A System for Real-time Parallel Scientific
Computation and Visualization using the IBM Blue
Gene/LL Supercomputer

Matthew Hamilton*, David Churchill’, R. Phillip Bording’ and Kirk Jordan®
* Department of Computer Science
f Department of Earth Science
Memorial University of Newfoundland
Email: {hamilton,davidc}@cs.mun.ca, pbording@mun.ca
BM Deep Computing
Email: kjordan@us.ibm.com

Abstract— The rapid growth of seismic, biological, and similar
data sets has made computation and visualization an increasingly
complex task. Due to the inherit architectural differences between
supercomputing and visualization hardware, a system for real-
time display of these data sets must be carefully designed. We
present such a system, comprising all aspects of computation,
communication, and visualization implemented on the IBM Blue
Gene supercomputer, coupled with a grid of high resolution IBM
T221 monitors. We use a socket-based communication scheme
to pass computational output to the display, which is powered
by IBM Deep Computing Visualization using Scalable Visual
Networking. We illustrate this system using a 3-D elastic wave
propogation model example.

I. INTRODUCTION

Visualization is a excellent tool to aid scientists in exploring
and interpreting data. Interactive visualization software enables
researchers to create an effective cognitive representation of
raw experimental or model data [1]. Key features and rela-
tionships present in the data can be isolated and disseminated
to others in visual form, highlighting insightful information
that could not be discerned otherwise due to its potentially
enormous size and complexity.

Geoscientists exploring the features of the earth’s crust
are a typical example of those who can benefit greatly from
scientific visualization tools. They typically make models that
describe the movement of elastic and acousic waves in the
earth’s crust. Visualizing the model first can help researchers
to verify its validity, as any abnormalities not immediately
obvious in the mathematical description can be more directly
seen on a screen. Assuming the correctness of the model,
by stepping it through time and visualizing the resulting
computations, geoscientists can detect features of the earth’s
crust by watching how the waves propagate in this medium.

For the purpose of this project, we solved an elastic
wave propagation PDE using a staggered grid finite-difference
method as described in [2] and [3]. This type of problem fits
into a class of problems of a general form where we step
a multidimensional volume forward in time, computing the
values for the current volume from the results obtained in past

volumes. This type of scheme responds well to parallelization-
we simply assign each node in the parallel to a subvolume of
the total volume. In our finite difference method, subvolumes
that are adjacent are the only ones that need to pass messages
during the course of the computation.

In order to compute a three-dimensional (3D) elastic wave
propagation model of a size large enough to be useful to
scientists, we would need an amount of memory approaching
88GB per shot with as many as 100,000 shots [4]. The time
resouces we need are on the order of 105 computations
to complete one shot. The type of parallel computer that
could solve such a problem in a reasonable time would
be necesarily large and have enormous power requirements,
impinging severely on the cost-effectiveness of computing this
type of model.

Special supercomputing solutions such as IBM’s Blue
Gene/L. (BG/L) have been specially designed to provide
enormous computing space and time resources into a dense
package with significantly reduced power requirements to that
of standalone machines configured as a cluster. However,
in trying to meet these special engineering requirements,
such solutions are so specially designed that they can no
longer easily interface with the machines designed to provide
visualization requirements.

Given these problems, we must decouple visualization and
computing hardware resources and devise a scheme to mini-
mize data transfer between disparate parts of the system.

There is a further side issue of being able to present a high-
enough resolution image to the user so that small features of
the data can be detected in the context of the larger structures
present in the data. Sophisticated visualization caves like the
Landmark Visualization Laboratory at Memorial University
are expensive and can be supplemented by high-quality flat-
screen technology to expand visualization capability to the
average user. Our solution to this problem is to use a paral-
lel display of high resolution commodity grade monitors to
achieve similar results.

The rest of the paper is organized as follows. In section II



BlueGene/L System Architecture

Ethemet

Fig. 1. Blue Gene/L System Architecture

we describe the various pieces of hardware which are needed
to construct such a system. Section III talks about the software
scheme we devised to run on each piece of hardware, enabling
them to communicate efficiently. Finally, section IV details the
conclusions we drew from this process, and outlines possible
future work that can be done on the topic.

