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Figure 1: Two different paths to the same goal produced by our system. Click the image for a video demo.

ABSTRACT
We present a series of parameterizable modifications to heuristic
evaluation of actions in the A* algorithm, designed to create more
human-like and dexterity-robust paths through games in the 2
dimensional platformer style. We attempt to create paths at various
levels of player skill by imposing constraints onto the timing and
duration of actions designed to mimic human reaction times and
ability. We show that these action value modifications result in the
A* search algorithm producing smoother paths, taking safer routes
to avoid danger, and requiring fewer actions to be performed in a
given amount of game time.

CCS CONCEPTS
• Computing methodologies→ Heuristic function construc-
tion.
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1 INTRODUCTION
2-Dimensional platforming video games (platformers) have been
a popular genre of video game for many decades, with the most
popular example being the Super Mario Bros. franchise of games
launched in the early 1980s by Nintendo. In these games, players
control an animated character that can run and jump throughout
an environment and do battle with enemies in order to reach the
end of a given level. Platformers typically vary in difficulty of play,
with harder games strategically placing level geometry such that
running and jumping require very specific input timings around
dangerous obstacles such as enemies or pitfalls.

Modern pathfinding algorithms have been shown to be able to
produce paths through levels in these games, with some particu-
larly popular examples being the Infinite Mario AI1 and MarIO
neural network2, which have garnered millions of views online.
These videos are popular not only for the impressiveness of the
technical challenge, but because the resulting play is beyond the
skill level that is possible by human players. The paths created by
these systems are visually impressive - flying through levels, mak-
ing frame-perfect jumps, and narrowly avoiding danger by mere
pixels. A surge in interest in AI-aided play lead to the creation of
the Mario AI championship, a competition which ran from 2009 to
2013 [Togelius et al. 2013] in which participants created their own
automated agents and competed against one another. Impressive
as these agents are, their performances are only made possible by

1https://www.youtube.com/watch?v=DlkMs4ZHHr8
2https://www.youtube.com/watch?v=qv6UVOQ0F44
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the perfect input precision of a computer AI player, and if a hu-
man player attempted to follow the same paths, any minor mistake
would lead them to certain doom. In the video game speedrunning
community this type of computer aided play is called a Tool-Assisted
Speedrun or TAS3, and paths that are only possible via superhuman
input precision are called "TAS-only" strategies - while technically
possible, they are infeasible to implement for a human trying to
learn to play the game.

With the introduction of New Super Mario Bros Wii in 2009,
Nintendo unveiled their Super Guide feature, intended to help strug-
gling players. This mode restarts the current level and hands control
of the player over to a pre-recorded instance of another human
playing the level. This system is intended to serve as a tutorial for
new players, reducing frustration by giving tips on how to accom-
plish goals within the game. While this feature is indeed helpful,
the recording of human completions of a level require a significant
time and budget cost to the game developers, and would have to
be re-recorded whenever a change to the level is made. It would be
advantageous to game developers offering these helpful features if
the paths could be produced automatically by AI systems, rather
than relying on human authorship.

Existing AI pathfinding systems however, as previously men-
tioned, typically produce super-human paths that would be im-
possible to implement by humans, especially those just learn to
play the game. The reasoning for this is due to the fact that these
pathfinding systems use heuristic action evaluations that optimize
paths for either distance or speed, with no care for the relative dif-
ficulty of its implementation, due to the fact that computer players
have perfect input precision. In this paper, we attempt to address
these concerns by imposing a number of constraints onto the action
evaluation function of the A* search algorithm. By paramaterizing
these evaluations we allow for a number of paths to be generated, in
hopes to generate helpful paths for players of differing skill levels.
These paths are generated with consideration for the reaction time
and dexterity of a human player, as well as the overall complexity
of the path involved. This is accomplished by limiting the frequency
and number of actions a player would be expected to perform. In
addition to creating paths that are more human-viable, we exam-
ine the robustness of these paths to noise, by perturbing the time
at which the predetermined inputs are entered. By analyzing the
success of these perturbed instances, we can determine how likely
a theoretical path is to stand up to human recreation, and even
attempt to quantify a level of safety based on how likely these
perturbed paths are to reach failure states.

