
Sneak-Attacks in StarCraft using Influence Maps
with Heuristic Search

Lucas Critch
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL, Canada

lrc374@mun.ca

David Churchill
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL, Canada

dave.churchill@gmail.com

Abstract—Real-Time Strategy (RTS) games have consistently
been popular among AI researchers over the past couple of
decades due to their complexity and difficulty to play for both
humans and AI. A popular strategy in RTS games is a “Sneak-
Attack,” where one player tries to maneuver some of their units
into the base of their enemy without being seen for as long as
possible to surprise their enemy and deal massive damage to
their economy. This paper introduces a novel method for finding
sneak-attack paths in StarCraft by combining influence maps
with heuristic search. The combined system creates paths that
can guide units effectively - and automatically - into the enemy’s
base by avoiding enemy unit vision and minimizing both travel
distance and unit damage. Our results show that our new system
performs better than direct paths across a variety of maps in
terms of total transport deaths, total damage taken, as well as
the total time spent by the transport within enemy vision. We
then utilize this new system to demonstrate a proof of concept for
calculating building placements to defend against enemy sneak-
attacks.

I. INTRODUCTION

StarCraft: Brood War is a Real-Time Strategy (RTS) game
that continues to be popular for conducting AI research due to
its complex game theoretical properties, large state and action
spaces, and difficulty of play for humans and computers. Some
of the main sub-problems that exist in the RTS genre include
real-time planning, collaboration, path-finding, uncertain deci-
sion making, enemy modeling, spatial and temporal reasoning,
and resource management [1].

In StarCraft, players gather resources, build buildings, and
construct armies to do battle with their opponent. Players can
gain competitive advantages in various ways in RTS games,
and one common way is to execute what is known as a
sneak-attack: in which a player guides its units to flank an
opponent’s base while attempting to remain unseen until the
attack commences. By doing so, the player can surprise the
enemy and proceed to quickly attack the base before they have
a chance to defend appropriately. One effective sneak-attack
strategy that a player can execute is called a drop, wherein
the player constructs a flying unit known as a transport which
carries attacking units over the environment and base defenses
in order to shuttle them deep into the enemy base to attempt
to destroy vital strategic units, such as workers [2].

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fig. 1: Example influence map showing 2 enemy units (blue)
and their influence radius (red). Overlapping areas have higher
values, denoting regions of higher repulsion.

This paper will tackle two main problems related to sneak-
attacks. We will first create a path-finding system for deter-
mining the best routes to follow for executing sneak-attacks by
combining the efficiency of heuristic search with the intuitive
representation of influence maps. We will then use this system
as an analysis tool to show a proof of concept to determine
an optimal positioning of our own base buildings to prevent
sneak-attacks from enemy units.

To construct a sneak-attack path, we will pair the idea of
enemy avoidance with a shortest path path-finding algorithm.
Inspired by similar work from [3] and [4], we use the A* path-
finding algorithm, as well as influence maps that build areas
of influence from enemy vision and damage. The influence
map is used to construct the cost function g(n) and heuristic
evaluation h(n) for A*, resulting in the construction of paths to
the enemy base, which balance minimizing enemy detection
as well as the total distance to the enemy base. An example
influence map of enemy unit vision can be seen in Figure 1,
with higher values indicating areas of higher repulsion.

Following this section, the paper is broken down into

logical sections. First, in Section II, we will talk about the
background of the algorithms used in our system, namely
influence maps and A* search. Subsection II-C breaks down
some works related to the current work, such as research
done on StarCraft or other RTS games using influence maps
or search techniques. Then in Section III, we will get into
our system’s methodology; how influence maps and A* are
involved, how they are used within StarCraft, and what we
have done to create the system. In Section IV, the experiment
we conducted is talked about in great detail. Results and
discussion are contained in Section IV as well - complete with
recorded data, tables, and figures. Finally, our conclusions in
Section V: what we made of our experiment and findings, and
where this work could lead in the future.