II. HARDWARE
A. Blue Gene/L

At 183500 GFlops peak performance the on Linpack bench-
mark, the 65,536 processor BG/L at DOE/NNSA/LLNL is the
world’s fastest supercomputer [5]. It was designed to yield
low cost/performance levels of application-specific machines
while remaining applicable to a broad range of applications
amenable to massively parallel-based solutions [6].

Each compute node of the BG/L contains two PPC440
700MHz processors each capable of two simulataneous float-
ing point operations per cycle. Though this is a moderate clock
frequency, it enables many more processors to be operated
within a small space, due to their low power consumption.
One of these processors is by default intended to be an I/O
coprocessor to offset the load incurred during I/O operations.
However the two can also run in virtual node mode, whereby
each processor handles its own communication, effectively
doubling the number of compute node if I/O requirements are
relatively low.

The compute nodes of the BG/L run a very restricted and
stripped down unix kernel. It provides a very limited set of
system call functionality, allowing only one process to run at a
time. This kernel has been tuned to maximize performance of
scientific computation. The BG/L system itself cannot provide
the functionality to enable remote visualization as we desire.

The BG/L comes with a sophisticated set of interconnect
networks. The collective and barrier networks have arithmetic
and logic operations implemented in hardware along with
a very low latency link intended for efficient execution of
collective and barrier operations that make up a large part
of many parallel computing applications.

The main interconnect network [7] allows point-to-point
communication between any two nodes. The physical connect
network is in the shape of a three-dimensional (3D) torus (Fig-
ure 2). This type of network makes best use of bandwidth when

Fig. 2.

Three dimensional torus network topology

the parallel algorithms are restricted to local communication.
In our case, the domain decomposition of the problem’s 3D
volume occurs in a way such that subvolumes that are adjacent
in the total volume map onto nodes that are directy adjacent in
the physical torus network of the BG/L. Furthermore, when-
as in our case-the computional grid corresponds to a finite-
difference solution to a PDE, the "wrapping” effect of the torus
network maps nicely onto the local communication required
for periodic boundary conditions.

Equally appealing about the BG/L system for our ap-
plication is the set of highly optimized programming tools
available. The dominant message passing model, MPI [8],
has been implemented on the BG/L. Many of the BG’s
design parameters have been specially tuned to yield efficient
performance with respect to MPI [6]. This in combination
with IBM’s XL Fortran and C/C++ compilers along with a
standard programing library environment [9] should enable
many existing high-performance computing applications to be
ported to the BG environment with minimal difficulty. Our
finite-difference fortran-based MPI code was almost effort-
lessly compiled and run on the BG system at the IBM Thomas
J. Watson Research Center; in practice thus far we have had
few portability issues.

Additonally, there has been some work done on developing
performance monitoring tools which would be of great impor-
tance when we attempt to scale to more nodes while trying to
identify bottlenecks and maximize system performance . The
two papers [10] and [11] give an overview of what is already
available and what is being developed by IBM research in this
area.

B. Visualization Hardware

Due to the highly precise nature of scientific visualization,
very high resolutions are needed in order to fully capture the
nature of the simulation. In industry this is often done with
either special purpose hardware, or using extremely expensive



[

Fig. 3. A 2x2 wall of IBM T221 high resolution monitors

projector driven displays, which show the images on an ex-
tremely large scale, allowing researchers to see minute details.
These type of systems however are out of reach for your
typical researcher, so a more cost effective solution is needed.
Deep Computing Visualization (DCV) and Scalable Visual
Networking (SVN) from IBM [12] is a way for researchers
to achieve this type of high resolution. SVN enhances images
from visualization applications and allows them to be viewed
in parallel on multiple, less expensive displays, achieving
resolutions similar to larger theatre style visualization systems.