2 BACKGROUND AND RELATEDWORK
2.1 A* for Real-time Games
The A* algorithm is a popular and industry-wide algorithm for path-
finding in general cases [Rabin 2015]. The core of the algorithm
is the combination of a priority queue and a heuristic function to
allow the algorithm to operate as a best-first search. In most graph-
based environment path-finding problems, actions are limited to
movement in the environment, and as such, action cost is measured
as the distance travelled by the action. Most modern video game

3https://tasvideos.org/

path-finding systems are split into two stages: the path-finding
stage, and the path-following stage (locomotion). Modern games
typically use a navigation mesh abstract representation of the en-
vironment, perform A* path-finding on that abstracted navmesh
graph, and then once a path is found they attempt to follow that
abstract path in the real game space.

A very important difference in this paper from traditional path-
finding systems is that our search space is not abstracted to a navi-
gation mesh structure, and is instead performed in the actual action
space of the user input of the player. Actions such as moving, jump-
ing, and shooting are all valid within our path-finding search. For
example, the shortest path in a level may involve running, jump-
ing off a ledge, and then shooting a hole in a wall that the player
can then traverse through, all while dodging enemies that may be
blocking our path. As such, we can no longer use a simple distance
function as a heuristic evaluation for the A* algorithm, and instead
we must use an estimate of the game time (frames) it will take the
user to get to a location. The simplest of these functions could just
take the distance to a goal location and divide it by the player’s
maximum speed in order to get an estimate of the time it takes
to get to goal. It should be noted that due to the complex game
rules of real-time platformers such as jumping, gravity effects, and
move speed altering power-ups, it can be very difficult to guarantee
that our heuristic functions are admissible, a quality required for
A* to produce optimal paths. We are therefore operating under the
assumption for the rest of this paper that strict optimality (in terms
of game time to each a goal) is not guaranteed. Time-optimal paths
can be achieved if a heuristic evaluation of 0 is used, however this
leads to a trade-off in performance as with any heuristic search
system - with the 0 heuristic providing no guidance for the search
while a very poor heuristic provides poor overall paths.

This type of real-time search in video games presents additional
challenges over traditional graph-based environments as well, since
the only viable analog for movement occurs when the game up-
dates its state. For a typical video game, this occurs 30-60 times a
second. The search tree therefore grows extremely quickly even
when attempting to calculate just a few seconds of movement. In
order to combat this increase in search space most real-time video
game search functions utilize what is known as skip frames, which
represent a batching of time in the search space. Once an action has
been issued, the resultant child node is generated not by advancing
the game forward one frame, but by a given of skip frames. This
leads to an additional parameterized trade-off in our search system,
with lower skip frame counts yielding longer but more fine-grained
paths, and higher skip frame counts yielding faster search times but
very coarse grained solutions with long delays between actions. If
however these skip frames are tuned to mimic human-like reaction
times, they can greatly reduce the complexity of the search space
while still retaining adequate performance [Braylan et al. 2015].

2.2 Human-like Pathing
While optimal paths can indeed be achieved, their super-human
requirements for perfect dexterity in their implementation can be
easily discerned by most human players [Fujii et al. 2012], and
as such are not viable for tutorial or guidance systems in games.
Attempts to create more realistic human-like agents have focused

https://tasvideos.org/
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on areas outside of heuristic search, be it through neuroevolution
[Ortega et al. 2013] or deep learning [Phuc et al. 2017]. Additionally,
most attempts to replicate human behavior have focused on repli-
cating human imperfections, such as allowing actions unrelated to
the goal state of the agent, or waiting for arbitrary lengths of time
[Temsiririrkkul et al. 2017].

Past experiments on the subject have used subjective analysis
and surveying to judge the perceived quality of the agents. In 2012
a Mario "Turing Test" was performed [Shaker et al. 2013] in which
participants were tasked with creating, and judging, the quality
of AI agent’s ability to mimic a human playing style. This test
introduced a formal series of metrics, however they were specific
to the Super Mario Bros. game, and several of the metrics relate to
specific game elements such as enemies and coins, not all of which
are present in all games. Of the top 3 entries in the competition,
two used influence maps and the third used a neural network.

3 METHODOLOGY
Most of the novelty of our system involves modifications to the stan-
dard time-optimal heuristic function previously discussed. These
modifications disincentivize the production of paths that would
exceed the limits of human ability. We achieve this by focusing
on modifiers that limit the frequency of actions required to reach
the goal. These Action Value Modifiers (AVMs) are described in
section 3.3, whose parameters are stored in external configuration
files, which allow us to easily run experiments of many different
types.

