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Abstract— Local visual homing is the process of determining
the direction of movement required to return an agent to a goal
location by comparing the current image with an image taken
at the goal, known as the snapshot image. One way of accom-
plishing visual homing is by computing the correspondences
between features and then analyzing the resulting flow field
to determine the correct direction of motion. Typically, some
strong assumptions need to be posited in order to compute
the home direction from the flow field. For example, it is
difficult to locally distinguish translation from rotation, so many
authors assume rotation to be computable by other means (e.g.
magnetic compass). In this paper we present a novel approach
to visual homing using scale change information from Scale
Invariant Feature Transforms (SIFT) which we use to compute
landmark correspondences. The method described here is able
to determine the direction of the goal in the robot’s frame of
reference, irrespective of the relative 3D orientation with the
goal.

I. INTRODUCTION

Visual homing is the ability of an agent to return to
a goal position by comparing the currently viewed image
with an image captured at the goal, known as the snapshot
image. It has been shown that insects such as bees and
ants have the ability to visually home and that this is a
crucial component in their overall navigational strategy [1].
Visual homing has been utilized in robotics as a means of
executing learned paths [2], [3] and travelling between the
nodes of a topological map [4], [5]. In this paper we propose
a new visual homing method which is far less constrained
than existing methods in that it can infer the direction of
translation without any estimation of the direction of rotation,
thus it does not require the current and snapshot images to
be captured from the same 3D orientation.

Existing methods for visual based homing can be classified
as holistic or correspondence [6]. Holistic methods rely on
comparisons between images as a whole. An example of a
holistic method is the method of Zeil et al. who posit a simple
distance metric between images and implement homing as
gradient descent in the space of this distance metric [7]. This
method, while elegant in its simplicity, relies on the existence
of a monotonic relationship between image distance and
spatial distance. It also requires small exploratory movements
of the robot in order to determine the gradient of the image
distance function. Möller and Vardy described an alternative
method based on gradient descent that removes the need for
exploratory movements prior to computing a home vector
[6]. Another holistic method is the so-called warping method
of Franz et al. which searches for the parameters of motion

Fig. 1. Ideal flow field for pure translation in a panoramic image [6].

which make the warped snapshot image most similar to
the current image. A warped snapshot image is generated
by transforming the snapshot image as if the robot had
actually moved according to the given motion parameters. To
make this transformation tractable the assumption is made
that all objects are equidistant from the goal. Despite the
clearly unrealistic nature of this assumption, the warping
method has been found to perform robustly in various
indoor environments. In this paper we utilize the warping
method to benchmark the performance of our algorithm.
Correspondence methods detect features in the current image
and attempt to correspond them with similar features in the
snapshot image. The flow field that results is then interpreted
to yield the direction of motion. Various features have been
utilized, ranging in sophistication from raw image windows
[8] to descriptors based on the Fourier-Mellin transform
[9]. Recently, SIFT features have gained great popularity
in many areas of computer vision and robotics due to the
stability of their descriptor vectors with respect to changes
in scaling, rotation, and illumination [10]. SIFT features
have also been used in visual homing [11], [12], [13]. After
finding the correspondences between features, the resulting
correspondence vectors give the shift of the features in image
space. If both the snapshot and current images are taken from
the same orientation in a planar environment it is possible
to compute the home direction analytically from a single



correspondence vector [8]. If the orientation is not the same,
one can utilize some form of compass, or search for the
change in orientation which would minimize the difference
between the two images [7], [12].

The method described in this paper is similar to correspon-
dence methods in that it relies upon finding correspondences
between features. However, our interpretation of the resulting
correspondences is markedly different. Consider the flow
field for pure translation of an agent equipped with an om-
nidirectional camera. The field has a characteristic structure
with foci of expansion and contraction separated by 180◦

(see Figure 1). If objects are distributed uniformly in the
environment, half of them will appear to have expanded,
while the remaining half will appear to contract. Typical
correspondence methods consider how the features have
shifted but not whether they have expanded or contracted.
The problem is that in the presence of rotation it becomes
much more difficult to determine the home direction from
feature shifts. Hence, the two-stage process referred to above.
However, whether a feature has changed in scale is indepen-
dent of any change in orientation between the two views. We
utilize the change in scale of corresponding SIFT features
to determine the centre of the region of contraction which
corresponds to the home direction.