II. BACKGROUND AND RELATED WORK

A. Influence Maps

Influence maps are data structures that are used for comput-
ing and storing influence within a given environment. Influence
values are typically used to either attract or repel from a given
region within an environment, based on the intuitive notion
behind what those values represent. For example, an enemy
may be given a repulsive value as the player wants to avoid
them, while a weapon power-up may be given an attractive
value, as they want to increase their damage.

Influence maps are often implemented as 2D grids/arrays,
with each grid position storing the influence value located at
the equivalent environmental space. Grid representations are
common since they can be thought of as an overlapping layer
on a 2D environment for ease of use. A given point of interest
will be assigned an influence value based on some influential
object in the environment, and that value will radiate outward
in the field based on the user-defined influence equation of
the field. An example equation can be seen in Equation 1.
The values decrease as they expand from the origin point,
and can continue decreasing to zero, or until they reach some
threshold - such as a distance from origin or a specific value.

B. A* Search Algorithm

A* is a popular search best-first search algorithm that
expands nodes on a graph in a priority queue until either it
finds a goal, or the graph has been entirely searched and no
solution is found. This priority queue is sorted as a function
of search node n, denoted f(n), with f(n) = g(n) + h(n),
where g(n) is the sum of costs c(n) of the path so far to node
n and h(n) is the heuristic estimate of the path cost from the
current node to the goal node [5]. The A* algorithm is widely
used in industry RTS games [2], and its use of a cost-based
heuristic function pairs perfectly with our intended integration
with influence maps.

C. Related Work

Influence maps were built on work done by Zobrist on
the game GO in 1969 [6], and have been widely used for
both academic and industry game purposes such as in another
popular RTS game, Age of Empires 2 [7]. In this section,

we will discuss related work in the area that we will use as
inspiration for our work.

Influence maps were used by Bergsma and Spronck [8] on
their work adaptive spatial reasoning in turn-based strategy
games. They used machine learning for training AI combat
behaviour, and influence maps to represent the state of their
game, such as attack or move. They layered multiple influence
maps using a neural network. Their AI was able to learn and
counter tactics and perform equally, or better, than AI using
static strategies. They also showed that influence maps could
be used to directly influence AI behaviour.

Hagelbäck [9] wrote about potential field navigation in
StarCraft in 2012. They combined A* with potential fields
- using standard A* until an enemy unit was nearby, and then
switched to using potential fields. This allowed units to avoid
or attack enemies depending on whether the unit could attack
or not, and the state (attack or defend). This algorithm showed
a large improvement over StarCraft’s built-in path-finding AI.

In 2014, Adaixo and Gomes [10] discussed Influence Map-
Based Pathfinding Algorithms in Video Games. Specifically,
their section on A* with influence maps proposed adding the
influence value to the A* equation that corresponds to the
current node n. They showed that their algorithm was an
improvement over A* in terms of memory consumption and
search times, with more or less computation needed depending
on how often the influence maps need to be recomputed.

Xtrek [4], an algorithm that combines influence maps
with normal path-finding by Amador and Gomes led to
an influence-aware pathfinder that can avoid or converge to
desired areas of the search space during path generation. It
combines traditional A* with an influence map using positive
and negative numbers for attractors and repulsors, respectively.
When close to an attractor, the g(n) part of the A* equation
listed in Subsection II-B is not used in order to assure conver-
gence to the centre of the attractor. Otherwise, the algorithm
works intuitively, combining the influences with the cost
portion of A*, resulting in avoidance behaviors on repulsors,
and normal A* behavior the rest of the time. Xtrek results in
less memory and time on its path-finding calculations.

Pentikäinen and Sahlbom [11] used influence maps and
potential fields for navigation in StarCraft 2. The influence
maps were used for unit navigation, with the potential fields
acting as repulsive forces during the navigation. The algorithm
could be altered to disregard the influence and just use
the potential fields. Tests were done on combat, navigation,
and enemy avoidance. They concluded that their algorithm
IM+PF outperforms A* in performance and scalability in some
scenarios, especially when path alteration may be required.

