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Abstract—Real-time strategy video games have proven to be
a very challenging area for applications of artificial intelligence
research. With their vast state and action spaces and real-time
constraints, existing AI solutions have been shown to be too
slow, or only able to be applied to small problem sets, while
human players still dominate RTS AI systems. This paper makes
three contributions to advancing the state of AI for popular
commercial RTS game combat, which can consist of battles
of dozens of units. First, we present an efficient system for
modelling abstract RTS combat called SparCraft, which can
perform millions of unit actions per second and visualize them.
We then present a modification of the UCT algorithm capable
of performing search in games with simultaneous and durative
actions. Finally, a novel greedy search algorithm called Portfolio
Greedy Search is presented which uses hill climbing and accurate
playout-based evaluations to efficiently search even the largest
combat scenarios. We demonstrate that Portfolio Greedy Search
outperforms state of the art Alpha-Beta and UCT search methods
for large StarCraft combat scenarios of up to 50 vs. 50 units under
real-time search constraints of 40 ms per search episode.

I. Introduction and Background

Multi-agent planning is an important sub-field of Artificial
Intelligence research with many real-world applications that
deal with agent cooperation, such as robotic search and rescue
missions and unit coordination on a battlefield. Finding optimal
actions for collections of agents if computationally intractable
for all but the simplest planning tasks. For instance, finding
shortest solutions in the generalized sliding tile puzzle —
which can be regarded as a restricted multi-agent path-planning
problem — is NP-hard [1]. When constructing planning sys-
tems involving multiple agents acting in the world, we therefore
have to resort to approximations which hopefully generate
useful results, even under real-time constraints.

Video games are fruitful application areas for multi-agent
planning research. Often fast paced and featuring numerous
game objects that can act independently, video games pose
challenging research questions, such as:

1) How to quickly navigate groups of units on large maps,
while staying in formation?

2) How to deal with imperfect information, such as un-
known opponent locations?

3) How to cooperate well with team members?
4) How to detect and exploit opponent weaknesses?
5) How to coordinate attacks involving dozens of units?

Most planning tasks in video games are time critical —
any delay can be costly. Consider, for instance, a combat unit
targeting system. Finding most effective target sequences is
PSPACE-hard [2]. So, if we actually took the time to solve
non-trivial instances of this problem optimally while playing,

we could see ourselves outplayed by a much faster scripted
solution that employs simple strategies such as “attack the
weakest opponent unit in weapon’s range”. It is therefore
important to balance plan quality and planning time, and to
strive for systems that are able to interleave planning with plan
execution.

In recent years, developing AI systems for video games
has gained attention in the AI research community due to
the challenging problems these games pose, combined with
the fact that human players still outperform AI systems in
this application area, as demonstrated — for example —
at the AIIDE 2012 workshop on Artificial Intelligence in
Adversarial Real-Time Games [3], where a strong, but not quite
world-championship level StarCraft player defeated the best
StarCraft AI systems without any problem. StarCraft by
Blizzard Entertainment is a popular real-time strategy game in
which players try to defeat opponents by gathering resources,
producing fighting units, and destroying their buildings on
large playing fields in real-time.

With the advent of the BroodWar API (BWAPI, [4]) it
is now possible to construct AI systems for StarCraft that
directly communicate with the game engine and play against
each other. Several StarCraft AI competitions are being
held each year with a dozen entries or more [4]. While the
best AI players are still rule-based systems, the number of
competition entries utilizing more sophisticated AI techniques
such as Bayesian inference and heuristic search is rising.

RTS game strategy can loosely be divided into macro and
micro, which deal with high-level aspects such as economic
development and technology advancement, and low-level as-
pects such obstacle avoidance and unit targeting in combat.
When developing AI systems for complex video games it is
tempting to use algorithms that have been shown well suited
for adversarial abstract games such as Chess and Go, namely
Alpha-Beta and UCT search. However, the astronomical search
spaces render such an approach fruitless, unless one is willing
to consider state or action abstractions, or one considers small
sub-problems, such as small-scale battles.

