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Abstract— Non-deterministic imperfect information games
pose challenges for Artificial Intelligence (AI) design, as com-
pared to AI for perfect information games. Monte Carlo Tree
Search (MCTS), an AI technique that uses random sampling
of game playouts to build a search tree rather than domain-
specific knowledge about how to play a given game, has been
used successfully in some perfect information games. MCTS has
also been implemented for imperfect information board and
card games, using techniques including sampling over many
determinizations of a starting game state, and considering which
information set each player belongs to. In this paper, we first
describe the imperfect information card game Cribbage and
the MCTS algorithm. We then describe our implementation of
Cribbage for two players and several MCTS and non-MCTS-
based AI players. We compare their performance and find that
Single-Observer Information Set MCTS performs well in this
domain.

I. INTRODUCTION

Games with imperfect information, including many card,
board, and video games, present interesting challenges for
game AI. The card game Cribbage, a popular game for 2-4
players, is such a game. Some properties of Cribbage, shared
by other card games such as Poker, are:
• Non-Determinism: Cribbage is a non-deterministic

game, meaning that there is randomness in the game.
Cards are dealt randomly to each player at the beginning
of each hand and a card is drawn from the deck partway
through each hand.

• Imperfect Information: Cribbage is an imperfect in-
formation game, which means that players do not have
knowledge of the complete game state. Each player holds
a hand of cards which are hidden from the other player
until they are played. Cards yet to be dealt from the deck
are also hidden from each player.

Several techniques for handling imperfect information and
stochastic game elements in MCTS have been used for board
and card games such as Skat, Dou Di Zhu, Settlers of
Catan, and Phantom Go [1], [2], [3]. Cribbage was chosen to
implement MCTS for in this research because it is relatively
easy to implement, but designing a hand-crafted AI to play
Cribbage optimally is non-trivial. It is possible to make a
hand-crafted AI that plays as well as a novice human player,
which was a useful characteristic of the game for testing
purposes. We are unable to find previous similar work on
the game of Cribbage.

In section II we describe the game of Cribbage and the
MCTS algorithm. In section III we present our implementa-
tion of Cribbage and several AI players. Section IV details
the results of experiments with varying parameters of the
AI players and playing the AI players against each other. In
section V we discuss the performance of the AI players and
finally in section VI we present some possibilities for future
research and our conclusions.

II. BACKGROUND

A. Cribbage

Cribbage is a card game for 2-4 players using a standard
52 card deck. For this research, only the 2-player version
of the game was considered. Cribbage is played in repeated
hands until a player wins by reaching 121 points at any time
during a game. A hand consists of several ordered stages:
the deal, throwing, the cut, play, and count. The player who
deals alternates between hands, and several game elements
are affected by the dealer position.

In each hand, players are each dealt six cards, and both
discard two cards face down to a form a third hand (the crib),
which is scored by the dealer at the end of the hand. A single
community card is cut (drawn) face-up from the deck, which
forms the fifth card in each of the three hands for the count
at the end of the hand. In the play stage of the hand, players
alternate playing cards from their hand face up while keeping
a running sum of the ranks of cards played. When no one can
play without going over 31, the play restarts from zero with
the remaining cards. When all cards are played, players count
the points earned by their hands, and the dealer also counts
the crib as their second hand. Players score points in both the
play and counting stages by getting sums of 15 and 31, pairs,
flushes, straights (runs), and some other combinations.

Cribbage, with only 13 cards in play per hand, has a small
game tree for a given deal of the cards, as compared to a game
like Skat which has three players each holding 10 cards. If
Cribbage were to be played with all cards face-up as a perfect
information game, each hand would have at most

(
6
2

)
×
(

6
2

)
︸ ︷︷ ︸

throw

× 4× 4× 3× 3× 2× 2× 1× 1︸ ︷︷ ︸
play

= 129, 600



Fig. 1. One iteration of MCTS, from [2].

different ways to be played. However, considering only the
cards that one player has seen, there are 9, 366, 819 different
6-card hands that the opponent could have at the beginning of
a hand. In both cases many of the hands are equivalent. For
example, if a player is holding 6♣ and 6♥ in hand, playing
either one of them is equivalent during the play stage of a
hand. The imperfect information nature of the game makes
the number of possible situations to be considered larger than
for a perfect information version.

