
A Reinforcement Learning Approach to Multi-Robot Planar
Construction

Caroline Strickland1, David Churchill1, Andrew Vardy2

Abstract— We consider the problem of shape formation in
a decentralized swarm of robots trained with reinforcement
learning. Shapes are formed from ambient objects which are
pushed into a desired pattern. The shape is specified using a
projected scalar field that the robots can locally sample. This
scalar field plays a similar role to the pheromone gradients
used by social insects such as ants and termites to guide the
construction of their sophisticated nests. The overall approach
is inspired by our previously developed orbital construction
algorithm. In this paper, we use reinforcement learning to
automatically learn policies that accomplish shape formation
without the need for hand-coding algorithmic solutions for each
desired shape. The particular research questions addressed in
this paper are as follows: (1) The performance of learned
policies versus the original hard-coded orbital construction
algorithm; (2) The performance of the system on more shapes
than were considered for the original algorithm. (3) The impact
of the number of robots used in training and then subsequently
in testing; We provide experimental results using a custom two-
dimensional physics simulator of an environment containing
circular robots and objects.

I. INTRODUCTION

We are interested in the capacity of swarms of robots to

form shapes using objects in their environment. This has

direct application to topics such as cleaning (merging all

waste objects into a single cluster) and recycling (segregating

objects by type and moving them to desired collection

points). It may also be a useful capacity in construction-

related tasks such as forming walls and enclosures. In [10]

a new algorithm which could form various enclosed shapes

based on sensing a scalar field which acting as a template to

specify the shape. This algorithm, called orbital construction
(OC) is guided by the scalar field to orbit the growing

structure, pushing objects inward or outward to join the

structure. The OC algorithm is intentionally minimalistic

which allows for easy implementation and reduces the need

for parameter tuning. But it represents only one point in

the space of possible solutions. In this paper we employ

reinforcment learning (RL) to more fully explore the space

of possible control policies for this problem. RL provides

a robust and natural means for the coordination of action

choices between agents in multi-agent systems [2]. We

compare the performance of learned policies using RL to

the OC algorithm and consider the problem of learning to

construct different shapes. While this is a multi-robot system

approach, we also examine whether policies learned on a

1Department of Computer Science, Memorial University
of Newfoundland, St. John’s, Canada, cts321@mun.ca,
dave.churchill@gmail.com

2Department of Computer Science, Department of Electrical and Com-
puter Engineering, Memorial University of Newfoundland, St. John’s,
Canada, av@mun.ca

small number of robots are applicable on a larger number.

Our experimental results were obtained on a custom 2d

physics simulator optimized for collisions between circular

robots and objects.

Collective construction by swarms of robots is a topic

which takes inspiration from social insects such as ants,

bees, and termites who create very sophisticated structures

in a decentralized manner [1]. One proposed mechanism to

explain some aspects of social insect construction is the

use of a template, often consisting of some sensed envi-

ronmental parameter or pheromone emitted by the insects

themselves [9]. A well-known example of such a template is

the pheromone emitted by the queen in a colony of termites

(genus Macrotermes). The concentration of this pheromone

is used to guide the construction of a “royal chamber”

enclosing the queen. In a recent review of collective robot

construction, numerous different organizing principles were

identified, including the use of such templates [4]. Exper-

iments have been conducted on physical robots showing

the construction of walls where the template is sensed as a

light field [6] or through sensing landmarks combined with

odometry [5]. The approach taken in this paper assumes a

set of robots can sense such a template, which we refer to

as a scalar field. A desired shape is built by pushing objects

inwards or outwards to lie within a specific contour of the

scalar field.

The results we obtain here come from a custom simulation

environment designed to allow efficient policy learning using

reinforcement learning (RL). So this paper, like [10], as-

sumes that the scalar field can be sensed in a future hardware

realization. This might be achieved by performing on-board

localization and then consulting a stored scalar field image,

or by using a projected light field [6], or perhaps by reading

the scalar field from a printed surface.