Building on these ideas, the following sections will explain
how we will combine the use of influence maps and the A*
algorithm for executing and defending against sneak-attacks
in StarCraft.

III. METHODOLOGY

Before getting into the specifics of our system, we will first
discuss the roles that both influence maps and A* have within

2

Algorithm 1 Influence Calculation

1: (sx, sy) ← size of StarCraft map
2: visionMap[][]← zeros(sx, sy)
3: damageMap[][]← zeros(sx, sy)
4: pathMap[][]← zeros(sx, sy)
5: p← 1.0
6: r ← StarCraft unit vision radius
7: d← max distance away from center of r (is ux,y)
8: pBase← Player base
9: // calculate vision and damage influence maps

10: for StarCraft unit u ∈ enemyUnits do
11: r ← u’s vision radius
12: d← max distance away from center of r (is ux,y)
13: for (x, y) from (0, 0) to (sx, sy) do
14: dist← distance from (x, y) to ux,y
15: if dist < v then
16: Influence i← p− (p× dist

d)4

17: visionMap[x][y] += i
18: damageMap[x][y]← p

19: // calculate common path influence map
20: for base not pBase do
21: path← path from base to pBase
22: for posx,y in path do
23: for (x, y) from (0, 0) to (sx, sy) do
24: dist← distance from (x, y) to posx,y
25: if dist < v then
26: i← p− (p× dist

d)4 // influence
27: pathsMap[x][y] += i

it. Followed by that, we discuss how we integrated the system
into StarCraft and how each piece ties together to create our
sneak-attack system.

A. Influence Map Implementation

To use influence maps with StarCraft environment data, the
influence maps will store values that will be used to implement
behaviors relevant to our path-finding task. Specifically, we
will be using influence maps to compute areas of repulsion
that we wish to avoid while computing sneak-attack paths,
namely around the vision of enemy units, range of enemy
weapons, and within commonly travelled areas. StarCraft
maps are represented as 2D grids, with a typical map being
approximately 128x128 game tiles in size, with each tile being
32x32 game pixels. Because of this, we can easily construct
influence maps as 2D arrays using the same StarCraft tile map
dimensions, and have them be easily readable and comparable
to the in-game map. Each cell in the influence map grid will
represent one build-tile cell in the StarCraft map at the same
(x, y) location. This representation also benefits from easily
being able to fit into the memory of most modern computers,
taking up less than 1MB of memory for even the largest maps.
Enemy units will be points of interest, with influence radiating
up to a hard cutoff at the edge of their vision/attack radius.
Figure 1 shows an example of such construction: showing two

enemy units radiating their influence based on their vision
radius. We will then use these values as the cost function for
the A* algorithm to minimize the amount of time spent near
these areas.

To create an effective influence map for completely avoiding
enemy vision as long as possible, we combine the effects of
three separate influence maps, each for a different influence
metric. These maps are as follows:

• Vision Map: Stores influence of visible enemy unit vision
radius. This map helps to avoid areas that are seen by the
enemy. Influence values radiate outwards from the enemy
unit’s position, and stop at the edge of its vision radius,
which is determined by the StarCraft game engine.

• Damage Map: Stores influence based on enemy unit
damage potential. Influence points radiate outwards from
the enemy position, deceasing based on distance from
enemy, and stop at the edge of weapon/damage range.
Since we must eventually enter enemy vision to attack,
we prefer to travel the areas that deal the least amount
of damage.

• Common Path Map: Stores influence based on all-pairs
shortest paths between all starting base locations on the
map, which are often travelled by enemy units/scouts
when moving to or from bases. By avoiding these com-
monly walked paths, we further decrease the chances of
being seen by the enemy.

Individual influence values are calculated based on the
following equation presented in [3]:

mx,y = p− (p ∗ (dist
d

))4 (1)

where mx,y is the influence at position (x, y) of map m, p
is the max propagation value, and d is the maximum distance
away from the center of radius v. An example of influence
calculated by this formula can be seen in Figure 3.