B. Monte Carlo Tree Search

MCTS was first described in [4]. In MCTS a search tree is
built by repeatedly playing out game simulations with random
moves and recording the average win rate of different moves.
MCTS builds the game tree asymmetrically by focusing on
more promising branches. Every node of the search tree in
MCTS accumulates information about how successful it has
been in previous iterations. That information is then used to
bias the selection of child nodes at every level of the search
in subsequent search iterations.

MCTS is an on-line search–nothing needs to be precom-
puted to use MCTS–and it is an anytime search, meaning it
can be stopped whenever a computational or time budget is
reached. When the search is stopped, the best move found so
far from the root of the tree is selected. The steps for building
the MCTS tree are summarized in Figure 1 from [2]. In more
detail, the procedure for building the tree is as follows:

• Nodes: The tree consists of nodes representing states in
the game. Each node keeps track of its visit count and
total score or value (win or loss in most games) from
visiting that node, as well as a reference to its parent
node and child nodes.

• Selection: Descend the tree from the root node by
following a selection policy until either a terminal node
or a node with unexpanded children is reached.

• Expansion: If the selected node is not a terminal node,
expand it by creating a new node representing an action
taken from the parent node and the state arrived at by
taking that action.

• Simulation or Playout: Play from the expanded node by
following a default policy until reaching a terminal game
state, which has a value (score for Cribbage) for each

player associated with it. The default policy is usually
random play but can be otherwise.

• Backpropagation: Backup the simulation values to all
the nodes visited in the selection and expansion steps.

A key benefit of MCTS is that all that is required to use the
algorithm is an implementation of the game that can be used
for simulations. Random playouts mean that neither expert
knowledge of how to play the game nor evaluations of non-
terminal states are needed. Many applications of MCTS do
use various enhancements to the algorithm described here,
including the use of domain-specific knowledge.

C. Upper Confidence Bound for Trees

The selection algorithm most commonly used for MCTS
and used in this research is Upper Confidence Bound or
UCB1. It was first applied to MCTS in [5] and called Upper
Confidence Bound for Trees (UCT). The UCT algorithm for
selecting the next child node v′ of a node v to visit is:

argmaxv′∈ children of v
Q(v′)
N(v′)

+ c

√
2lnN(v)

N(v′)

where: Q(v) is the accumulated total value for the player to
act at node v from the backpropagation step of previous iter-
ations; N(v) is the number of times v has been visited in the
selection step of previous iterations; and c is an exploration
constant that can be adjusted for different domains.

Child nodes that have shown little value will be visited
when the second term grows, which happens as the parent
node is visited. The MCTS algorithm used here visits each
child node once before this formula is used to select a child
node in future iterations.

III. METHODOLOGY

For this research, a Cribbage game and AI players were im-
plemented in Java. A simple graphical interface was made for
human play against the AI players. The program implements
all the rules found in standard Cribbage play.

Two baseline AI players were implemented for the pur-
poses of testing the MCTS-based players: a random player
and a scripted player. The scripted player takes any action
which will give the most points immediately after taking that
action. In the case of discarding to the crib, it keeps the four
cards which on their own, without a fifth card, would have
the highest point total at the end-of-hand score count.

In MCTS there are different ways to chose the best move
after the computational budget is passed. In this research the
child node of the root node with the highest visit count is
selected. An alternative method is to choose the child node
with the highest average value.

Often, MCTS simulations are played out until the end of
a game. The value returned for those simulations is either 1
(win) or 0 (loss). In Cribbage, each player scores a number of
points in each hand, and then a new hand is dealt with only
the total score and dealer position (which alternates) carrying
forward. We only considered playouts until the end of a hand



so that more playouts could be done. All MCTS-based agents
described in this paper use the difference between the players
point gains from the current hand as the value of a simulation.

A. Cheating UCT

The simplest version of a MCTS Cribbage player agent we
implemented is a cheating player. The UCT algorithm used in
this research is adapted from [2]. The cheating player plays
the game as a perfect information game. It has access to all
cards, including unrevealed cards in the desk. The Cheating
UCT agent ignores the issue of imperfect information, but it
is a useful benchmark for other AI players.

B. Determinized UCT

On any players move when there is hidden information in
the game state, from that players perspective they may be
in any one of many possible game states. That combination
of states together form an information set for that player.
A determinization of a game state is any state from the
players information set. Perfect Information Monte Carlo
(PIMC) is used to play games such as the German trick-
based card game Skat in [6], [7]. PIMC involves repeatedly
taking determinizations from the information set the player to
act is in, and then using a standard AI technique for playing
out that determinization as a perfect information game. The
move chosen at the end of the search is either the one with
the highest average value or the one with the most visits over
all explored determinizations.