Searches are performed in our custom C++ game engine in real
time, with all player inputs representing possible actions. Having
complete control of this custom game engine allows us to copying,
rewind, and fast-forward any given game state, which facilitates
the use of heuristic search algorithms such as A*. The result of these
searches generate path data as a replay, described in section 3.2,
which can be saved as files for analysis or review. With a search
completed, our system runs analysis on the replays, tracking a
number of metrics we have selected which we believe best indicate
that the modified path has become more human-like. These metrics
are mostly related to the concept of action input timings, and are
discussed in depth in section 4.1

Using this system allows us to test parameters quickly to find
ranges that look visually appropriate, before defining a larger range
of parameters we want to test experimentally. Data is tracked as
the searches are performed and both output visually and saved to
disk for further analysis.

3.1 Custom 2-D Game Engine
Our game engine uses an Entity Component System (ECS) architec-
ture, and is written entirely in C++ from scratch. The only external
libraries used are the Simple Fast Multumedia Library (SFML) 4
which allows for the rendering of textures and handling of user
input, as well as an external JSON parser to allow for easy real-
time configuring of variables. The engine has several features that
facilitate our research goals:
• Completely deterministic
• Capable of generating and reading replays to recreate play

4https://www.sfml-dev.org

• Capable of quickly and easily copying game states to allow
for easy integration into heuristic search algorithms
• At all times the engine knows the actions available to the
player, and these can be queried from outside functions.
• The rendering system can be disabled (headless) for maxi-
mum speed, achieving several thousand frames per second
of simulation.

The engine can be configured to run in a headless mode, wherein
it takes a list of parameters from a configuration file and is capable
of directly comparing an arbitrary number of searches in random
locations across a corpus of levels. Levels themselves are loaded
from text files, and conform to the format specified for the Video
Game Level Corpus [Summerville et al. 2016].

The greatest advantage of using a custom system is that our
game engine logic / data and search algorithm code retain a large
degree of separation and modularity. The search algorithm receives
all actions as well as positional data from the game engine, and ex-
plores by selecting an action, after which the simulation is run and
the new player position given back to the algorithm for evaluation.
Many similar systems use hard coded values for their goals and
heuristics: for example many Super Mario AIs have precomputed
information about potential jump arcs, or use the player’s x position
as the goal, as the end goal of Mario is ultimately to run as far to
the right as possible. These modified heuristics are based on as-
sumptions about the game: for example the physics never changing.
These assumptions can allow for a large degree of discretization
for their specific task, but by not using any such assumptions our
system retains more generalizability. For example, in our engine
it is possible that mid way through a search that gravity could be
completely removed and the input methods changed to resemble a
top-down game. Because the search only knows the list of possible
legal actions and the resultant position, it would retain all function-
ality in a new game environment with no changes required to the
search code whatsoever.

3.2 Searches and Replays
Central to ourmethodology are the concepts of Searches and Replays.
The former being a class of functions dedicated to generating the
latter, which itself is simply a data class.

We define a Replay 𝑅 as an ordered sequence of actions, 𝐴1, 𝐴2
... 𝐴𝑛 , with each action 𝐴𝑖 consisting of two elements: 𝑎𝑡 (the time
at which the action occurred, measured in game frames), and 𝑎𝑛
(the name of the action being performed, such as JUMP, MOVE, or
SHOOT ). Given that our engine is completely deterministic, this
means that a sequence of play can be perfectly replicated from
a replay, assuming the starting conditions of the game state are
the same. Replays and states can be stored as text files for ease of
debugging and visualization. If at any time step in the game the AI
system issues no inputs, it does this via a NO-OP action, however
we elect not to store the no-op action in replays as it can be assumed
by default, and its inclusion would produce needlessly large replay
files. Figure 2 gives a simple example of the contents of a replay
file.