In section 2 of this paper we will describe the Scale
Invariant Feature Transform and how its parameters are
related to our homing method. Section 3 defines many of
the required concepts and tools to perform homing, as well
introduces the method of homing in scale space. In section 4
we compare the performance of our method to the warping
method. We discuss some future works related to our method
in section 5, followed by some concluding remarks in section
6.

II. SCALE INVARIANT FEATURE TRANSFORM

The Scale Invariant Feature Transform, developed by
Lowe [10] provides a robust keypoint descriptor which is
able to match keypoints between images invariant of scale,
rotation, or illumination. The process of determining a SIFT
keypoint involves four stages. The first stage is the detection
of scale space extrema. This stage involves the repeated
convolution of the original image by Gaussian filters of
increasing effective scale (values of σ) within each image
octave. Each successive blur within the octave is subtracted
from the previous to form a difference of Gaussians (DoG)
image. Local maxima are detected in each scale of DoG
space.

The second stage of the process involves the localization
of the keypoint. In this step, keypoints are filtered for
various reasons such as edge response, and contrast. The
third stage of SIFT assigns an orientation to the keypoint
based on the local gradient within the image. Lastly, the
keypoint descriptor, which contains a number of orientation
histograms relating to the gradients surrounding the keypoint,
is constructed. This descriptor is stored with respect to both
the scale and orientation of the keypoint, making it invariant
to rotation, scale, as well as moderate 3D transformations.
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Fig. 2. Robot pose diagram.

What we are left with is a SIFT keypoint storing the (x, y)
location within an image, the scale σ and orientation ρ at
which it was found, as well as the keypoint descriptor vector
itself. We can describe a keypoint f as follows:

f = {fx, fy, fσ, fρ, fkpd}.

A unique feature of our homing algorithm is its usage of fσ .

III. HOMING IN SCALE SPACE

One requirement of our method is that the direction
of translation be visible within the robot’s field of view,
therefore our experiments utilize panoramic images. Let CV
represent the image taken at the location (cv) of current
panoramic view from the robot’s perspective, and SS be
the image taken at the location (ss) of a stored panoramic
snapshot taken from the goal location.

Consider the diagram shown in Figure 2. If the robot has
moved from position ss to position cv, the distance from
the robot to feature A will have increased. This will be
true of any feature on the same side of the perpendicular
bisector of the line joining ss and cv. Similarly, the distance
to the feature B will have decreased. We assume that this
change in distance will be reflected in a corresponding
change in the fσ of the feature. Thus, we can classify
features as either expanding or contracting. If there are
sufficiently many features which are distributed evenly on
either side of the dividing line then approximately half
of them should experience expansion, while the other half
should experience contraction. If we further assume that the
features are distributed approximately uniformly throughout
the environment then the home direction will be aligned with
the centre of the region of contraction.

Locating the center of the region of expansion / contraction
from SS to CV with respect to CV will allow us to determine
which direction the robot must head. Since CV is taken w.r.t.
current robot orientation, not world orientation, we can then
turn and move to approach the goal. We will use the change



(a) Contracted features (b) Expanded features

Fig. 3. SIFT matched correspondences between CV (above) and SS (below). Correspondences in (a) show a scale decrease from SS to CV, thus having
β > 0, and indicating the center of contraction. Conversely in (b) we see features which have β < 0, indicating the center of expansion. Since these two
regions should ideally be separated by π, they will be combined with a weighted average in order to more accurately compute the center of contraction.

in scale information from SIFT feature correspondences
to extract the center of the region of contraction, which
coincides with the home direction under the assumption of
uniform feature distribution.

We use panoramic images of our environment to represent
views from the robot perspective. These images are w pixels
wide by h pixels high. These images represent a complete
viewing angle of 2π in the horizontal direction, as well as α
radians in the vertical direction. Thus, each pixel represents a
spacing of δx radians along the x-axis, and δy radians along
the y-axis, computable by:

δx =
2π
w

δy =
α

h
(1)