The orbital construction algorithm [10] is based on this

ability to locally sample the scalar field. A fixed threshold

value specifies a contour line of the scalar field. If two

thresholds are specified, we can define a region which is

to be filled in with objects. In the simplest case, the scalar

field is defined by a single seed point at scalar value 1

with every other point having a value of 1 − d where d
is the Euclidean distance from the seed point. In this case,

specifying two thresholds defines an annulus. Figure 1 shows

the performance of our RL approach in constructing such an

annulus. For the original OC algorithm, two different types of

agents were defined—innies which nudge objects outwards

from the seed point, and outies which nudge objects inwards.

This algorithm combines the aspect of using the scalar field



Fig. 1: Three states of our environment demonstrating the progression of RL annulus construction using 8 robots (blue circles) and 250
pucks (red circles). Shown are an initial randomized configuration of pucks (left), an intermediary state during learning/construction
(middle), and a successfully constructed shape (right). The background color of each state shows the value of the environment’s
projected scalar field, ranging from a value of 0 (black) to 1 (white), which guides shape formation.

for guidance with the minimalistic approach to clustering

objects discovered by Gauci et al. [3]. In this approach,

robots alternate between veering to the left in response to a

sensed object and a default behaviour of veering to the right

when the object is not sensed. The oscillation between these

two responses leads a robot to move towards the outer edge

of an object, thus nudging it inwards. The OC variant of this

concept uses the scalar field to define the directionality of

these movements so that robots can nudge objects inwards or

outwards depending upon what is desired. For outies objects

are nudged inwards until the threshold value of the scalar

field is reached. This algorithm has a number of attractive

properties: (1) it is minimalistic and requires only a coarse

sensing of whether objects lie in the left or right field-

of-view; (2) the shape constructed can be varied just by

changing the scalar field; (3) robots tend to circumnavigate

clockwise about the growing structure and stay out of each

other’s way; (4) no special grasping capability is required—

the robots just bump into the objects to move them (assuming

sufficient mass).
However, we identified a need to further explore the space

of algorthms which aim to construct a desired shape using

guidance from a scalar field. OC does not perform well in

defining the interior of concave shapes. Also, it has no built-

in strategy to fully explore the environment for objects not

yet included in the structure. While there are a number of

techniques that we could have implemented (for example,

evolutionary algorithms), an RL approach was felt to be

promising — it is straightforward to define a reward function

for this problem, and our environment lends itself nicely to

an efficient state representation.
RL is a subfield of machine learning that is focused

around the environment rewarding agents taking desired

behaviours and punishing undesired ones. Such systems are

well-suited to robotics, as agents often interact with complex

environments through unique sensors, actuators, and tech-

niques to reach a state or objective. RL applied to a multi-

agent system is called MARL (multi-agent reinforcement

learning). A main feature that MARL offers is flexibility —

a multi-agent decentralised system can have agents added or

removed without the need for rewriting control algorithms.

This allows for more robust solutions due to its ability to

cope with failure. Using simulators paired with MARL, we

can learn policies that result in efficient actions for pattern

formation. This would be an improvement over hard-coded

algorithms, as it removes dependence from often flawed

control algorithms. In addition, RL eliminates the need for

writing control algorithms in the first place — which tend to

be extremely task-specific and time-consuming. Learning a

policy takes into account a variety of variables and represen-

tation techniques that must be predetermined, which grants

the user control of specific aspects before learning begins.
In society, learning is an essential component of intelligent

behavior. However, each individual agent does not need to

learn everything from scratch or by their own discovery.

Instead, they can exchange information and discoveries with

each other and learn from their peers. The same can be said

for MARL systems [8]. Policy transfer between simulation

runs involves agents following a previously learned policy

trained either in a different environment or on a different

number of agents. We expect that policy transfer will be able

to help us in a number of ways, particularly if we can learn

a policy on a single agent quickly and then apply that policy

to an n-agent environment, where learning would otherwise

have taken longer.
Three environment states are shown in Figure 1, demon-

strating the construction of an annulus over time, with the

scalar values of the tiles representing distance from the

center. However, in this paper we discuss how RL can be

used to create more complex shapes that may not be possible

via the orbital construction algorithm - for example, non-

symmetrical shapes containing right angles. RL methods

should be able to learn to construct a variety of shapes

without algorithmic changes or parameter tuning, furthering

the argument that RL methods offer a more robust solution

than hand-coded algorithms.