Action names are defined in the game engine as part of the
logic of the game being simulated. Their meaning, while useful
to humans, carries no semantic information to the algorithm. The

https://www.sfml-dev.org
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replay.txt
0 START-RIGHT
18 START-JUMP
30 END-JUMP
48 END-RIGHT

Figure 2: A sample replay file of a search conducted with a
frame skip value of 6. In this replay, the player would start by
immediately running to the right, pressing the jump button
at frame 18 for 12 frames, and then stopping 12 frames later.

performing of any complete action in our engine is broken down
into two distinct steps: the start and end of that action. The start
of an action such as running to the right: START-RIGHT would
be analogous to a player pressing down on the button that moves
the player to the right, while the END-RIGHT action would be the
player releasing that button. This format was chosen over to both
minimize the number of actions required in the replay file, as well
as allow the replay files to be human-readable.

A search represents a single instance of our A* search algorithm,
where all of the action value modifiers are defined. While many as-
pects of our search algorithm are paramaterizable, we have elected
to keep a constant value on frame skipping. Frame skipping is one
of the standard techniques for game state exploration and pathfind-
ing and has a documented history. Rather than expand a new game
state every frame, once an action has been decided, the search
continues the simulation of the game for a number of additional
frames before expanding to the next frame. Practically, this imposes
a limit on how often the search can take actions, as once an action
is taken it is “locked in” for the next 𝑛 frames. While this metric
has been used in some other simulations of human-like behaviour
it has some notable problems, especially when expanded to large
values to simulate human reaction time. While Deepmind’s Atari
DQN network used a frame skip value of 4 [Mnih et al. 2013], after
experimental testing we have opted to use a more lenient 6 frames
on all subsequent tests. Given our game engine runs at a consistent
60fps this also gives us a round value of 10 actions per second,
which is comparable to the dexterity of experienced players. Keep
in mind that this is an upper bound on the frequency of actions,
and we have observed that the vast majority of replay files contain
far fewer than 10 actions per second on average.

3.3 Action Value Modifiers
One of the core ideas of this paper is that of action value modifiers,
which act as modifiers on the heuristic cost function of actions
in our search algorithm. By modifying the A* search algorithm’s
heuristic evaluation we are effectively imposing constraints on the
behaviour of the resulting paths. The result of these modifications is
to attempting to prioritize the exploration of more human-friendly
paths by imposing penalties on the cost of performing actions that
we deem to be super-human, such as performing too many actions
in a short duration of time. A description of each of these modifiers
is as follows.

3.3.1 No-Op Modifier (NOM).
No-Op refers to the search choosing to take no action on the given

frame. It is the most common decision, and does not correspond
to an action change by our definitions. This modifier multiplies the
value of the no-op action, and as such setting it to <1.0 (incentiviz-
ing) causes the algorithm to favor paths with fewer actual actions. It
is a fairly naive way to incentivize reducing the number of actions,
and at large values can result in paths that perform poorly with our
chosen metrics. Because this action is by far the most common in
normal human play of most video games, setting the NOM to lower
values results in greedy search-like behaviour, and usually greatly
reduces the number of nodes expanded as well as calculation time
for a given search compared to default search behaviour, however
this is not the primary concern of our efforts.

3.3.2 Action Change Modifier (ACM).
Essentially the inverse of the previous modifier, when set to a value
higher than 1 it imposes a multiplicative penalty for every instance
of action changes. Penalizing these actions will attempt to find
paths with fewer action changes, which results in smoother paths
that, if performed by a human, would require fewer button presses.
Intuitively one would think this modification would perform iden-
tically to the previous NOM, however we have included both for
experimental purposes.

3.3.3 Consecutive Action Modifier (CAM).
The consecutive action modifier is a variation of the action change
modifier that considers the time between the current action and
the previous action. It is therefore defined by two parameters as
opposed to previous modifications: the first being the number of
frames since the last action (the window), the second being the
multiplier. It uses a simple binary check, imposing the penalty on
consecutive actions until the threshold has been passed at which
point it no longer applies. This results in penalizing multiple actions
in quick succession, whichwe believemore closely emulates human-
like play.