In this research we used determinizations, as in PIMC,
but used the Cheating UCT agent to play out each deter-
minization, as opposed to minimax or other methods. The
visit counts of all child nodes of the root node are summed
across all determinizations, and the action corresponding to
the child node with the most visits is returned as best move
by the Determinized UCT agent. To create a determinization,
each part of the game state which the current player has seen
is held fixed, and the rest of the game state is randomized.

In addition to the parameters of execution time and explo-
ration constant, Determinized UCT requires a fixed number
of determinizations. Experiments with different numbers of
determinizations are presented in Section IV.

C. Single Observer-Information Set MCTS

The algorithm for the final agent implemented in this
research, Single Observer-Information Set MCTS (SO-IS
MCTS), is adapted from [8]. SO-IS MCTS relies on deter-
minizations, like Determinized UCT, but it builds a single
MCTS tree in which nodes correspond to information sets
rather than single game states.

A determinization is created before each iteration of the
search. As the selection, expansion, and simulation steps are
conducted for an iteration, only actions which are compatible
with the current determinization are considered. Node selec-
tion is based on how good an action has been in previous
determinizations that included the same action as a possibility.

In Cribbage, the actions available to the player to act in
a given node are the same in all determinizations in which

TABLE I
WIN RATES FOR ALL AI PLAYERS - RANDOM, SCRIPTED, CHEATING

UCT (c = 1.75, 1s), DETERMINIZED UCT (c = 1.75, 1s, d = 100),
SO-IS MCTS (c = 2.0, 1s) (ROW WIN %)

Random Scripted Cheat Determ SO-IS
Random - 2.2 0.0 19.0 1.2
Scripted 97.8 - 24.0 87.5 35.5

Cheat 100.0 76.0 - 97.7 64.0
Determ 81.0 12.5 2.3 - 6.2
SO-IS 99.8 64.5 36.0 93.8 -

that node is reachable, because that players cards remain the
same in all determinizations. The opponent may have certain
actions available from a given node in one determinization
that are not available in another determinization.

In [8], the selection formula for SO-IS MCTS is modified
by considering only the number of times a node has been
available for selection, rather than the number of times its
parent node has been selected. In normal UCT those numbers
are the same, but in SO-IS MCTS, actions that are rarely
available would be over-selected if the number of visits to
the parent were used in the second term of the formula. The
modified formula is:

argmax v′ ∈ children of v
consistent with d

Q(v′)
N(v′)

+ c

√
2lnA(v′)
N(v′)

where: d is the current determinization and A(v) is the
number of times the node v has been available for selection.

IV. RESULTS

Experiments were run to compare the each of the AI
players, as well as to compare parameter variations for each of
the MCTS-based players. The first dealer has an advantage in
Cribbage, since that player benefits from the points available
in the crib first. In our tests with random play by both players
the dealer won 60% of one million games played. All other
tests described in this paper consist of an even number of
games with alternating first dealer.

In some experiments the number of search iterations is used
as the search budget, while other experiments used time per
move as the search budget. All experiments were performed
on a machine with an Intel i5 7500 CPU running at 3.4
GHz. For comparison, one second of SO-IS MCTS search
used between 50,000 and 150,000 search iterations, which
is largely dependent on what stage of a Cribbage hand the
search is starting from (a search iteration of a shallower tree
is generally faster).

In Table I, the win rates of each AI player against each
other are given for a sample of 400 games of each pairing.
All other players outperform the random player, and Cheating
UCT outperforms all other players. Of the MCTS-based
players, Determinized UCT performed worst, winning 81% of
games against the random player and 12.5% of games against
the scripted player. SO-IS MCTS outperformed all other
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Fig. 3. Effect of exploration constant on Determinized UCT (1s, d = 500)
performance in 450 games for each value of c.

players except the Cheating UCT player, winning 99.8% of
games against the random player, 64.5% of games against the
scripted player, and 93.8% of games against the Determinized
UCT player.

A. Variation of Exploration Constant

The exploration constant, c, is often set to 1/
√
2 ≈ 0.707

in other applications [2]. Therefore, we used c = 0.707 as a
starting value when first performing tests. In Figure 2, we see
that SO-IS MCTS performance improves with higher values
of c up to a value of about 2.0. For the main AI comparison
tests a value of c = 2.0 was used for SO-IS MCTS.