II. ORBITAL CONSTRUCTION IN A REINFORCEMENT

LEARNING FRAMEWORK

To eliminate the need for hand-coding algorithms such as

the OC algorithm previously described, we have chosen to

use RL in an attempt to automatically learn the robot actions

necessary to construct desired shapes. In order to apply RL

methods to the OC problem, we must frame it in an RL

context. An RL problem is defined by several key elements:

environment, state, action, reward, policy, and values. The

solution method to that problem is some algorithm which

carries out the process of generalized policy iteration to learn

a policy for the agent(s) to follow. We will now describe each

of these elements within the context of the OC problem.

A. Environment
The environment of an RL problem is the physical or sim-

ulated world in which the agent(s) operate. The environment

used for our OC experiments is the same as described by

Vardy in [10], an example of which can be seen in Figure 1.

In this environment, circular agents are free to move around

in a rectangular enclosed space which is also occupied by

circular puck objects whose position can be changed by

applying a force to them via an agent collision. In addition

to the rectangular boundary, it contains a scalar field grid

projected onto the ‘floor’ surface, where the grid values

range between 0 and 1. The scalar field is illustrated in

Figure 1 with the grid being represented by a discrete gray-

scale background image. The lightest spaces have a scalar

value of 1, while the darkest have a scalar value of 0. This

scalar field encodes information relating to the final shape

to be constructed by the algorithm. The simulation of this

environment is implemented via the CWaggle open-source

software project, described later.

B. State
A state of an environment is the instantaneous perception

of the current configuration of the environment from some

viewpoint. MARL methods typically use one of two forms

of state representation: a global state recording the positions

of all agents and objects in the environment, or a local state

storing just the sensory information available to any given

agent at some time step. As global state information is rarely

available in a real-life robotics setting, we chose the latter

local representation for our OC RL implementation. One key

result of this choice is that our OC RL method will learn

a single policy that will be followed by each agent in the

environment, a much simpler task than using global states to

learn a separate policy for each agent.

In most RL problems, the smaller the state representation,

the easier the learning task becomes [7]. Also, the less com-

plex the sensor configuration, the more feasible it becomes to

implement as a real-world swarm robot system. For both of

these reasons, we wish to implement the smallest possible set

of sensors that can facilitate the OC RL task. This minimum

functionality requires that our agent a) be able to sense pucks

in its vicinity, and b) detect its scalar field value and heading.

The sensory configuration that was used for our experiments

can be seen in Figure 2.

Puck Sensors

Left Scalar Field
Sensor

Fig. 2: The sensor configuration for each agent. Agent shown on
bottom as a teal circle with its current heading (black line).
Sensors are rigidly fixed relative to the position and heading
of the agent, moving with the agent as it moves.

There are 2 types of sensors for each agent, each posi-

tioned symmetrically about forward heading of the robot.

The first sensors are the 4 circular puck sensors which give

a reading of 1 or 0 whether representing whether a puck in

the environment currently intersects with the radius of the

sensor. For our experiments, we combine the 2 left of center

puck sensors as the ‘left puck sensor’ and the two right of

center sensors as the ‘right puck sensor’, which approximates

the left and right rectangular puck sensors described in [10].

Then there are 3 scalar field sensors which can read the

floating point value of the scalar field directly below the

center of each sensor. For our experiments we require each

state have a finite length binary representation, and so we

discretize this real number scalar field value svr into an

integer svi, based on dividing the range of [0, 1] into n
equally sized areas using the equation svi = �svr ∗ n�.

Next, instead of simply encoding all 3 field sensor values in

the state, we employ a manipulation to both minimize state

representation and determine the relative agent orientation.