In this article, we focus on the problem of finding good
action sequences for a group of units engaged in combat with
opponent units, where individual unit’s actions consist of either
targeting units within weapon range or moving around. A
combat game is a series of simultaneous move rounds, in which
units lose so-called hit points when being attacked and are
removed when their hit point counts drop below 1. The player
who first destroys all opponent’s units wins. Playing such
combat sub-games well is crucial for winning RTS games in
confrontations between players with similar macro skills. One
of the best StarCraft players of all time, Jaedong, attributed



his success to his unit control, saying “That micro made me
different from everyone else in Brood War, and I won a lot of
games on that micro alone". [5]

As shown in [2], [6], simple combat games, in which units
can’t move, are multi-round zero sum matrix games, which
therefore — in principle — can be solved bottom up by linear
programming. However, deciding whether there exists a pure
winning strategy for simple combat games has been shown to
be PSPACE-hard and in EXPTIME [2]. It is an open problem,
whether this decision problem is PSPACE-complete. Solving
large game instances under tight real-time constraints is there-
fore infeasible, and one needs to resort to approximations.
Prior work on such approximations, including those for the full
combat game featuring unit motion is discussed in Section III.

In this paper we focus on the combat game with unit
motion. We present a new algorithm that performs much
better than state-of-the-art Alpha-Beta and UCT based players
in settings relevant to playing RTS games with dozens of
units involved in combat. In what follows we first present the
combat model we will be using in detail and describe basic
scripted policies, state evaluations, and existing approximation
algorithms. Then we present a modification of UCT tree search
for use in RTS combat scenarios. Next, we introduce portfolio
greedy search — a local search approach designed to overcome
the enormous branching factor in multi-unit combat scenarios
— which we then empirically compare with state-of-the-art
search techniques. We conclude by discussing future work.

II. RTS Game Combat Model

Before attempting to construct AI agents for combat in
StarCraft, we must first construct a system which efficiently
simulates the game itself. One way of performing StarCraft

combat is through the BWAPI programming interface, which
allows for interaction with the actual StarCraft game in-
terface. Unfortunately, this method has a maximum speed of
approximately 800 game frames per second, and does not allow
us to control and manipulate local state instances directly. As
one search episode may perform tens of thousands of moves
with a real-time constraint of 40 ms, with each move having
a duration of at least one simulation frame, we must construct
an abstract model of StarCraft combat which efficiently
implements moves in a way that does not rely on simulating
each in-game frame.

A. Combat Model: SparCraft

To simulate StarCraft game combat, we have created
an open source simulation package called SparCraft. Since
the source code for StarCraft is unavailable, this system
is our best approximation as to how the game functions.
Units can be given attack, move, and wait commands. All
unit properties such as hit points, cool-down period, speed,
size, armor, and weapon types are modelled exactly from
StarCraft with the exception of acceleration, with all units
having constant speed while moving. All upgrades and research
are modelled. However, spell casters and units that contain
other units (reavers, carriers, bunkers, transports) are not yet
implemented. SparCraft does not yet implement unit collisions
(to increase simulation speed) or fog of war, either.

For complete details of the system, its functionality and its
limitations please consult [7]. SparCraft is comprised of three
main data components and two main logic functions:

State s = 〈t, U1, U2〉

• Current game time t
• Sets of units Ui under control of player i

Unit u = 〈p, hp, ta, tm, type〉

• Position p = 〈x, y〉 in R
2

• Current hit points hp
• Time step when unit can next attack ta, or move tm
• StarCraft unit type, defining all static unit properties

such as damage, maximum hp, armor, speed, etc

Move m = 〈a1, . . . , ak〉 which is a combination of unit
actions ai = 〈u, type, target, t〉, with

• Unit u to perform this action
• The type type of action to be performed: Attack unit

target, Move u to position target, or Wait until time t

Playerfunction p [m = p(s, U)]

• Input state s and units U under player’s control
• Performs Move decision logic
• Returns move m generated by p

Game function g [r = g(s, p1, p2)]

• Initial state s and players p1, p2
• Performs game simulation logic
• Returns game result r (win, lose or draw)

Within this framework, once an AI agent is constructed
for performing combat decisions it can be implemented in the
system as a Player function.

III. AI Systems for RTS Combat Games

We can categorize AI players for RTS combat games as
one of two types: static scripted players, and more reactive
and complex players based on search or learning techniques.
The simplest and most common approach thus far are scripted
players, which are currently the only solution implemented for
retail RTS game AI, and RTS AI competition bots. We define
a script c in this context as a function a = c(s, u) which given
input state s and unit u, performs a series of static scripted
rules (similar to a finite state machine) to produce an action a
which is to be performed by u in the next time step. A scripted
player can then be thought of as implementing a sequence of
scripts 〈c1, c2, ..., cn〉 where n is the number of units controlled
by the player and ai = ci(s, ui) determines the action to be
performed by unit ui. Scripts ci may all be the same script
function or be some combination of different scripts.

