game mechanics from many genres of games, for
this paper we will limit its behaviour to that of a typical 2D
platforming game.

The main entities inside this game scene are called blocks.
Blocks are simple 64x64 pixels entities which interact with
the player when the player collides with them via movement.
These blocks and the only geometry used to build levels in
this iteration of our game engine. There are five main types of
blocks used in the creation of a level: Bricks, Conveyors, Ice,
Bounce, and None. When the player collides with the sides or
bottom of any block, it will simply fall downward, however,
each block has a unique game mechanic when the player lands
on it from the top. Bricks have a high amount of friction and
are immovable and impassable, the player will typically come
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to a stop when they land on top of them. Ice blocks have very
little friction and the player will slide along them until they
reach the end of the block. Conveyors impart a large amount
of speed to the player horizontally to the right, providing the
main mode of horizontal travel. Bounce blocks will bounce
the player in the opposite direction of the collision, resulting
in a large vertical speed if fallen on from above, similar to a
trampoline. Finally, wherever there is blank space in a map,
this is denoted by a None block and is completely passable
and invisible. At all times, the player is affected by gravity
and is pulled downward toward the bottom of the screen.

A. Game Physics Simulation

Our custom game engine is capable of running in two main
modes, render mode and headless mode. In the render mode,
we can observe the game engine simulate the physics of the
game world and the player interacting with the player in real-
time at any fixed rendering frame rate. While in headless
mode, the rendering of the world is disabled and the game
physics simulator can run as fast as it is capable, typically
in the thousands of simulation frames per second, depending
on the number of blocks in the level. This fast simulation
speed allows us to feasibly use the game engine as a fitness
evaluation function for our GA, which will be described in the
next section.

IV. METHODOLOGY: GENETIC ALGORITHM

Genetic Algorithms are a type of evolutionary algorithm, a
class of algorithms that attempt to solve optimization problems
by simulating the natural process of evolution. Starting with
an initially random population of candidate solutions (in this
case, our levels to be generated), a GA will mimic the process
of evolution by assigning fitness values to each individual
(level), selecting high-fitness individuals for reproduction to
create new offspring levels, and applying random mutations
in an attempt to introduce desirable level traits. Typically this
process results in new populations, which over time contain
higher and higher fitness individuals, leading to better and
better candidate solutions. In this paper, our auto-play level
fitness function will evaluate how far the player has travelled
to the right within a given level. GAs contain many other
parameters such as a genetic representation of individuals,
population size, reproduction methods, and mutation rates.
Each of these will be discussed in the following sections.

A. Individual Level Representation

In our game engine a single screen size of a level is
20 blocks wide and 10 blocks high, yielding a grid of 200
possible places per screen to place blocks to form a level.
With 5 possible block types to choose from, this yields
5200 or approximately 10'3% possible permutations of blocks
per screen, which is far too many to exhaustively search.
Thankfully this is the exact type of optimization problem that
GAs are traditionally successful in trying to solve.

Our game engine stores each level as a 2-D array of integer
values, with each of the previously described block placements

occupying an integer from 0-4 in that array describing which
of the 5 types of block to be placed in that location. Using this
simple representation, we can apply a trivial transformation
to obtain a 1-D array of integers which is to be used as
the genotype in our genetic algorithm representation. The
transformation from 1-D genotype to 2-D level representation
(phenotype) for fitness evaluation is extremely efficient and
allows for very quick population evolution in our game engine
and GA.

B. Block Placement Parameters

Even though GAs are well suited for this type of problem,
in our experiments we often found that they created very
dense level geometries with many more blocks than would
be typically seen in a human-made game level. This also
resulted in rather dull-looking gameplay, typically with the
GA just inserting several conveyor blocks that would push
the player along in a single horizontal row. To encourage a
sparser level design, we introduced numbered parameters that
allow for the control of how many blocks appear in our final
generated levels. This numbering scheme takes the form A-
B, where A is the number of forced None blocks (blanks) in
each column, and B is the number of forced non-None blocks
in each column. So for example, with each of our columns
containing 10 blocks, 9-1 would indicate that there must be 9
None blocks in each column, and exactly 1 non-None block
in each column, creating a very sparse level representation
with one block in each column. In this case, the GA would
essentially just be deciding where in each column this single
block would be located, and which type it would be. We can
see an example of a 9-1 level on the right-hand side of Figure
0-10 would be a level which is full of non-None blocks.
0-0 on the other hand would indicate no restrictions for each
column in the level, allowing the GA to place each type of
block.

A final parameter on block placement is an extra number
introduced at the end of this numbering scheme, giving us A-
B-C, where C is the extra chance that a mutation in the GA
will produce a blank instead of a visible block type. Since
we have 5 types of blocks, there is only a 20% chance that
a blank will be generated at random. We, therefore, introduce
this parameter as a way of allowing the GA to produce more
or less sparse levels without specifically indicating how many
blocks should be in each column. We can see an example of
a level produced by 0-0-0.7 on the left-hand side of Figure [I]
which has no forced blocks, but a blank rate of 70%. This C
parameter can also supersede the A-B restriction, for example,
a 9-1-0.5 column would essentially have a 50% chance of
being a blank column since the one block contained within
would have a 50% chance of being removed by each mutation.
We hypothesize that by using parameters which force a more
sparse level geometry, we will facilitate higher fitnesses over
time by making room for the player to move more freely.
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Fig. 2. Experimental results for various level restriction parameters, with GA generations increasing along the x-axis, and population max individual fitness
on the y-axis. Shown on the left is for Right Movement Fitness with the Total Movement tie-breaker, and on the right is the Least Blocks fitness tie-breaker.