We use the middle field sensor to obtain the agent’s scalar

field position value, and the relative values to the middle

sensor of the left and right field sensors to determine the

agent’s heading within the scalar field. For example, if both

the left and right field sensors have a value less than the

middle sensor, we know the agent is heading toward a

‘lighter’ area of the scalar field. Our final state representation

was then formed as a binary string of length 4+log2(n) with

the following bits:

PL PR FM FL FR

• PL (puck left): 1 bit representing if either of the 2 left

puck sensors is active (1) or inactive (0)

• PR (puck right): 1 bit representing if either of the 2

right puck sensors is active (1) or inactive (0)

• FM (field mid): an integer of log2(n) bits representing

the svi of the middle field sensor

• FL (field left): 1 bit representing if the left field sensor

is less than the field mid sensor (1) or not (0)

• FR (field right): 1 bit representing if the right field



sensor is less than the field mid sensor (1) or not (0)

For example if we use n = 16 field divisions, this would

yield 24+log2(16) = 28 = 256 possible states for an agent. If

we then have an agent with: left puck sensor active (PL=1),

right puck sensor inactive (PR=0), field mid sensor value

of 0.4 (FM=�0.4 ∗ 16�=6=0110), field left sensor value of

0.35 (FL=1), field right sensor value of 0.45 (FR=0), this

would yield a state presentation of 10011010 (154 of 256

possible). The state observed by an agent at time step t of

the environment simulation is denoted as st.
C. Actions

In our OC environment, each agent moves forward each

time step at a constant speed. The only action that an agent

can take is to rotate a given angle for the current time step.

This means that the decision making process for OC RL

involves only deciding on which angle to rotate on every

time step. For our RL framework, we discretize the real-

valued space of actual turn angles into a finite set of turning

angles that can be chosen to guide the agent.

D. Reward
The reward signal is arguably the most important element

of any RL problem, as it defines the objective measure that

is to be optimized by the learning process. Intuitively, the

reward for our OC RL framework should become more

positive as the pucks in the environment get closer to

the desired formation. The desired formation for our OC

environment is defined by a given scalar field, along with

two threshold values: an inner threshold Ti, and an outer

threshold To. Due to the nature of the scalar field, we must

be sure to choose these thresholds such that Ti > To. We

can therefore construct our reward signal as a function of the

distances of the pucks in the environment from the desired

location within the scalar field.

In an environment with P pucks, we define SVt(Pi) as the

scalar field value located at the center of puck 1 ≤ i ≤ P
at simulation time step t. Next we define a distance function

Dt(Pi) which yields 0 if the puck is inside the desired

thresholds Ti and To at time step t, or the difference from

the closest threshold if outside it:

Dt(Pi) =

⎧⎪⎨
⎪⎩

SVt(Pi)− Ti, if SVt(Pi) > Ti

To − SVt(Pi), if SVt(Pi) < To

0, otherwise

We then define a global evaluation function Evalt(E) on

an environment E with which averages Dt(Pi) for all pucks:

Evalt(E) = 1− 1

P

P∑
i=1

Dt(Pi)

which ensures 0 ≤ Evalt(E) ≤ 1. An ideally constructed

shape will therefore yield a reward Evalt(E) = 1. Our final

RL reward function Rt for an environment at time step t then

simply subtracts the current evaluation from the evaluation

of the previous time step t− 1. If the environment has come

closer to the desired shape then the reward will be positive:

Rt = Evalt(E)− Evalt−1(E)

E. Q-Learning
For our experiments, we chose to implement one of the

most basic forms of RL: the tabular Q-Learning algorithm

[7]. The value function for Q-Learning is stored as a mapping

of state-action pairs Q(s, a) = v, the expected future return

(sum of rewards) of taking action a at state s. The Q-

Learning policy P (s) = a maps states to actions, with

action a being chosen as the one which maximizes the value

Q(s, a). One iteration of Q-Learning happens with each time

step t of the environment simulation. For a given state st an

action is chosen separately for each agent from the current

policy and carried out, advancing the current state st to

st+1. Then, the reward Rt is calculated, and the Q-values

are updated with the following rule:

Q(st, at) = Q(st, at)+α(Rt+γmaxaQ(st+1, at)−Q(st, at))

Using the new Q-values the policy is updated, and the

process repeats. This update is applied once for every agent

at every time step using the global reward function Rt. In the

above equation, α is the learning rate, and γ is the discount
factor. For all experiments, we fix γ = 0.9, with α varying

between experiments.