Some examples of commonly implemented scripts are:

• The Attack-Closest script in which units will attack the
closest opponent unit within weapon’s range if it can
currently fire. Otherwise, if it is within range of an
enemy but is reloading, it will wait in-place until it has
reloaded. If it is not in range of any enemy, it will move
toward the closest enemy a fixed distance.

• The Attack-Weakest strategy is similar to Attack-Closest,
except units attack an opponent unit with the lowest hp
within range when able. This script is (probably) used
by the retail AI in StarCraft: BroodWar.

• The Kiter script is similar to Attack-Closest, except it
will move a fixed distance away from the closest enemy
when it is unable to fire.



• The Attack-Value strategy is similar to Attack-Closest,
except units attack an opponent unit with the highest
damage per frame / hp value within range when able.
This choice leads to optimal play in 1 vs. n scenarios
[2].

• The No-OverKill-Attack-Value (NOK-AV) strategy is
similar to Attack-Value, except units will not attack an
enemy unit which has been assigned lethal damage this
round. It will instead choose the next priority target, or
wait if one does not exist.

RTS games such as WarCraft 3, StarCraft, and Star-

Craft 2 appear to control their units via a single scripted
player similar to Attack-Weakest. In the 2012 StarCraft

AI Competition, the top 3 finishing AI bots: Skynet, Aiur,
and UAlbertaBot each used script players for combat, with
each unit type being guided by its own script, i.e.: Dragoon-
BehavioursScript, MarineBehavioursScript, which each were
small finite state machines consisting of scripts similar to
Attack-Weakest and Kiter.

In [8] a combination of scripted actions and influence
maps was used to perform kiting behaviour for small scale
combat. Initially designing their system for use in 1 vs. 1
combat, it scaled well up combat of 4 fast kiting vulture units
vs 6 slower scripted zealot units. However, their system was
designed specifically for kiting scenarios, so it is not applicable
to general large-scale RTS combat.

A. Existing Search Techniques

As scripted player policies in RTS are highly exploitable
[5] and unable to adapt to different situations, we are interested
in more dynamic solutions which are more robust to changing
opponents and combat settings. Two-player RTS combat can be
classified as a two-player zero-sum simultaneous move game
[5], and as such it is guaranteed to have a Nash equilibrium.
Unfortunately, due to the PSPACE-hardness of finding pure
winning strategies, approximations have to be found via other
techniques. One method for doing this in classical games is
minimax tree search, with the two most popular tree search
algorithms being Alpha-Beta search and UCT search.

In [6], a method for simulating simultaneous moves for two
player tree search was introduced, which instead of deciding
on a move for each player simultaneously carries out two
sequential moves, with action effects being delayed until after
the second move. Delayed action effects are necessary to ensure
that no player gains an advantage by being the first player
chosen to act. For example, if two units are low on health
and are able to shoot and kill each other at the same time, in
a sequential move setting the first unit to act would kill the
other without any retaliation. By delaying action effects until
the second player has chosen a move in these sequential move
pairs, then applying all effects at once, fairness is assured.
In [5] a modification of Alpha-Beta search called Alpha-Beta
Considering Durations (ABCD) was introduced which applied
this technique for dealing with simultaneous move games,
and performed very well against scripted solutions for small-
scale combat scenarios. A version of UCT was applied to
RTS combat in [9], however it was a simplified version of
Wargus, an open-source WarCraft 2 clone in which only units
of the same type (footmen) were considered. Due to the more
complex nature of StarCraft we must make modifications to

UCT which are similar to those of ABCD in order to use it for
general RTS combat. This algorithm, called UCT Considering
Durations (UCTCD) will be presentation in Section IV.

B. State Evaluation and Playouts

As with many game search applications, state spaces are
often too large to search completely, so heuristics must be
employed to evaluate non-terminal states. In traditional games
such as Checkers or Chess these heuristic functions often
depend on expertly crafted formula based on intuitive notions
such as game positioning, or material counts. In [6], several
suggestions were made for formula-based evaluations for RTS
combat scenarios. The best one described in the paper was
the LTD2 evaluation formula which combines the sum of the
square root of hit points remaining of each unit times their
maximum damage rate:

LTD2(s) =
∑

u∈U1

√

hp(u) · dpf(u)−
∑

u∈U2

√

hp(u) · dpf(u)

It was shown in [5] that this formula is beaten by evaluation
methods using deterministic script-based game playouts. By
performing a playout using the same scripted policy for both
players, we can estimate which player has an advantage at a
given state. Intuitively, if both players continue playing from
a given state with the same policy and one wins, it probably
had a strategic advantage at the initial state.