B. Influence Maps as Cost in A*

Our implementation combines multiple influence maps to
be used to guide A* as the cost and heuristic function. At a
given node n, the custom cost function c(n) will now consider
the following values:

• vis = influence cost of entering enemy unit vision
• dam = influence cost of entering enemy unit damage area
• path = influence of entering a common path tile
• dist = cost of traveling a given distance on the map

The cost is computed as a tuple, c(n) =
{vis, dam, path, dist}, which is sorted based on the
following priority, in order of highest amount of repulsive
influence: vis > dam > path > dist. Intuitively, this means
that we will prioritize avoiding enemy vision first, avoiding
enemy damage next, then avoiding common paths, followed
finally by attempting to minimize the total distance to the
enemy base. When we use this new cost function within the
A* search algorithm; its priority queue will sort nodes based
f(n) = g(n) + h(n), with g(n) being equal to the sum of
node costs to that node so far in the search tree.

3

C. StarCraft Implementation

To implement this new system in StarCraft, we require a
way to interface with the StarCraft game engine. To do this,
we used the BroodWar API programming interface (BWAPI)
[12], which allows us full control over the StarCraft game
engine to query game data and issue game commands. We also
used UAlbertaBot [13], an existing StarCraft AI competition
bot that comes with pre-built modular systems for playing the
entire game, from gathering resources, to building an army and
attacking. UAlbertaBot’s modular architecture allows us to add
a new strategic module to the bot which performs a drop-based
sneak-attack strategy, for which the path-finding is controlled
by our new system, and the rest of the game mechanics are
performed by the existing bot logic, such as scouting the map
to find the enemy base location. We also use the StarCraft map
visualizer tool StarDraft1, which allows us to perform map
analysis and path-finding offline, makes for easier debugging,
and was used to create most of the visualizations for this paper.

This integrated system reads relevant influence map infor-
mation from StarCraft every game frame and uses it to update
the influence values. To calculate influence values from real
StarCraft data, we use the following game information: ob-
structed game map tiles (walls, unwalkable terrain), walkable
grid cells, and enemy unit information (vision radius, damage
radius, location). Every frame of the game, the system takes
new enemy information and updates the vision and damage
maps. The common path map does not require updates, as
the information stored is static for each map, so we can just
compute it once at the start of every game.

The specific algorithms for each influence map can be seen
in their sections in Algorithm 1, however we will also provide
a more intuitive explanation. The common path influence map
is created at the beginning of each game, initialized to zeroes.
We then calculate paths from the player’s starting base to
each other possible base location, and at each cell of the
paths, vision influence is calculated as if an enemy unit was
at that position. In other words, influence radiates outwards
from each cell of the newly created path, creating a repulsive
force away from commonly used paths and bottlenecks in
the environment. Unlike common path influence, the enemy
vision influence map requires recalculation every frame, since
enemy units may constantly be moving around the map. Each
frame, the last known position of each enemy unit is used as
the center of influence, with repulsion radiating outward. This
uses overlapping values, as locations that multiple enemies can
see are likely to be more dangerous and should be avoided
at all costs. The enemy damage influence map behaves the
same as the vision influence map with two differences: it uses
enemy weapon range instead of enemy vision radius, and the
influence values are based on the damage of each enemy’s
specific weapon. The idea here is to create high values of
repulsion around enemy units that can inflict the most damage.

Then, with these influence maps as a heuristic evaluation,
a path from the player’s base to the enemy base is calculated

1https://github.com/davechurchill/stardraft

using A*. The maps are used in the cost function of A* in
order to guide the path creation to avoid the influence areas as
much as possible, as discussed in Section III-B. Finally, our
system has several additional factors which are considered,
which allow it to perform reliably within a real-time strategy
AI agent, which are as follows:

• Recalculation Time: How often the paths are re-
calculated. For example, we may only need to recalculate
paths once per second instead of once every game frame.

• Drop Distance: How close to the enemy’s mineral line
(our intended target) do we have to be in order to drop
our units and begin the attack.