We therefore can convert our SIFT feature f with location
(fx, fy) within the images to angular coordinates (fθx, fθy)
by

fθx = fxδx fθy = fyδy (2)

in order to facilitate proper directional calculations.
Determining the center of the region of expansion or

contraction requires detecting whether a feature has grown
or shrunk with respect to its size in the snapshot image. If
we revisit our SIFT feature vector, not only does it give us
the location of a feature of an image, but also the scale σ at
which it was detected. Since σ is the level of Gaussian blur,
the magnitude of scale is directly related to the feature’s size.
Through the application of SIFT, image features will be in-
creasingly low-pass filtered as the scale parameter increases.
Keypoints are detected at image coordinates where a feature
is blurred out of existence. Intuitively, larger features will
disappear at greater scales. Therefor, given a positive SIFT
match between features fss and fcv with scale values of σss
and σcv respectively, we can calculate:

β = σss − σcv. (3)

If β > 0 then the feature has shrunk from SS to CV, and
conversely if β < 0 the feature has grown. We have many
keypoint correspondences, so we must compute the center of
these regions of expansion and contraction in order to find
the home direction.

From the correspondences in Figure 3, we can see from the
matches on the right that the desks appear to be smaller in the
snapshot, while the matches on the left indicate that the filing
cabinet seems to have grown. Since the cabinet represents the

region of contraction in CV, this is the direction we wish
to move. The key point of our method lies in this fact: no
additional interpretation of the flow field is required. Merely
the sign of β is enough to identify the change in feature
size. The location of the corresponding keypoint within SS
is not needed, since we are only concerned with the features
in CV which have contracted. It remains for us to accurately
locate the center of this region of contraction. Since the
relationship between the angular orientation of CV and SS
is not needed, our method achieves complete invariance to
changes in relative orientation between the two images. Also,
since this method does not rely on any notion of an image
horizon, it is invariant to changes in relative 3D orientation
and elevation. This claim will be satisfied if the following
conditions hold: (1) the camera’s field of view encompasses
the true direction of translation, (2) a significant number
of correct correspondences are found, (3) the corresponded
features are approximately uniformly distributed throughout
the environment.

Let us denote a matched feature pair m = (fss, fcv). To
calculate the center of a particular region, we partition our
set of correspondences M = {m1,m2, ...,mn} into Mpos and
Mneg based on the sign of β. To determine the center of these
partitioned regions with respect to the robot’s heading, we
use the angular mean of the data, that is: given any set of
angles θ1, θ2, ..., θn:

θ̄(θ1, θ2, ..., θn) = arctan


n∑
i=1

sin(θi)

n∑
i=1

cos(θi)

 . (4)

We will denote the angular mean of our partitions as θ̄pos
and θ̄neg respectively. We argued in section 1 that the regions
of expansion and contraction are separated by π radians. We
can use this fact to reduce the error in our calculation by
allowing both the centers of expansion and contraction to
contribute to the final result. Since both are always separated
by a constant of π under ideal conditions, θ̄pos = θ̄neg + π.

We wish to allow both regions to contribute in such a way
that a certain amount of confidence can be given to either
set of data. It is often the case that |Mpos| is significantly
greater than |Mnegs|, or vice versa. In an effort to assign
confidence to a partition, we will use its cardinality to
perform a weighted average of the mean of the data. This



will shift the final calculation in the direction of the region
with the most correspondences. We can compute our final
home angle θhoming as follows:

s̄ = |Mpos| sin(θ̄pos) + |Mneg|(sin(θ̄neg) + π) (5)
c̄ = |Mpos| cos(θ̄pos) + |Mneg|(cos(θ̄neg) + π) (6)

and finally:

θhoming = atan2 (s̄, c̄) . (7)

This value for theta represents our final home vector with
respect to the robot reference frame. Experimentally this
weighted scheme has consistently shown to be more accurate
than simply computing the unweighted average of the means
of these regions. We summarize below our algorithm for
determining the home direction:

1. Acquire an image CV from current robot location.
2. Perform SIFT feature matching on SS and CV to

obtain a set of n matched feature pairs of the form
M = {m1,m2, ...,mn}.

3. Partition M into Mpos and Mneg where pos, neg
denote the sign of β from equation 3.

4. Calculate the angular means θ̄pos and θ̄neg based on
the values of fθx from fcv (i.e. the angular location of
the x coordinate of the keypoint from cv).