The hardware used to drive the visualization application of
the system runs on a Linux machine using NVidia graph-
ics cards. Using DCV and SVN, output from the OpenGL
application is fed to four other Linux machines which each
use their own NVidia graphics card to feed one of the four
high resolution IBM T221 monitors, which combine to form
a visualization wall. Each of these monitors has a maximum
resolution of 3840x2400 for a total of 9.2 million pixels. With
a 400 to 1 contrast ratio, each of these monitors provides
an unparalleled view into scientific visualization, and when
combined to form a 2x2 visualiztion wall, details never before
available even to high end projector driven displays become
crystal clear. This marriage of Linux, standard graphics cards,
SVN, and parallel display on the T221 monitors make this
system a truly cost effective way for researchers to visualize
their data on a professional scale. Figure 3 above shows
a biological visualization running on the the parallel 2x2
visualization wall.

III. THE SOFTWARE
A. Finite-Difference Wave Propagation Code

The acoustic and elastic wave equations are used here
to simulate synthetic seismic shot records in 2D and 3D
inhomogeneous media. These linear second order hyperbolic
wave equations are set up using finite difference methods and
a time marching scheme. This solution method is ideal for
parallel computing using MPI and domain decomposition.

The code opens a socket to the front-end intermediary
running off the BG/L and sends the results for a completed

BLUEGENE NODES

LINUX
FRONT
END

FRONTEND
SToRAGH

VISUALIZATION
APPLICATION

Fig. 4. Compute-Visualization System Diagram

subvolume computation for each time step.

B. Challenge: Offline Visualization from Disk

Our initial efforts in attempting to do straight-forward four-
dimensional visualization of our data cube loaded all data
from the completed computation into memory, then displayed
this data on the screen. We quickly realized that the standard
machines we had available to us had nowhere near the amount
of physical memory necessary to store all of the data at
once. To meet our goals of being able to quickly load the
visualization, as well as provide an interactive manipulation
of the data such as rotating camera angles, and the ability to
time step through the computation showed that we would need
a more clever way of selecting only the data we needed for the
visualization to be accurate, and a quicker way of transferring
it to the visualization machine. Simply letting the computation
run to full, then copying the data file to another machine was
too cumbersome a process to be useful. From this, the idea of
socket based communication using an intermediary machine
for the indexing of relevant data came to realization.

C. The Front-end Intermediary

The front-end intermediary comprises two distinct parts.
The first of these parts recieves and stores subvolumes which
have been computed by the compute nodes. Completed data
is passed to the front-end by socket communication, as di-
rect file I/O would create a bottleneck in getting data to
the visualization client. As subvolumes are completed for a
particular time step, they are sent to the front-end intermediary
to be stored and indexed for later retrieval by the visualization
software. Since our data is decomposed into possibly hundreds
or thousands of subvolumes, this means that not all data is
needed to be computed before the visualization application
can start displaying data.

Any of these subvolumes which are completed and ready
to be visualized can be sent to the visualization client via the
second part of the front-end: the request thread. This request
thread listens for requests from the visualization client about
which subvolumes are needed to display current information.
The requests are made by the visualization client by a caching
and prefetching algorithm specific to the current type of data
being displayed.



Sesmic Data Cubic

Fig. 5.
data

Screenshot of the visualization client displaying partially computed

D. Visualization Client

The visualization client application written in C, driven by
the OpenGL graphics libraries, accepts data needed for display
from an open socket to the front-end intermediary software.

Since various seismic models are quite different in nature,
knowledge specific to the model itself must be known by the
visualization client in order for prefetching and caching to be
optimized. For example, our elastic wave propogation model
took place in a data cube of size 200x200x200, because of
this knowledge we knew that display of any three faces of
the cube would be needed for a single time step in order for
proper visualization to occur. Given the camera position, it is
trivial to calculate which three faces of the cube are visible. For
more complex visualization volume shapes, determining which
parts of the volume are visible from given camera position is
decidedly more difficult.

Caching took place based on spatial and temporal proximity
- portions of the volume which are most likely to be viewed
in the next frame of animation within the visualization client.
This enables quick camera angle changes within the model to
occur, as well as quick switching to either the next or previous
time steps which had been computed. Since the requests sent
to the frontend are for small domains of data which are being
calculated in real time, we simply display the data which has
been calculated, discarding the need for the entire model to
be finished before anything is visualized. This allows us to
achieve minimal memory usage on the visualization client
side, preserving the speed and interactivity of the application.
This enables researchers to visualize obvious properties or
errors which may have occured in computation in the early
stages of computation, saving possibly hours or days of
compute time.