Figure 3 shows the results of varying the exploration con-
stant for Determinized UCT. Performance is highest between
1.5 and 2.0, but the results for very small values of c are
also high. That may be because each determinization gives a
relatively small game tree to explore, causing the exploration
constant to be less important. For the main AI comparison
tests a value of c = 1.75 was used for Determinized UCT.
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B. Variation of Search Iterations

In Figure 4, we see that SO-IS MCTS performance im-
proves little beyond 100-250ms per move in test of 450
games at each amount of search time against the scripted
player. At both 100ms and 2000ms the SO-IS MCTS player
wins 65% of games against the scripted player. Against a
SO-IS MCTS player set at 1000ms searches, there is no
clear trend, and the 50ms player wins 54% of games. In
Figure 5 we see that the Determinized UCT player improves
in performance as the number of search iterations increases
from 1,000 to 10,000, winning 9.3% and 14.7% of games
against the scripted player, respectively. Above 10,000 search
iterations the Determinized UCT player does not improve for
the values that we tested. For the search budgets tested, a
higher budget improves performance for both Determinized
UCT and SO-IS MCTS, but in each case there is a plateau
of performance improvement.
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C. Variation of Number of Determinizations

In Figure 6, we see the effect of varying the number
of determinizations for Determinized UCT on performance
against Determinized UCT with 500 determinizations. Both
AI players searched for 1000ms in all tests, with exploration
constant c = 1.75. Setting the number of determinizations
lower than 75 resulted in worse performance than the 500
determinizations player, ranging from 36% to 43% in 150
games. Setting the number of determinizations to 75 or higher
(up to 400) resulted in a win rate of about 50% against the
player playing with 500 determinizations.

V. DISCUSSION

The poor performance of the Determinized UCT player
was surprising. Intuitively, it makes sense that a move that is
good in many determinizations would be a good move to take
on average. However, playing a given determinization as if it
were a perfect information game means assuming both players
have access to information that they do not have. It is possible
that using MCTS for the playouts in the determinizations is
ineffective, since its hard to choose the computational or time
budget to allocate to each determinization.

Strategy fusion is an effect in which the searching agent
assigns incorrect values to nodes in the tree, because it
searches as though it can distinguish between different states
in an information set and make a choice based on which state
it is in. Strategy fusion is noted as a problem for both De-
terminized UCT and SO-IS MCTS in [8]. The Determinized
UCT Cribbage player always plays as if it can choose actions
based on unseen opponent cards. Strategy fusion and other
errors of this nature may account for why Determinized UCT
performs so poorly for Cribbage.

One consequence of only considering information sets from
the maximizing players perspective in SO-IS MCTS is that
information about that players hand leaks to the model of
the opponent represented by opponent action nodes in the
search tree. The acting players cards are held constant in all
determinizations, so the nodes of the tree where the opponent

is to act will converge to optimal play against the the other
players actual hand.

VI. CONCLUSION & FUTURE WORK

In this research, we have shown that SO-IS MCTS out-
performs Determinized UCT and a basic scripted player
in Cribbage with no game-specific enhancements. Increased
search time or variation of other parameters which we tested
did not improve the performance of Determinized UCT to the
level of SO-IS MCTS.

There are several enhancements that could be made to the
algorithms already implemented that would likely offer some
improvement at little cost. Stopping MCTS simulations at the
end of hands should lead to poor strategy in the final hands
of a game. Cribbage games end as soon as any player reaches
121 points, which can happen mid-hand, so the optimal
strategy near the end of a game is often to prioritize scoring
points earlier in a hand, or to limit opponent scoring. A simple
enhancement would be to run simulations until the end of a
game whenever a player’s score exceeds some threshold.

In [9], measurable properties of game trees that can be used
as predictors of the success of Perfect Information Monte
Carlo (PIMC) Search are proposed. Future work on Cribbage
AI could involve analyzing the properties of its game trees to
explain the performance of the Determinized UCT player.

Enhancements to SO-IS MCTS, including Multi Observer-
IS MCTS (MO-IS MCTS), which builds a separate tree for
each player in a game, are described in [8]. Each node in
a tree in MO-IS MCTS corresponds to an information set
for that player. This algorithm would address strategy fusion
and information leak issues. Implementing the MO-IS MCTS
algorithm for Cribbage and for more complicated games with
larger search trees is an area for potential future work.
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