5. Calculate the weighted angular mean of both θ̄pos
and θ̄neg + π based on their cardinality as shown in
equations 5-7.

6. Move the robot in the direction of the computed angle,
θhoming .

IV. RESULTS & DISCUSSION

We wish to compare our results of scale space homing
to those of the warping method. Results from both methods
were obtained using the panoramic image database collected
by Vardy and Möller [8]. This database contains images
taken with a camera facing upwards at a hyperbolic mirror,
at equal spacing and elevation within a capture grid. We used
each location within the database as the goal location, then
calculated the home direction from all other locations. The
databased we used were:

Database Description Images Spacing
A1originalH Robot Lab 9 × 16 30cm
Chall1H Hallway End 9 × 19 50cm
Chall2H Hallway Entrance 7 × 19 50cm
Kitchen1H Small Kitchen 11 × 8 10cm
Moeller1H Living Room 21 × 10 10cm

The method for performance evaluation we used is the
average angular error between correct home vectors and
our computed home vectors. Our homing method takes
images located at cv and ss and returns θhoming , the angle
we compute to be the homing angle. Since images in the
database were taken at known locations, we can compute the
ideal home vector angle as follows: given the (x, y) locations
of current view cv and a goal snapshot ss on an evenly spaced
capture grid, we can compute

θideal(ss, cv) = atan2(ssy − cvy, ssx − cvx) (8)

thus, the angular error AE(ss,cv) can be found by:

AE(ss, cv) = |θideal − θhoming| (9)

We can obtain an overall average angular error as follows:

AAE(ss) =
1
mn

m∑
x=1

n∑
y=1

AE(ss, cvxy). (10)

Finally, to obtain a measure of performance for the entire
image database we can use the total average angular error
TAAE(db), which computes the overall average of AAE(ss)
having computed the home direction to each possible loca-
tion as the snapshot:

TAAE(db) =
1
mn

m∑
x=1

n∑
y=1

AAE(ssxy). (11)

Our method relies on a number of SIFT feature matches
within an image in order to compute the center of a region
of expansion and contraction, therefore we require as many
keypoints as possible for this process. Fortunately, SIFT
feature matching offers a number of parameters which can
be changed in order to maximize keypoint production, while
still maintaining accurate results [10]. The values changed
from those of Lowe’s original implementation are as follows:

1) The number of scales at which keypoints are extracted
is increased from 3 to 6 to increase the number of
overall keypoints, while maintaining feasible running
time

2) The peak threshold for the magnitude of difference of
Gaussian values is decreased from 0.08 to 0.01 in order
to choose more keypoints from areas of low contrast,
since indoor environments often contain such areas

3) The ratio of scores from best to second best SIFT
matching has been decreased from 0.6 to 0.8. As
discussed in [10], this change results in a marginal de-
crease in match accuracy while dramatically increasing
the number of matches.

Parameters for the warping method were selected to ensure
fairness with respect to running time. We selected the follow-
ing values for the parameters of the warping method search
space: RhoMax = 0.95, RhoSteps = 36, AlphaSteps = 36, and
PsiSteps = 36 [14]. On an Intel Core2 2.13GHz processor,
this parameter selection resulted in an average execution time
for the warping method which was 4.8% faster per snapshot
than our scale space method. We consider this to be a fair
metric for results comparison. Prior to initiating the homing
process, we randomly rotate each image in the database
horizontally by θr ∈ [0, 2π). This ensures that our results
will be strictly rotation invariant. We will also show some
sample results of shifting the pixels in the image vertically
by a random amount yr ∈ [−15, 15] pixels to test whether
our method is invariant to changes in elevation above the
surface of movement. The remaining area of the image is
filled with black pixels.

We see from the results in the top half of Figure 4
that the AAE for the warping method on the A1orignalH
database is 224% larger than that of scale space homing.
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Fig. 4. Scale space homing (top left) of A1originalH database resulting
in TAAE = 12.4◦. Warping method (top right) of A1originalH database
resulting in TAAE = 27.8◦. Scale space homing (bottom left) of Kitchen1H
database resulting in TAAE = 22.5◦. Warping method (bottom right) of
Kitchen1H database resulting in TAAE = 46.4◦. Gray scale values range
from black (0◦) to white (90◦ for A1originalH, 130◦ for Kitchen1H), with
darker values representing better results.