3.3.4 Progressive Consecutive Action Modifier (PCAM).
The progressive consecutive action modifier is the same as the con-
secutive action penalty, however instead of being a binary threshold,
the value of the multiplier is calculated as a linear interpolation
over the window’s duration. Given a multiplier𝑀 , a frame window
𝐹 , and considering the number of frames since the last action was
performed as 𝐹𝑙 we find our interpolated value𝑀𝑖 as follows:

𝑀𝑖 = 𝑀 −
(
𝐹𝑙

𝐹
×𝑀

)
3.3.5 AVM Integration With the A* Algorithm.
Our implementation of the A* algorithm uses the standard formula
for node selection from the priority queue of 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛),
with the next node 𝑛 to be expanded by the search being the one
with the lowest value of 𝑓 (𝑛). The value of 𝑔(𝑛) denotes the sum of
the action costs so far to node 𝑛 in the search, or the total path cost,
with the A* algorithm attempting to find the path that minimizes
𝑔(𝑛). As mentioned previously, due to the nature of the real-time
environment we do not use distance as a path cost function, but
instead we use game time measured in frames (how much time
did it take us to get to the goal, not how far did we travel). This
means that the value of 𝑔(𝑛) at any time in the search is just the
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current frame count of the game state, with individual action costs
not really having any relevance.

Therefore, each of our AVMs act as multipliers on the value of
ℎ(𝑛), effectively prioritizing which actions we should select next in
the search expansion. Intuitively this modifies the outcome of the
search in a way that is similar to Weighted A* Search, where we
are willing to reduce the time-optimality of the final path cost as a
trade-off for the human-like behavior that we desire. We can also
combine the effect of any number of AVMs by simply multiplying
them together. For example if we had NOM=0.7 and CAM=1.3 then
our A* search instance would use 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) ∗ 0.7 ∗ 1.3.

4 EXPERIMENTS AND RESULTS
We conducted a number of experiments comparing searches us-
ing variations of our modifiers against a default (unmodified) A*
implementation. Specifically the tests work as follows:
• Define a number of custom search instances through various
parameters of our modifiers.
• Randomly select a level from our level collection
• Randomly select two walkable tiles a sufficient distance from
each other, designating one as the start point and one as the
goal point
• Run each instance of the modified A* algorithms, including
the default, tracking metrics for all individually
• Repeat for a set number of iterations

4.1 Evaluation Metrics
Our evaluation metrics center around the concept of actions, or
more specifically changes in action state, which attempt to mimic
the action of a human being pressing a button or key. Once an
action is selected, such as "move right", the act of continuing this
action is not considered to change the action state, as a human
being holding the button to move right requires no further input to
continue the action. As previously described, the start and end of
actions are analagous to humans pressing and releasing buttons on
an input device.

During the experiment, several metrics are tracked per each
instance of randomized start/goal search, and are then aggregated to
produce a final value representing the model’s general performance.
Of particular interest we present the following metrics and their
rationale:
• Total number of action changes performed: "How many in-
puts are required to be pressed to complete this path?"
• Mean time between all action changes: "What is the aver-
age time between pressing inputs required to complete this
path?"
• The mean of minimum time between action changes per
path: "What is the shortest time between two consecutive
input presses required to complete this path?"

Given that paths produced by the default A* implementation are
often considered superhuman, reducing the average number of
actions and increasing the time between any two can be considered
analogous to creating more human-like pathing.

4.1.1 Robustness and Sensitivity Analysis.
Robustness refers to a paths ability to be resilient to the noise which

Algorithm 1: Perturbing Replays
Data: 𝑅
Result: 𝑅𝑃 = [𝑅1, 𝑅2, ...𝑅𝑛]
begin

𝑅𝑃 ← []
for 𝑖 ∈ [−20, 20]; 𝑖 ∈ Z do

foreach 𝐴 in 𝑅 do
𝑅𝑖 ← 𝑅 ; /* copy replay */

foreach 𝐴𝑃 in 𝑅𝑖 do
if 𝐴𝑃𝑡 >= 𝐴𝑡 then

𝐴𝑃𝑡 += 𝑖
RP.insert(𝑅𝑖 )

will inevitably be generated by human error in attempting to follow
the path. We track robustness using a form of sensitivity analysis.
Once a path is generated, we perturb the timing of all action changes
by shifting them forward or backward by a number of frames. This
would correspond to the imperfections in timing that would be
observed by a human player. This can also be considered as adding
regular noise to the timings of actions required to recreate the path.
As an example, humans usually do not wait until the very last frame
possible to perform a jump, as being one frame late on their input
would cause them to fall through a gap.