F. Environment & RL Implementation
The simulation of this OC RL environment for our ex-

periments was implemented in CWaggle1, an open-source

software robotics simulator specifically designed for the

efficient simulation of circular-based physics agents. CWag-

gle supports static and dynamic circle-circle and circle-line

collision resolution, with each agent and puck having mass,

radius, and velocity, with constant deceleration. Scalar fields

can be defined in CWaggle manually, or loaded from an

image saved in jpg or png format. CWaggle is written

in C++, and is based on the existing Waggle JavaScript

simulator described in [10]. The Q-Learning algorithm was

implemented within the CWaggle framework from scratch,

and supports the saving and loading of learned values and

policies to disk.

III. EXPERIMENTS AND DISCUSSION

Three experiments were carried out to demonstrate the

effectiveness of RL for orbital construction. These experi-

ments tested: (1) the overall performance of reinforcement

learned policies versus the original OC algorithm, (2) the

performance of the system on a variety of projected scalar

grids versus the annulus shape that was considered originally

by the OC algorithm, and (3) The impact of the number of

robots used in training and testing using RL. In this section

we will first describe the metrics used to compare the dif-

ferent methods, followed by descriptions of the experiments

and discussion of results.

1https://github.com/davechurchill/cwaggle



Fig. 3: Experiment 1 Results: OC vs RL Creating Annulus Shape
with 8 Agents. OC = Orbital Construction algorithm, RL
= Reinforcement Learning from scratch, RL2 = Reinforce-
ment Learning seeded with previously learned policy.

A. Performance Metric
For each experiment, all agents and pucks were set to

random positions within the environment. Agents moved

forward at a constant speed each time step, with the decision

(action) of how much to rotate being given by the various

OC methods. Each OC method was carried out to a given

maximum number of simulation time steps, and two metrics

were kept to determine the effectiveness of each method

during that time period: (1) the number of formations that

were successfully formed, and (2) the number of times

the method got ‘stuck’ and could not form a formation

within specific number of time steps. A formation was

deemed successfully formed if the environment E reached

Eval(E) > 0.94, a threshold value determined by observ-

ing repeated shape formation. We noticed that thresholds

lower than 0.94 often accept formations dissimilar to the

desired shape, while thresholds higher than 0.94 are often

challenging to reach and result in the system getting stuck.

Once a successful formation was completed, the number of

formations was recorded and the environment was ‘reset’,

with each puck and agent being placed in a random position

within the environment. A method was deemed to be stuck

if no formation reached the threshold evaluation for 150,000

time steps, at which time the environment was reset. RL also

had a unique set of parameters which were set to α = 0.2,

γ = 0.9, and ε = 0.0 (ε-greedy) upon configuration of

each experiment. Within this framework, we consider one

method to be more successful than another if it is able to

successfully construct more formations than another within

a given amount of time steps. All experiments were run on

an Intel i7-7700K CPU processor running at 4.20GHz with

32GB of RAM using Ubuntu 18.04.

B. Experiment 1: RL vs OC Algorithm
We first wanted to test the effectiveness of our RL solution

to that of the original OC algorithm on the annulus shape

shown in figure 1, to see which method could successfully

construct more formations in a given amount of simulation

time steps. In this experiment the environment contained 250

pucks and 8 agents, and the maximum number of time steps

was set to 5,000,000.