• Recalculation Distance: Once the player’s dropship has
gotten sufficiently close to the enemy base, there are di-
minishing returns on recalculating the sneak-attack path.
For example, if the dropship is already within enemy
vision and almost within the Drop Distance threshold,
the movement of a single enemy unit may cause the
influence to change and a new path to be calculated. If
we follow this new path, we may end up spending too
much time executing the drop, allowing the enemy to
amass its defenses. Within a specific distance, we want
the dropship to execute the current path to completion,
rather than continue to re-plan.

The above properties were tested experimentally, and we
decided to use: a recalculation time of 1 second, a distance of
100 pixels as the drop distance, and a distance of 900 pixels
as the recalculation distance. These values result in similar
behaviour to expert human players in similar situations, based
on observations from professional games and replays.

D. Sneak-Attack Defense Building Positioning

Now that we have a system in place for calculating sneak-
attack paths, we can also use it for a defensive purpose:
calculating the positions for placing buildings within our own
base to prevent enemy sneak-attacks. It should be noted that
this is a proof of concept - it is simply shown as an example of
how the sneak-attack system could be used defensively. The
algorithm we chose to implement this was quite intuitively
simple: iterate over all legal building positions for the first
n = 3 buildings in our build order, and for each of those
possible placements we run the sneak-attack path system to
find the best path to our base from the enemy base. The
building positioning that results in the longest possible path
to our base is chosen as the position for our buildings. One
advantage of this method is that it is an any-time algorithm,
which can be given a time limit if desired and return the best
solution found so far.

IV. EXPERIMENTS AND RESULTS

In this section, we will describe all of the experiments we
performed to test the performance of our new sneak-attack
path system. All tests were performed single-threaded on a
system representative of a mid-level modern gaming computer:
an Intel(R) Core(TM) i5-6500 at 3.2GHz with 16GB DDR3
RAM and a GTX 1060 6GB. In order to perform experiments

4

Fig. 2: Comparison of A* shortest path (direct path) to enemy
base (left) and our system sneak-attack path to enemy base
(right). Paths are shown in yellow, with enemy influence shown
in red. Black indicates the area of the map which is walkable,
while gray is un-walkable (walls).

in a setting as close to a competition environment as possible,
we used all 10 maps from the 2020 AIIDE StarCraft AI
Competition2. Game maps have properties which can affect
the results of our system, such as map size and total number
of player starting positions, which can be seen in Table I.
For all experiments, paths were calculated in real-time in well
under the 50ms allowed per frame by the AI competitions.

A. Influence and Sneak-Attack Path Generation

The first experiment we performed was to qualitatively
test whether or not the system-generated paths for sneak-
attacks were intuitively similar to those generated by human
players. A sample generated path be seen in Figure 2, which is
generated for the flying Dropship unit, which is able to fly over
un-walkable terrain. On the left we can see a path generated
via standard A* which minimizes distance to the enemy base
(direct path), which flies directly through the main base of
the enemy. On the right, we see the path generated by our
system, which avoids enemy vision by flying around to the
right and behind the enemy base, similar to a path generated by
a human expert, which is what we expected to see. A Dropship
following this path would avoid the area of enemy vision
(red) and remain unseen by the enemy for as long as possible,
allowing it to drop its units directly onto the resources of its
opponents and attack its workers. In Figure 3 we can see an
example StarCraft map: Andromeda, along with our system’s
calculated vision influence values (red and green) and common
path influence values (light red). In the next experiment, we
will give detailed numerical results comparing these two paths.

2https://www.cs.mun.ca/ dchurchill/starcraftaicomp/

Fig. 3: StarCraft map with influence maps visible: enemy
vision (red), our vision (green), and common paths (light red).