A brief overview of our perturbation algorithm can be seen
in Algorithm 1. Each search being considered by our experiment
generates a replay 𝑅 which we will use to create a number of
perturbed replays given as 𝑅𝑛 . After the path has been perturbed
a number of times, we re-simulate the newly created perturbed
replays from the same beginning state, tracking two metrics:

• Mean End Distance sums up the final position of all instances
of the perturbed paths, averaging the distance by which all
differ from the original end position.
• Mean Failure Rate tracks the percentage of instances which
reach a premature end state, falling into a pit in our case.
If no failure states are reached by any search, this value is
ignored for that instance.

In general these metrics attempt to track how “safe” a path is (how
robust it is to small deviations in input) . If there is a particularly dif-
ficult jump that must be performed with precise timing to progress,
then there will be a large deviation in the end positions of perturbed
paths, and the Mean End Distance will be high. Similarly if a path
skirts dangerously close to a game-over state (pitfalls or enemies),
then the failure rate of the perturbed paths will be quite high.

These metrics are of particular importance to us, because they
objectively test the intuition behind our modifiers. While our mod-
ifiers focus on reducing the timing of actions, robustness of a path
is not directly targeted for optimization. As such, if any correlation
is found it will not be a result of directly targeting this metric, but
rather emergent behaviour. Put simply, it would show that paths
that require more human-like inputs would generally be safer for
humans to attempt to follow.



FDG ’22, September 05-08, 2018, Athens, Greece Churchill and Bishop

Table 1: Best Performing Parameters

AVM Weight Total Actions Mean End Distance

NOM 0.75 91.9% 95.0%
ACM 8 82.2% 96.6%
CAM 36, 8 75.9% 72.0%
PCAM 36, 8 72.5% 71.2%

4.2 Selecting Best Performing Parameters for
Each Modifier Individually

Before testing the various modifiers against each other, we had
to select specific values for the parameters. The NOM and ACM
modifiers both define themselves through a single floating point
multiplier to path cost, while CAM and PCAM consist of the same
path multiplier in addition to an integer frame window. Performing
an exhaustive search of the potential space would be intractable for
this paper, and as such a range of potential values was determined
subjectively using real-time searches and visual analysis. With
these ranges determined, a series of tests were run, comparing all
parameters against each other as well as the default search. While
we tracked many data points, for brevity and clarity we will present
the total action changes as well as the perturbed end distance for
each section. The former representing, broadly, the complexity of
the path and the latter representing its safety. The best performing
searches are presented in Table 1 with the values given as their
percentage of default behavior. For both metrics a lower number
indicates better performance, as we want paths that take fewer
actions, and deviate less when noise is introduced.

4.2.1 NOM.
For the NOMwe ran tests comparing values of 0.75, 0.5, 0.25 and 0.1.
As this number represents a value multiplier on heuristic length,
lower values make not taking an action more favorable, and be
considered to be increasing the "strength" of the parameter. While
end distance increased fairly linearly, the total number of actions
for all values decreased significantly compared to default, but barely
increased with lower values. A value of 0.75 was selected.

4.2.2 ACM.
For ACM we tested values of 2, 4, 8 and 16. As with the NOM, all
tests performed fewer actions than default, however the advantage
of higher values decreased significantly, with the change from 8 to
16 not affecting the number of actions at all, and actually increasing
the mean end distance of perturbed paths by 0.1%. As such a value
of 8 was selected.

4.2.3 CAM.
For the CAM we had to select a range for the frame window as well
as the multiplier. Given our searches are using a skip frame value
of 6, we elected to test frame windows of 6, 12, 18, 24, 30, and 36.
For multiplier values we tested 2, 4 and 8. Every combination was
tested. As an overall trend the higher values for the frame window
parameter performed better, and higher multipliers performed bet-
ter as well. The search with a 30 frame window and a multiplier
of 8, performed identically to the search with a 36 frame window

Figure 3: Example of a "Robust" jump arc. Default A* search
results in the black path, while AVM search results in the
white path, avoiding dangerous edges.

with a multiplier of 8 in terms of actions and survival rate, and as
such the latter was selected.

4.2.4 PCAM.
For the PCAM we found better results with larger value for the
frame window parameter compared to the CAM, likely due to the
nature of the linear falloff of the multiplier. As such our frame
windows were selected from the range of 12 to 42, increasing by
6 as before. For multipliers we again used values of 2, 4 and 8.
Every combination was tested and curiously as before the two most
extreme values: frame window 36 with multiplier 8, and frame
window 42 with multiplier 8, performed near identically. The larger
42 frame window gave a slight increase in mean end distance for its
perturbed paths, and as such a frame window of 36 with a multiplier
of 8 was selected.