The results of this experiment can be seen in Figure 3,

with the x-axis denoting simulation time steps, and the y-axis

denoting the number of successfully constructed formations

by time step t. Three separate plots are visible, which show

the performance of the following solutions over 10 trials:

(OC) the original orbital construction algorithm, (RL) the on-

line performance of the RL method as it was learning from

scratch, and (RL2) the on-line performance of the RL method

using a pre-trained policy as a starting point. The pre-trained

policy used for RL2 was trained for 5,000,000 time steps

using 8 agents. The lines shown are the average performances

of each method, with the shaded areas enclosing the best

and worst case performances of each method. As expected,

the hand-crafted OC algorithm produces formations at a

constant rate over time, with its first formations appearing

around t = 5000. The on-line learning of the RL algorithm

requires a longer time period before the first shape is created

later at t = 34000. The RL2 line demonstrates that seeding

the RL algorithm with a pre-trained policy yields better

results than seeding it from scratch - an intuitive result

which demonstrates the increase in performance of RL as

more training steps are allowed. Because the policy used in

RL2 had already converged during previous training, RL2

began creating successful formations immediately while the

policy used in RL was still converging. Thus, RL2 had the

advantage of a running start.

This experiment showed that the RL method is a viable

solution for shape construction, yielding 73% as many annu-

lus formations as the OC algorithm, which was specifically

designed and tuned by hand to construct only those shapes.

Using a single core the experiment ran at 6200 simulation

time steps per second, for a total of 13.4 minutes for the

5,000,000 total time steps. While learning from scratch,

the RL method took less than 10 seconds to successfully

construct its first shape. OC completed 876 successful for-

mations, while RL completed an average of 592, and RL2

completed an average of 642. Each of OC, RL, and RL2 had

on average one situation where the agents got ‘stuck’ and the

environment was reset.

C. Experiment 2: Scalar Field Variation
Next, we tested how RL compared to OC while sampling

an asymmetrical scalar field. Here, we projected an L-shaped

scalar field (shown bottom-left in Figure 4) onto the environ-

ment, supplying an asymmetrical shape containing a concave

feature and right angles. A visualization of this experiment

is demonstrated in the bottom center and right images within

Figure 4. In the center image, the OC algorithm has difficulty

constructing the convex feature and right angles, yielding

only 4 successful formations. The RL method was able to

construct 120 formations, creating much more pronounced

right-angles and concave features.

Demonstrated in the bottom center image of Figure 4,

there are often clusters of elements left around the outer

ridges of the environment as the ‘outies’ collect those near

the center and push them inwards. With these pucks aban-

doned, the required accuracy percentage is never met and

the desired shape is not formed - there is no way for the

agents to venture outside and bring them towards the desired



Fig. 4: Experiment 2 Results: Graph of OC versus RL formations
on an L-Shaped Projected Scalar Field (top). Below is
shown the L-shaped scalar field (left), an OC algorithm
construction example (middle), and an RL construction
example (right).

scalar value. Our trained RL policies do not have this issue.

RL can adjust and recalibrate techniques to suit the scalar

field projected underneath. It is not constricted by the rule of

clockwise motion and inward rotation around a cluster like

the OC algorithm is.
This experiment demonstrates that the RL method is

much better suited to construct different shapes than the OC

algorithm, which needs to be re-coded and parameters re-

tuned to construct each new shape. We performed the same

experiment with letters T, I, V, X, Z, and each resulted in

a similar outcome, demonstrated in Table I alongside results

for the aforementioned L-shape.

RL OC
Shape Formations Steps/Form Formations Steps/Form
L 120 41,667 4 1,250,000
T 113.7 43,975 7 714,286
I 250.2 19,984 8 625,000
V 209.6 23,854 107.9 64,850
X 200 25,000 28 178,571
Z 180 27,777 48.7 102,669

TABLE I: Averaged results for RL versus OC letter formation on
the letters L, T, I, V, X, and Z.