IV. UCT Considering Durations

Implementations of UCT tree search for traditional games
like Chess or Go assume alternating moves where actions have
identical durations. To apply UCT to simultaneous move games
with durative actions we must modify UCT in several aspects.
Algorithm 1 shows this modified algorithm, UCT Considering
Durations, which consists of four main procedures. The first,
UCTSearch takes as input an initial state s and the player we
are maximizing p and as output returns the move to be per-
formed by the player in the next time step. It chooses this move
in the normal UCT fashion of repeated traversals through the
game tree via the Traverse procedure. Traverse selects which
child node to recurse through via the SelectNode procedure,
and at unvisited or terminal nodes applies a playout evaluation
of the resulting state. When Traverse visits a node for the
second time it generates the children of that node, storing the
parent of the node as well the move which generated it. As
mentioned previously, we simulate performing simultaneous
moves in tree search via two sequential moves, one for each
player. To enable this, nodes in the search are labelled with one
of three types. Type FIRST signifies a node which is the “first”
such sequential move, with SECOND being the second move.
Finally, a SOLO node signifies only one player is able to act.
UpdateState only applies moves to states which are not of type
FIRST, unless they are leaf nodes in the tree (which must be
evaluated). Whenever a node of type SECOND is encountered,
the move from its parent is applied at the same time as its own
move, simulating simultaneous actions.

V. Portfolio Greedy Search Algorithm

We introduce a new any-time greedy search algorithm for
RTS combat micro called Portfolio Greedy Search. Search
algorithms such as Alpha-Beta and UCT attempt to search as



Algorithm 1 UCT Considering Durations

1: procedure UCTCD(State s)
2: root ← new Node
3: for i← 1 to maxTraversals do
4: Traverse(root, Clone(s))
5: if timeElapsed > timeLimit then break

6: return most visited move at root
7:

8: procedure Traverse(Node n, State s)
9: if n.visits = 0 then

10: UpdateState(n, s, true)
11: score ← s.eval()
12: else
13: UpdateState(n, s, false)
14: if n.isTerminal() then
15: score ← s.eval()
16: else
17: if !n.hasChildren() then
18: generateChildren(s, n)

19: score ← Traverse(SelectNode(n), s)
20: n.visits++
21: n.updateTotalScore(score) ⊲ w.r.t. player to move
22: return score
23:

24: procedure SelectNode(Node n)
25: bestScore ← −∞
26: for child c in n.getChildren() do
27: if c.visits = 0 then return c
28: score ← c.totalScore / c.visits +

29: K ·
√

log (n.visits)/c.visits
30: if score > bestScore then
31: bestScore ← score
32: bestNode ← c
33: return bestNode
34:

35: procedure UpdateState(Node n, State s, bool leaf)
36: if (n.type 6= FIRST) or leaf then
37: if n.type = SECOND then
38: s.makeMove(n.parent.move)

39: s.makeMove(n.move)

many actions as possible from a given state in order to cover a
large portion of the search space. They then recursively search
child nodes deeper into the tree in order to determine which
actions at the root will yield beneficial future states. Move-
ordering schemes such as those discussed in Subsecion VI-D
can be implemented to reduce the branching factor, but they
are still quite large. For RTS combat scenarios, the number
of actions possible from any state is the combination of all
possible actions by each unit, which is approximately LU

where L is the average number of legal moves per unit, and
U is the number of units which can act. Also an issue for
traditional search techniques is inaccurate evaluations for non-
terminal nodes, which has improved with the introduction of
scripted playouts, but still suffers from the fact that these
playouts apply a single script policy to every unit in the state.
Portfolio Greedy Search deals with these issues in several
ways:

• It reduces the number of actions searched for each unit
by limiting them to actions produced by a set of scripts

called a portfolio

• Instead of searching an exponential number of combi-
nations of unit actions, it instead applies a hill-climbing
technique to reduce this to a linear amount

• It does not perform any recursive tree search, but instead
relies on accurate heuristic evaluations at the root node

• It improves the quality of heuristic evaluation by per-
forming playouts with individually chosen unit-script
assignments, rather than assuming all units follow the
same policies during the playout.