C. Fitness Evaluation

Fitness functions and tie-breakers are how the GA evaluates
each generated individual and selects them for reproduction,
making it arguably the most important part of any GA. The
main fitness functions guide the algorithm to produce levels
with a desired quality, which in our case focuses on moving the
player automatically to the right using the game’s incorporated
blocks and physics. The parameters for each experiment
allowed for adjustments of the allotted physical game space,
memory, time, and randomness in each generation. The fitness
function for this genetic algorithm is simply how far the player
makes it to the right, measured in blocks, meaning that a fitness
of 200 means that the player was moved 200 columns to the
right, or approximately 10 screens of total movement. If two
individuals are tied in movement in the right direction, the tie-
breaker is total movement including moving left, up, down,
and right. So overall, the further right the player makes it, the
more viable the level is. In another experiment, we introduce
a different tie-breaker: “least-blocks”, to help rid the level of
clutter and more unnecessary or cluttered blocks.

V. EXPERIMENTS AND RESULTS

The experiments we conducted aim to create auto-play
levels that are automatically completed by the level’s blocks
moving the player through the level as far as possible. Each
of the parameters for the computing of the GA are kept the
same for each computation such as generations, population,
mutation rate, etc. Each experiment then tests different settings
for the level restriction parameters and fitness functions, which
can be seen in the legend in Figure 2] We spent several days
experimenting with various parameters for the GA and finally
settled on a good balance between computation time and the
quality of results. Each of our experiments ran for 1000 gen-
erations with a population of 300 individual levels. Roulette
wheel selection was used as the parent selection mechanism

with a single midpoint crossover for recombination, with a
mutation rate of 70%.

We can see from the results in Figure 2] that there is a clear
early distinction in the max fitness over time curves between 9-
1 and 0-0 levels. The 9-1 levels quickly ascend in fitness values
and finish with the highest overall fitness, whereas in the same
amount of time the 0-0 levels are slow to improve, if at all. Our
intuition for this significant distinction is twofold: first, forcing
sparser levels allows for more free space for the player to be
moved more freely by the blocks, and second, having fewer
blocks allows the GA to more quickly increase the fitness over
time since there is less geometry to optimize. We noticed that
in the cases where 0-0 levels achieved a high fitness score,
the produced levels were typically quite flat, with the player
simply sliding along the top row with several conveyor belts
and ice blocks with very little vertical movement, leaving the
underlying geometry completely *wasted’ from an aesthetic
point of view (not touched by the player). This problem of
wasted’ blocks was partially solved by introducing the Least
Blocks fitness tie-breaker, but still contained more wasted
blocks overall than the 9-1 forced sparse geometries.

Unexpected results are sometimes undesirable and hopefully
avoided when testing a hypothesis. However, they can be
very helpful and even crucial in catching misunderstandings
or the unpredictable. For our experiments, we ran another
category using the "least-blocks” tie-breaker. The tie-breaker
got rid of much of the excess blocks throughout all of the
levels and appears to help the majority of the levels reach a
higher fitness value much faster. With this tie-breaker, most
9-1 levels finished at a lower fitness value overall and had
a much slower start than our previous experiments. One of
the major inconsistencies that we can see is our outlier from
before ”0-0-0” is now much slower in the refinement process
and it doesn’t even finish anywhere near the other 0-0’s. The
other 0-0 levels are improving rapidly and finish as high as
the 9-1 levels. The rationale behind these negative results is



for the 9-1 levels, are now too scarce and unable to make
sufficient mutations to ramp up their fitness values. The “0-
0-0” level should be helped, however, the “least-blocks” tie-
breaker creates enough room for the player to be moved but
still gets stuck in the clutter of blocks. An observation we
can draw from these results is that there should be some base
number of blocks which is required for each screen in order
for the fitness function to improve at a decent rate. If there
are too many blocks then the player gets stuck too often, but
too many blank columns means that the player cannot traverse
the level. For our particular block physics, it appears the 9-1
levels with an extra blank value between 0 and 0.3 perform
the best with or without the least-blocks” tie-breaker.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that Genetic Algorithms can
be an effective tool for generating levels for automatic play.
We have also shown that by using block placement restriction
parameters, we can force the levels to be more or less sparse,
which can help the GA to produce better fitness individuals
more quickly. If a game level becomes too saturated and
cluttered with unnecessary objects, or on the other extreme
too scarce and bland, then overall fitness can suffer. Finding
the right number of entities in each section of the level is
not only crucial for the GA but the level design and game
overall. A potential area for further research in this field would
include experimenting with the effects of different crossover
recombination methods that take level geometry into account.
The simple single-point crossover used in our experiments
could have probably been improved by instead performing
crossover on various rows or columns of the level geometry. A
similar approach may be to recombine levels with the player’s
path in mind, such as where their paths collide or come close
to overlapping, allowing for overall more fluid movement in
levels to be generated more efficiently.
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