D. Experiment 3: Learned Policy Transfer
Finally, we wanted to test whether a policy learned on a

single agent could be applied to multiple agents to construc-

tion formations. RL training time per time step increases

with the number of agents, for example: training of a

single agent resulted in 32,000 simulation time steps/second,

while training 8 agents resulted in 6,200 simulation time

steps/second. It would be beneficial if we could train a policy

on smaller number of agents and then apply it to a larger

number. Here, we tested the most extreme case by learning

a policy with a single agent (t = 20, 000, 000 simulation

steps) and then applied that single pre-learned policy to 2,

Fig. 5: Experiment 3 Results: Policy Learned on a Single Agent
and Transferred to Multiple Agents

4, 8, and 16 agents. The results are shown in Figure 5. The

policy transfer was successful, as multiple agents were able

to use the single-agent trained policy and complete more

formations in fewer time steps than the single agent. While

an increase in agents constitutes an increase in formations,

it is not a linear increase. With more agents added into

the environment, it becomes increasingly congested. There

is more potential for collisions between agents (decreasing

efficiency), and agents spend more time moving around other

agents within the environment.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a system using RL to

improve upon previous methods of shape construction. Our

system removes dependence on hand-coding algorithms and

has the benefit of being able to adapt to unique environments

and shape formations. Unlike OC, it does not need distinct

types of agents to complete a task, instead agents learn to

adapt and fulfill multiple roles based on their current state.

The RL solution can also form different types of shapes

(such as the L-shape) which the OC algorithm struggles

with (likely due to right-angles and concave features). We

have also demonstrated the promising initial results for policy

transfer, in which policies learned quickly by fewer agents

can be carried out by more robots. A video of our results

can be seen in https://youtu.be/RzIXQSHFVi4.

For our experiments we used the minimal amount of

sensors we deemed necessary to accomplish our task. In

doing so, removing the ability of agents to sense other

agents. We believe that sensing other agents may be a

key element to maximizing cooperation between agents in

MARL by reducing costly agent-agent collisions, and so we

wish to include such sensors in the future. We believe these

experiments have only scratched the surface of using RL

for swarm shape formation, as we have shown promising

results using the most basic form of tabular Q-learning. In

the future we would like to implement deep neural network

state representations coupled with deep RL to test the limits

of what complex shapes can be formed by more modern

learning algorithms.



REFERENCES

[1] Scott Camazine. Self-organization in biological systems. Princeton
University Press, 2003.

[2] Caroline Claus and Craig Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. AAAI/IAAI, 1998:746–752,
1998.

[3] Melvin Gauci, Jianing Chen, Wei Li, Tony J Dodd, and Roderich
Gross. Clustering objects with robots that do not compute. In Pro-
ceedings of the 2014 international conference on Autonomous agents
and multi-agent systems, pages 421–428. International Foundation for
Autonomous Agents and Multiagent Systems, 2014.

[4] Kirstin H. Petersen, Nils Napp, Robert Stuart-Smith, Daniela Rus, and
Mirko Kovac. A review of collective robotic construction. Science
Robotics, 4(28), 2019.

[5] T Soleymani, V Trianni, M Bonani, F Mondada, M Dorigo, et al. An
autonomous construction system with deformable pockets. Technical
report, IRIDIA Technical Report Series (January) 2014-002 (IRIDIA,
Université Libre de Bruxelles, Brussels), 2014.

[6] Robert L Stewart and R Andrew Russell. A distributed feedback
mechanism to regulate wall construction by a robotic swarm. Adaptive
Behavior, 14(1):21–51, 2006.

[7] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[8] Ming Tan. Multi-agent reinforcement learning: Independent vs. coop-
erative agents. In Proceedings of the tenth international conference
on machine learning, pages 330–337, 1993.

[9] Guy Theraulaz, Jacques Gautrais, Scott Camazine, and Jean-Louis
Deneubourg. The formation of spatial patterns in social insects: from
simple behaviours to complex structures. Philosophical Transactions
of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 361(1807):1263–1282, 2003.

[10] Andrew Vardy. Orbital construction: Swarms of simple robots building
enclosures. In 2018 IEEE 3rd International Workshops on Foundations
and Applications of Self* Systems (FAS*W), Trento, Italy, September
3-7, 2018, pages 147–153, 2018.