A. Algorithm

Portfolio Greedy Search takes as input an initial RTS com-
bat state, a set of scripts to be searched called a portfolio, and
two integer values I and R. I is the number of improvement
iterations we will perform, and R is the number of responses
we will perform. As output it produces a player move, similar
to the output of Alpha-Beta or UCT. The algorithm can be
broken down into three main procedures:

• The main procedure PortfolioGreedySearch sets up the
initial players and performs the main loops for improving
the player policies. Players are initially seeded by the
GetSeedPlayer procedure that returns an initial player
which can then be improved upon via the hill-climbing
Improve procedure. After we have improved our player,
we can then improve our enemy by the same method,
and re-improve our player based on the now stronger
opponent. This process is repeated as many times as
desired and the resulting player policy is returned.

• The GetSeedPlayer procedure can be seen on line 14.
This procedure produces an initial policy to be imple-
mented by all units the player controls. To do this, it
iterates over all scripts in our portfolio, setting each
unit’s policy to the current script, and then perform a
playout with each iteration. We then set our player’s
initial seed policy to the best performing script found
via this process.

• The Improve procedure is the most important part of the
Portfolio Greedy Search algorithm. Instead of searching
an exponentially large combination of all possible unit
actions, it instead uses a hill-climbing procedure to
search over each script in our portfolio exactly once
for each unit. At each iteration it performs a playout
using the individual unit-script assignments, the result
is recorded, and after each script has been applied to a
unit, that unit’s script is set to the best one found so far
during the process.

VI. Experiments

Two main sets of experiments were carried out to compare
the performance of ABCD, UCTCD, and the new Portfolio
Greedy Search algorithms. The first set of experiments play
ABCD vs. UCT, in order to show the comparative strength
of the two baseline search algorithms. The second set of
experiments then play ABCD and UCT vs. the proposed
Portfolio Greedy Search algorithm to see how it performs
against the current state of the art.



Algorithm 2 Portfolio Greedy Search

1: Portfolio P ⊲ Script Portfolio
2: Integer I ⊲ Improvement Iterations
3: Integer R ⊲ Self/Enemy Improvement Responses
4: Script D ⊲ Default Script
5:

6: procedure PortfolioGreedySearch(State s, Player p)
7: Script enemy[s.numUnits(opponent(p))].fill(D)
8: Script self[] ← GetSeedPlayer(s, p, enemy)
9: enemy ← GetSeedPlayer(s, opponent(p), self)

10: self = Improve(s, p, self, enemy)
11: for r = 1 to R do
12: enemy = Improve(s, opponent(p), enemy, self)
13: self = Improve(s, p, self, enemy)

return generateMoves(self)

14:

15: procedure GetSeedPlayer(State s, Player p, Script e[])
16: Script self[s.numUnits(p)]
17: bestValue ← −∞
18: Script bestScript ← ∅
19: for Script c in P do
20: self.fill(c)
21: value ← Playout(s, p, self, e)
22: if value > bestValue then
23: bestValue ← value
24: bestScript ← c

25: self.fill(bestScript)
26: return self
27:

28: procedure Improve(State s, Player p, Script self[],
29: Script e[])
30: for i = 1 to I do
31: for u = 1 to self.length do
32: if timeElapsed > timeLimit then return

33: bestValue ← −∞
34: Script bestScript ← ∅
35: for Script c in P do
36: self[u] ← c
37: value ← Playout(s, p, self, e)
38: if value > bestValue then
39: bestValue ← value
40: bestScript ← c

41: self[u] ← bestScript

42: return self

A. Combat Scenario Setup

Each experiment consists of a series of combat scenarios in
which each player controls an identical group of n StarCraft

units. To show how each algorithm performs in large combat
scenarios, each experiment was repeated for values of n equal
to 8, 16, 32, and 50, 50 being roughly the size of the largest
battles seen in a typical game of StarCraft. Further, two
different geometric configurations of the initial unit states were
used:

• Symmetric states, in which units for each player are
placed randomly symmetric about the midpoint m of
the battlefield. For each unit in position m + (x, y) for
player 1, player 2 receives the same unit at position
m+(−x,−y). This ensures a fair initial starting position,
but one which would not typically be seen in an RTS

combat setting.