4.3 Comparing Best Performing Searches
With the best individual values selected, we ran an experiment
where all searches would be compared using the same paths. While
the individual tests gave us a sense of each modifiers performance
relative to the default, each experiment was run on its own set of
randomized paths, and as such some of the data might not be com-
parable. The methodology for this second experiment was the same
as the previous, but instead of testing a single modifier at multiple
values, we selected the previous best performing candidates to com-
pare them against each other. We also created a "combination" value
which used all the modifiers of the best performing candidates in
tandem. 1000 iterations were performed, testing each algorithm us-
ing the same randomized start and end points on randomly selected
levels from Super Mario Bros.

• NOM: Set to 0.75 to undervalue the heuristic of taking no
action by 25%.
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(a) Total Action
Changes

(b) Time Between
Action Changes

(c) End Distance of
Perturbed Paths

(d) Failure Rate of
Perturbed Paths

(e) A* Search Nodes
Expanded

(f) A* Search
Completion Time

(g) A* Search Instances
Completed

NOM 0.921 1.019 0.925 0.924 0.461 0.420 1.201

ACM 0.842 1.053 0.973 0.788 0.755 1.049 0.929

CAM 0.704 1.163 0.663 0.430 0.707 0.760 1.006

PCAM 0.709 1.142 0.682 0.453 0.702 0.767 0.990

COMBO 0.678 1.211 0.683 0.472 0.523 0.556 0.976
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Action Value Modifier Experiment Results vs. Default A* Search

Figure 4: Experimental results for Action Value Modifier A* Search vs. Default A* Search. All values are shown as a percentage
(0.9 = 90%) of the baseline Default A* Search result, averaged over 1000 randomized search instances for each experiment.

• ACM: Set to multiply the heuristic value of any action that
changes the player’s action state by 8.
• CAM: Set to multiply the heuristic value of any action oc-
curring 36 frames within a previous action by 8.
• PCAM: Uses the same values as the CAM but linearly de-
creases the penalty as described previously.
• COMBO: Applies all the above modifiers together, using the
progressive version of the consecutive action penalty.

4.4 Results
The results for our AVM experiments can be seen in Figure 4, please
refer to this Figure for all future results discussion.

4.4.1 Actions.
Action changes in our replays are analogous to individual human
inputs, and so ideally wewould like to see fewer total action changes
performed. In Figure 4a we can see that each of the AVMs produced
fewer total actions than the Default A* search (values < 1), with
CAM being the best performing of the individual AVMs, with the
COMBO search being the best overall performer. A general trend
can be observed of the ACM outperforming the NOM, and the two
Consecutive Action variants and combination all performing near
equally well when compared the the ACM. This shows us rather
conclusively that use of the frame window penalty technique seems
to be the best method for generating paths with fewer required
actions.

4.4.2 Time Between Actions.
To make paths more human-feasible, we would also prefer to see
a longer average time duration between action inputs. In Figure
Figure 4b we again see that the AVM searches outperformed the
Default A* search in this metric, with values all > 1. Once again
CAM outperformed PCAM with the combination search being the
best overall. This shows that not only do the frame windowing
techniques create paths with fewer actions, but that the resulting
actions are more evenly spaced. It is worth noting that in earlier
tests on the individual parameters, high values of ACM in particular
did not have a strong correlation between total actions and shortest

duration. Meaning that while the paths had fewer actions in total,
they would often be found in relatively short time frames.

4.4.3 Robustness Metrics.
For our robustness metrics we observed an even more dramatic
trend of the windowed versions of the searches to be the best
performers. For themean end distance of the perturbed paths shown
in Figure 4c, each AVM outperformed than the Default A* search
with values < 1, with a dramatic decrease in end distance for our
final 3 AVMs. This means that our AVMs produce paths which are
more robust to action perturbations in terms of still arriving close
to the original destination. As before, the CAM was the strongest
performing of the individual parameters, with COMBO being the
best performing overall.