Figure 5 shows an illustration of the system working in real
time. Several of the subvolumes of data which have not yet
been computed are represented as black quadrilaterals, while
the completed volumes are colored based on their computed
values.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

It is a challenge even with today’s high-performance com-
puting technology to compute scientific models large enough
to be useful to researchers. Large memory and compute time
constraints are major problems, particularly when we want to
try to visualize the data using hardware that is affordable to
the average researcher.

Specialized computing solutions such as the BG/L allow us
to compute such models fast enough at a lower costs than
past efforts. Since the visualization end of our solution must
be decoupled from the compute end, we devised a means to
efficiently transfer the massive amounts of data needed by the
visualization client.

Our initial efforts have been tested on a 32 node partition
of an actual BG/L system. While these efforts were sucessful,
other challenges may arise as we attempt to scale to thousands
and tens of thousands of processors, such as message passing
restraints and I/O bottenecking.

There is further work to be done investigating our prefetch-
ing and caching algorithms. As well, for more general vi-
sualization volume shapes, determining which parts of the
volume are visible from given camera position is decidedly
more difficult. If such a problem is theoretically intractable
as we generalize to arbitrary sets of visualization volumes,
perhaps efficient prefetching/caching algorithms implemented
in specialized hardware may be needed in order to provide a
responsive interactive visualization client to users.

ACKNOWLEDGMENT

This work was supported in part by an IBM Faculty Grant
and the endowment provided by Husky Energy to Dr. Bording,
who holds the Husky Energy Chair in Oil and Gas Research
at Memorial University.

REFERENCES

[1] D. H. Hepting, “A new paradigm for exploration in computer-aided
visualization,” Ph.D. dissertation, 1999, adviser-Robert D. Russell.

[2] J. Virieux, “Sh-wave propagation in heterogeneous media: Velocity-
stress finite-difference method,” Geophysics, vol. 49, pp. 1933-1942,
1984.

, “P-sv wave propagation in heterogeneous media: Velocity-stress
finite difference method,” Geophysics, vol. 51, pp. 889-901, 1986.

[4] R. P. Bording and L. R. Lines, Seismic Modeling with the Complete
Wave Equations, ser. SEG Course Notes Series, 1997, no. 8.

[5] “25th top500 list,” in [International Supercomputer Conference
(ISC2005), Heidelberg, Germany, 2005.

[6] G. Almsi, C. Archer, J. G. Castaos, J. A. Gunnels, C. C. Erway,
P. Heidelberger, X. Martorell, J. E. Moreira, K. Pinnow, J. Ratter-
man, B. D. Steinmacher-Burow, W. Gropp, and B. Toonen, “Design
and implementation of message-passing services for the blue gene/l
supercomputer,” IBM Journal of Research and Development, vol. 49,
pp- 393406, 2005.

[71 N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas, “Blue gene/l torus interconnection network,”
IBM Journal of Research and Development, vol. 49, pp. 265-276, 2005.

[8] “Mpi: A message-passing interface standard,” University of Tennesse,
1995, see http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.

[9] G. L. Mullen-Schultz, Blue Gene/L: Application Development, first
edition (draft) ed. IBM Red Books, March 2005.




[10]

(11]

[12]

R. S. Germain, Y. Zhestkov, M. Eleftheriou, A. Rayshubskiy, F. Suits,
T. J. C. Ward, and B. G. Fitch, “Early performance data on the blue
matter molecular simulation framework,” IBM Journal of Research and
Development, vol. 49, no. 2/3, pp. 447-455, March/May 2005.

X. Martorell, N. Smeds, R. Walkup, J. R. Brunheroto, G. Almsi, J. A.
Gunnels, L. DeRose, J. Labarta, F. Escal, J. Gimnez, H. Servat, and J. E.
Moreira, “Blue gene/l performance tools,” IBM Journal of Research and
Development, vol. 49, no. 2/3, pp. 407-424, March/May 2005.

“Ibm servers deep computing solutions: Deep computing visualization,”
see http://www-03.ibm.com/servers/deepcomputing/visualization/.