• Separated states were designed to more closely resemble
an actual RTS combat scenario. A midpoint m for
the battlefield is chosen, and then each player’s force
is generated randomly symmetric to the midpoint, and
then translated a fixed distance d to the left or right.
For example, a unit for player 1 generates a random
(x, y) position and is placed at location m+ (x− d, y)
with player 2’s identical unit being placed at position
m+ (−x+ d,−y). Distance d was chosen so that it is
larger than the largest attack radius of any unit, so that
both groups of unit are separated before attacking begins,
simulating two opposing forces clashing on a battlefield.
Each separated state is generated twice, with each force
appearing once on the left and once on the right, for
fairness.

For both symmetric and separated states, random positions
(x, y) were generated with bounds of x, y ∈ [−128, 128]
pixels. This kept a decent spacing of starting units, while
mimicking the tight formation of a typical group of units in a
combat scenario. The battlefield itself was an enclosed arena
with width 1280 pixels and height 720 pixels, with midpoint
position m = (640, 360). Units were free to move anywhere
within the arena, but could not move through the “walls” at
the outer edges. An enclosed arena was used to ensure that
each battle eventually terminated, as an infinite plane resulted
in many cases of one player simply running away from a fight
indefinitely.

Although movement in SparCraft can be performed in any
direction, for our experiments we limit movement to only
allow fixed length movements up, down, left, or right. This
abstraction is necessary to reduce the search space for each
algorithm. Although this abstraction may seem quite coarse,
by setting a small movement length of 8 pixels the movement
of units in the simulator appears quite similar to the actual
game of StarCraft.

For each set of experiments, 5 different different configura-
tions of starting unit types were also used to simulate various
RTS army compositions with both melee and ranged units of
different strengths. Also, early game units were used as they are
by far the most commonly seen units in StarCraft combat.
The following were used as starting unit type counts for each
player for each battle of size n units:

• n Protoss Dragoons (Strong Ranged)

• n Zerg Zerglings (Weak Melee)

• n/2 Protoss Dragoons (Strong Ranged) with n/2 Protoss
Zealots (Strong Melee)

• n/2 Protoss Dragoons (Strong Ranged) with n/2 Terran
Marines (Weak Ranged)

• n/2 Terran Marines (Weak Ranged) with n/2 Zerg
Zerglings (Weak Melee)

100 randomly generated battles were carried out for each
of the 5 starting unit configurations, giving 500 total battles for
each separated state and for each symmetric state experiment
for each tested value of n starting units.



B. Environment and Search Settings

All experiments were performed on an Intel(R) Core(TM)
i7-3770K CPU @ 3.50GHz running Windows 7 Professional
Edition, with all algorithms running single-threaded. A total
of 12 GB DDR3 1600MHz RAM was available, however
the maximum amount of RAM consumed by any process
monitored at less than 14 MB, which was used to store both
the UCT search tree and the Alpha-Beta transposition table.
Experiments were programmed in C++ and compiled using
Visual Studio 2012.

C. Search Algorithm Parameters

Each search algorithm was given a 40 ms time limit per
search episode to return a move at a given state. This time limit
was chosen to mimic real-time performance in StarCraft,
which runs at 24 fps (42 ms per frame). Alpha-Beta and UCT
search algorithms were given an upper limit of 20 children
per search node. Due to the exponential number of possible
actions at each search state, having no upper bound on the
number of children at a node would often produce searches
which did not leave the root node of a tree, which produced
very bad results. In practice we found that imposing a child
limit, when combined with clever move-ordering (next section)
produce best results.

• Alpha-Beta search:

◦ Time Limit: 40 ms
◦ Max Children: 20
◦ Evaluation: NOK-AV vs. NOK-AV Playout
◦ Transposition Table Size: 100000 (13.2 MB)

• UCT search:

◦ Time Limit: 40 ms
◦ Max Children: 20
◦ Evaluation: NOK-AV vs. NOK-AV Playout
◦ Final Move Selection: Most Visited
◦ Exploration Constant: 1.6
◦ Child Generation: One-at-leaf
◦ Tree Size: No Limit (6 MB largest seen in 40 ms)

• Portfolio Greedy search:

◦ Time Limit: 40 ms
◦ Improvement Iterations I: 1
◦ Response Iterations R: 0
◦ Initial Enemy Script: NOK-AV
◦ Evaluation: Improved Playout
◦ Portfolio Used: (NOK-AV, Kiter)

Of note is the choice of low settings for I = 1 and
R = 0. These were chosen for two reasons: first, to show the
performance of the base settings for Portfolio Greedy Search,
and also because higher settings do not yet run within 40 ms.