Our results also indicate that while the warping method
has a more even performance throughout this database, our
method has extremely high accuracy for areas in the center.
While the warping method does outperform our method for
some locations along the edges of the room, the overall
performance for our approach is considerably better. The
bottom half of Figure 4 shows the results from the Kitchen1H
database, which, due to the existence of an object with many
similar repeating features has yielded poor results for the
warping method. For this database, although the AAE is
higher, once again the error for warping is 206% larger than
that of scale space homing. The maximum AE for warping on
Kitchen1H was 126◦, while our method yielded a maximum
AE of 60◦. Over 22% of the individual snapshot results from
warping yielded higher AE values than the maximum of 60◦

from scale space homing.
The following table shows the results from both homing

in scale space, as well as homing using warping performed
on the five databases:

Database HiSS TAAE Warping TAAE
A1originalH 12.4◦ 27.8◦

Chall1H 14.3◦ 33.2◦

Chall2H 22.2◦ 48.1◦

Kitchen1H 22.5◦ 46.4◦

Moeller1H 24.3◦ 35.4◦

Although these tests show the TAAE is lower for each
database using HiSS, we are also curious about how HiSS
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Fig. 5. Homing vector images setting goal snapshot to (2, 3). Top images
show scale space homing with horizontal shift only (left, AAE=12.3◦) and
combined vertical shift (right, AAE=18.1◦). Bottom images show warping
method for horizontal shift only (left, AAE=39.2◦) and combined vertical
shift (right, AAE=59.4◦)

compares to warping on a case by case basis. We form two
vectors, h (HiSS), w (warping) consisting of the angular
errors obtained by homing from all possible location within
the database, to each possible home location. This allows us
to perform a sign test [15] based on the median difference of
h−w. In order to attempt to claim that our method performs
better than warping, we use the alternative hypothesis that
median(h− w) < 0. The following is a table of the median
and p-values obtained from the sign test on this data:

Database Median Difference P-value
A1originalH -0.0601545 2.2e-16
Chall1H -0.130501 2.2e-16
Chall2H -0.2333935 2.2e-16
Kitchen1H -0.0991135 2.2e-16
Moeller1H 0 0.2085

so our hypothesis holds for all databases except
Moeller1H, where the median value is actually 0 despite the
large difference in mean angular error.

The results in Figure 5 show a sample location of (2, 3) as
our goal snapshot location. Homing was carried out to this
location under both methods with horizontal shifting only
(left), as well as the combined horizontal and vertical shift



(right). From the images, it is clear that the warping method
suffers from the added vertical shift. Scale space homing
does not suffer to the same degree and maintains an AE
which is less than that of warping without any vertical shift.

The results shown indicate that for invariance to rotation,
the scale space homing method outperforms the warping
method for parameters which yield similar execution times.
When we incorporate vertical shift into our database images
to simulate variation in elevation, the performance gain
shown by scale space homing is much greater.

V. FUTURE WORKS

Achieving success on the databases provided has created
the need for further acquisition of images with varying
parameters, such as changes in elevation and 3D orientation,
as well as more natural features. A database similar to
those mentioned in the results section could be taken at
not only varied locations, but at varied heights and 3D
orientations as well. The success of SIFT feature detection
in natural environments [10] also lends a high probability
that homing in scale space will be robust in outdoor, natural
environments. Additionally, we could apply this method
to airborne vehicles, performing homing in both axis by
computing not just the one-dimensional angular mean, but
the two-dimensional center of the regions in the image.

While our results overall for our databases were positive,
more research will also be done into the statistical analysis
of the regions of expansion and contraction. Although ex-
perimentally, our weighted averaging scheme has shown to
be most accurate so far, other statistical methods may exist
which yield better results.

Scale space homing can also provide a measure of the
likelihood that homing will succeed. Unlike other homing
methods which attempt to compute the center of a single
region, we can incorporate our calculation of both regions to
produce a measure of certainty with regards to the success
of the homing process. We are currently investigating this, as
well as a number of other outputs produced by the homing
in scale space method which may provide strong correlations
with homing success or failure.

VI. CONCLUSION

We have described a method for performing visual homing
using scale space data from Scale Invariant Feature Trans-
forms. From our results, we have shown that this method
of using SIFT scale change information to detect regions of
expansion and contraction is robust with respect to arbitrary
compass heading, as well as vertical shifts. By comparing
ideal vectors to our computed vectors, we were able to show
that the average angular error of homing in scale space is
significantly less than that of the warping method, which has
been widely used as a comparison in the field of local visual
homing. From these observations we are able to conclude that
homing in scale space is able to accurately determine goal
directions while relying on fewer constraints than existing
methods.
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