For the failure rate of perturbed paths shown in 4d, we can see
that our AVMs again performed better than the Default A* search,
yielding paths that were more robust to action perturbations that
would result in the player falling into a pit and dying. This result is
the one metric that breaks the general trend, in that COMBO did not
offer the best performance. Here the CAM offered the single best
performance overall, with less than than half the failure rate of the
default search. An illustration of the robustness of our AVMs for this
metric can be seen in Figure 3. With properly tuned parameters this
jump not only increases the average time between actions (Default:
34, Modified: 51), but as a result the path avoids the dangerous
edges of the pit. Because the default black path waits until the last
possible frame to jump, and lands as soon as possible, many of the
perturbed paths that shift the jump action forward or backwards
would reach a fail state. The modified jump has much more room
for input error, and would be much safer for a human being to
attempt to replicate.

4.4.4 Path Execution Time.
Also of importance to our search is the actual game time spent in
traversing the paths produced by the various AVM search instances.
Previously we estimated that we would see an increase in total
travel time as we were expecting to trade path speed for other
human-like qualities, but our experiments showed that the path
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completion times were nearly identical to the Default A* search
for all AVMs tested. The worst performing search on average of all
the AVMs produced paths which took less than 1% more time to
complete than the Default A* search, and due to this small difference
the exact values were omitted from the results table.

4.4.5 A* Search Metrics.
When designing our AVM system we did not have a goal of improv-
ing overall search performance in mind, but we pleasantly found
out later that they can in fact improve search times. In Figure 4e we
can see that on average, each of our AVM searches resulted in far
fewer node expansions than the Default A* search. This means that
in general, fewer search iterations were performed, and (ideally)
searches take less time to complete. While we cannot prove the
reasoning behind this performance increase, our intuition is that by
guiding the search toward a more constrained human-like action
space likely ends up in searching fewer nodes, due to the implicit
pruning of more dense sequences of action changes. We can see
the results of actual wall-clock search times in Figure 4f, which
unlike nodes expanded also factors in the calculation time of each
AVM. We can see that each AVM search took significantly less time
than the Default A* search with the exception of ACM, which on
average took 5% longer. The average instance search time for the
Default A* algorithm was 23.3 milliseconds. Each search instance
was given a very lenient 5 seconds to complete before timing out,
however our experiment searches took on average between 9-24ms
per instance.

The final metric we measured was search instance completion
rate. When performing our search instances, we randomly selected
two points as the start and end points for the player. While this
demonstrates the ability to find paths in various points in the envi-
ronment, it is not guaranteed that a path actually exists between
the start and end points. If the search failed to complete in time, it
would simply be marked as incomplete. For the sake of fairness of
comparison, if any of the search instances failed to complete a path,
then that particular search instance was not used in calculating
the previous metrics. We can see from the results in Figure 4g that
there was not a significant difference between search completion
rates for the Default A* search and the AVM searches, and we could
not gain any insight from this metric.

5 CONCLUSION AND FUTUREWORK
In this paper we have introduced the novel idea of Action Value
Modifiers, a set of heuristic action evaluations that when paired
with the A* search algorithm produce paths that yield qualities that
are more human-like than a baseline default A* search that only
minimizes path completion time. Our experiments show the paths
produced by our AVMs yield fewer total action inputs, space out
those actions by longer periods of time, and result in paths that
are more robust to action input noise. By perturbing the timing
performed actions in the simulation of a path, we show that our
techniques result in paths that reach failure states less often, and
generally come closer to the end goal when compared to the base-
line. We have also shown that not only do these paths have more
desirable qualities, but they take less time to calculate on average
than a default A* search.

There are many avenues we wish to pursue in the future for this
work. Of particular interest would be the actual testing of these
generated paths with human participants. While measuring various
metrics does show that we have achieved our initial goals for this
paper, the true test would be to have human players attempt to
follow both sets of paths in a tutorial setting similar to Nintendo’s
Super Guide feature, and then comment on which they found to be
more useful in enhancing their gameplay experience.

Additionally, we would like to extend our initial ideas of AVMs
to create a system which can infer the human perceived difficulty
of a path or even an entire level layout. Conceptually, by creating
searches with more punishing modifiers to the timing of actions,
we can better approximate the ability of less skilled players. Dynam-
ically tuning the values of the search parameters on a path until it
reaches a failure state could be a prospective source of automati-
cally determining the skill level required to reach a goal. A longer
term goal would then be to use this difficulty inference to creation
of content of varying difficulties by combining it with techniques
in the field of procedural content generation.
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