D. Move Ordering

It is well known that with game tree search algorithms
such as Alpha-Beta or UCT, a good move-ordering scheme
can greatly improve performance. If better moves are searched
first, Alpha-Beta can produce better cuts and search deeper,
while if UCT searches better nodes first, it will spend less
time exploring less valuable moves. With a child limit imposed
on our search, we must ensure that the moves we search are
useful, and we do this in several ways. At each search node,

both Alpha-Beta and UCT first search the moves generated by
our NOK-AV and Kiter scripts. These moves are then followed
by moves containing Attack actions, then by moves containing
Movement actions. Movement actions are explored in random
order for fairness. In the case of Alpha-Beta we also consider
moves which have been stored in the transposition table.

E. Opponent Modelling

Experiments involving Alpha-Beta (AB) and UCTCD
(UCT) were conducted with two opponent-modelling param-
eter settings: either all opponent actions were searched in the
game tree, or opponent actions were fixed to that of the NOK-
AV script. By fixing the enemy actions, we are effectively
calculating a “best response” to that script (opponent mod-
elling) in an attempt to exploit it. This was shown to give
a substantial performance against scripted opponents in [5],
and so we tested to see if it would have any effect against
Portfolio Greedy Search, which searches over scripted moves.
If these best response searches are found to increase results
against Portfolio Greedy Search, then this will be a significant
weakness in the algorithm.

VII. Results

Before results were run, parameter optimization was per-
formed on the exploration constant K of the UCT algorithm
(Algorithm 1, line 29) to ensure good performance in our
experiments. The results from this optimization can be seen
in Fig. 1, which determined that the choice of constant did
not highly affect results in either the symmetric or separated
state experiments against Alpha-Beta. We chose a value of 1.6,
which was the value with the highest result sum from both
experiments.

A. Search vs. Script

Experiments were performed with Alpha-Beta, UCT, and
Portfolio Greedy Search against each script type listed in III,
with all 3 search techniques achieving a win rate of 100%
against scripted players for all battle sizes.
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Fig. 1: Average scores for various settings of UCT exploration
constant K. Experiments were performed vs. Portfolio Greedy
Search with 8, 16, 32, and 50 starting units for both separated
and symmetric states. K = 1.6 was chosen for the paper’s
main experiments.
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Fig. 2: Results of Alpha-Beta vs. UCT for Symmetric States (left) and Separated States (right). Both algorithms have two
configurations, one without opponent modelling labelled “None”, and with modelling against script NOK-AV. Results are shown
for combat scenarios of n vs. n units, where n = 8, 16, 32, 50. 500 combat scenarios were played out for each configuration.
95% confidence error bars are shown for each experiment.
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Fig. 3: Results of Portfolio Greedy Search vs. Alpha-Beta and UCT for Symmetric States (left) and Separated States (right).
Both algorithms have two configurations, one without opponent modelling labelled “None”, and with modelling against script
NOK-AV. Results are shown for combat scenarios of n vs. n units, where n = 8, 16, 32, 50. 500 combat scenarios were played
out for each configuration. 95% confidence error bars are shown for each experiment.

B. UCT vs. Alpha-Beta

The results from the UCT vs. Alpha-Beta experiment can
be seen in Fig. 2. Immediately one notices the dramatic
difference in the result between symmetric state and separated
state types. Experiments performed in symmetric states tend to
show equal performance between both algorithms, except for
the case where both UCT and Alpha-Beta are configured to
compute a best response to the NOK-AV script. Experiments
on separated states (the more realistic of the two types) show
that for small battles, both methods perform equally well, but
UCT outperforms Alpha-Beta as the battles grow larger.

A possible explanation for the difference in results between
the two state types is intuitive: in symmetric states, units are
usually within firing range of many other units, and since there
is a small reload-speed penalty for moving (as is present in
StarCraft), the problem reduces almost entirely to a unit-
targeting problem. By almost completely eliminating the need
for clever movement, neither search algorithm can gain an
advantage over the other through search. For separated states,
there is much more room for clever tactics such as kiting,

retreating when at low health, group formations, etc. Since both
search algorithms are given identical action spaces to search,
this shows that the UCT algorithm is better suited for larger
RTS combat scenarios than Alpha-Beta.

C. Portfolio Greedy Search

Results from the Portfolio Greedy Search algorithm can
be seen in Fig. 3. As in the previous experiment, the results
for symmetric states are fairly even, with the exception versus
the Alpha-Beta algorithm which computes a best response to
NOK-AV. Because NOK-AV is one of the two scripts in the
portfolio and symmetric states tend to favour no movement,
NOK-AV will be the script chosen by the greedy search the
majority of the time. As shown in [5], this type of best
response computation can be quite powerful in exploiting
scripted behaviours. However, these results also show that UCT
does far worse than Alpha-Beta at performing this exploitation.

The separated state results show that the portfolio greedy
search algorithm easily defeats Alpha-Beta and UCT for larger
state sizes. While performance is weak for 8 vs. 8 units, as
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Fig. 4: Graph showing average execution times of complete
Portfolio Greedy Search search episodes with respect to the
number of units in the combat scenario when no time limit
is specified. Execution times are extracted from the first move
from the initial symmetric or separated states. Sample standard
deviations for symmetric state running times for different unit
numbers are: 10 units: 2.3 ms, 25 units: 9.0 ms, 50 units: 55.5
ms, and for separated states: 10 units: 2.2 ms, 25 units: 19.7
ms, 50 units: 111.5 ms.

combat scenarios increase in size it dominates the traditional
search algorithms, winning nearly all battles against Alpha-
Beta and more than 90% of battles against UCT.

Fig. 4 shows average execution times of complete Portfolio
Greedy Search search episodes with respect to the number of
units in a separated state scenario, if no time limit had been
specified. This graph illustrates the quick running time of the
Portfolio Greedy Search algorithm with respect to traditional
tree search methods which would require vast computational
resources to fully search large scenarios. We can see that
the time limit of 40 ms was only reached when performing
searches on states with more than 2 × 25 units. Of note is the
quadratic running time with respect to the number of units in
the scenario, which one would expect to be linear due to nature
of the algorithm. This is explained by the use of playouts for
state evaluations whose running times are themselves linear
with respect to the number of units in a scenario, due to the
need for an action to be calculated for each unit. Execution
times were recorded only for the first move of symmetric
and separated states in order to illustrate their differences,
which exist due to the underlying scripts in the portfolio.
Since the scripts are optimized to choose attack actions before
move actions, they encounter their worst-case running time on
initially separated states in which no attack options are found,
forcing all move options to be explored. However, once both
opposing forces of a separated state engage in battle, their
values approach that of symmetric states (on average for the
duration of the battle).

VIII. Conclusion and Future Work

In this paper we have presented a modified version of UCT
for handling games with simultaneous and durative actions,
as well as a new greedy search algorithm for RTS combat:
Portfolio Greedy Search. We have implemented and shown
experimental results comparing Alpha-Beta, UCT, Portfolio
Greedy Search, for use in RTS game combat scenarios. We
have shown that UCT outperforms Alpha-Beta in battle scenar-

ios with realistic unit positions (separated states) as battle sizes
get larger. We have also shown that the new Portfolio Greedy
Search algorithm outperforms both Alpha-Beta and UCT for
medium to large size separated state battle scenarios, winning
over 90% of battles with more than 32 units.

Several improvements can be made to the Portfolio Greedy
Search algorithm which can improve both its speed and results.
Using portfolio P , Portfolio Greedy Search performs |P |
playouts per unit per search. These playouts could be trivially
parallelised, allowing a linear speed-up in running time with
respect to |P |. In our case, using a two script portfolio, this
would yield a 100% speed increase in the algorithm.

To improve performance of Portfolio Greedy Search, extra
decision points (iterating over scripts for each unit) could be
created in the search tree to improve the accuracy of the eval-
uation. Unlike tree search methods, Portfolio Greedy Search
only optimizes decision at the root node before performing
its playout evaluation. By implementing a scheme in which
extra search is performed after a certain number of moves have
been performed in the playout, it could improve performance.
We can then imagine a hybrid tree search algorithm in which
Portfolio Greedy Search is the method used by a minimax type
algorithm to choose which moves to play at a given node in the
tree. Portfolio Greedy Search would need to be significantly
faster in order to be used within another tree search algorithm,
but it is not outside the realm of possibility.

It is our intention to use Portfolio Greedy Search for combat
decision making in a future version of UAlbertaBot, our entry
to the StarCraft AI Competition. By examining the results in
Fig. 3, we can see that while Portfolio Greedy Search performs
quite well for larger combat scenarios, it is beaten by Alpha-
Beta for smaller scenarios. We can now envision a hybrid AI
agent which dynamically chooses which search method to use
based on size of the combat scenario presented. Because each
algorithm has its strengths and weaknesses, creating an agent
which is able to capitalize on all of the strengths with none
of the weaknesses seems like the most intelligent choice for
future competitions.
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