B. Comparison of Direct & Sneak-Attack Paths

The next experiment we performed was to objectively
compare our sneak-attack paths to direct (shortest distance)
paths to the enemy base. For this experiment we played 1000
games on each of the 10 maps for both the sneak-attack path
and the direct path, for a total of 1000 x 2 x 10 = 20,000 games.
For each game we (arbitrarily) chose the Protoss race, played
against the built-in StarCraft AI using a randomly chosen
race, and implemented a strategy which attempted to drop
4 Zealot units into the enemy mineral line with the Protoss
Shuttle (dropship) unit as fast as possible. As soon as the
Shuttle unit was created, it was loaded with 4 Zealot units and
immediately flown along the generated path (direct or sneak
attack) to the goal position, which was given as the BWAPI
enemy base location, near the enemy minerals. As the Shuttle
flies, it explores more of the map and may discover additional
enemy units, and so the influence maps and Sneak-attack paths
were recalculated every 1 second to make use of this newly
discovered information. Once the Shuttle reached 900 pixels
from its destination, sneak-attack paths were no longer re-
calculated, since at that distance it is probably usually within
vision of the enemy base. Once the Shuttle was within 100
pixels of its goal position, it unloaded all of the Zealots which
began to attack the enemy base. Our goal for these experiments
was to evaluate the effectiveness of the sneak-attack paths only,
not the effectiveness of the drop strategy itself, and so once
the Shuttle was unloaded the game was ended and various
statistics were gathered about the generated paths.

Our main research question was: if an AI agent chose
to implement a drop strategy in any given game, would it

5

Map ID Map Name Players Size (width x height)
M01 Benzene 2 128 x 112
M02 Destination 2 96 x 128
M03 Heartbreak Ridge 2 128 x 96
M04 Aztec 3 128 x 128
M05 Tau Cross 3 128 x 128
M06 Andromeda 4 128 x 128
M07 Circuit Breaker 4 128 x 128
M08 Empire of the Sun 4 128 x 128
M09 Fortress 4 128 x 128
M10 Python 4 128 x 128

TABLE I: Map names and information

be more effective to use our sneak-attack paths, or a direct
path? In order to answer this question, a number of statistics
related to the two different path-finding methods were gathered
for each game, which can be seen in Table II. The most
important pieces of data collected to compare the two paths
were: how many times the Shuttle died trying to reach the
enemy base, how many hit points it had remaining when it
finished unloading, how long it took the Shuttle to reach the
enemy base, and what percentage of the time did it spend
within enemy vision. Intuitively, if our system created paths
which when compared to direct paths resulted in the Shuttles
dying less often and being seen for less time overall, then we
consider this to be a success. Naturally, we expect that our
sneak-attack paths will deviate from the direct paths in most
cases, and result in a longer arrival time; however if it avoids
enemy vision by doing so then this is preferred.

The results of this experiment can be seen in Figure 4, which
displays the mean values for each experiment, for each map
played, against each race for each AI opponent, along with the
totals for all enemy races. Due to the different properties of
each map such as size and number of player starting locations,
as well as the different properties of each enemy race, it is
helpful to break down the results in this way for a more
detailed analysis. To aid in visualizing these results, each of
the cells have been coloured green if the sneak-attack path
result performed better, or red if the direct path performed
better. For example, if we look at the top-right cell of Figure
4a, we see that the ratio of sneak-attack path Shuttle deaths
to direct path shuttle deaths was 0.25, meaning that Shuttles
using the direct path died 4 times as often as when using our
sneak-attack paths, which we count as a great success.

Overall, the statistics show that sneak-attack paths outper-
form direct paths in 3 of the 4 metrics, while losing to direct
paths in overall path duration, which was both expected and
unavoidable. In the top-right of Figure 4a we see a value of
0.25, meaning that Shuttles using direct paths died four times
as much as those using our sneak-attack paths on map M01.
Shuttle deaths are caused by taking damage from enemy units
that can attack air units, such as cannon-like static defenses, or
mobile units like Marines, Dragoons, or Hydralisks. Of note
in these results is the vastly superior performance against the
Terran race, which is explained by the fact that Terran are

Recorded Stat Explanation
Sneak Whether using Sneak path or Direct path
Time Time game lasted in seconds

Frames In Vision Number of frames transport in enemy vision
Frame First Seen Frame transport first seen by the enemy
Dropship Created Frame transport created
Dropship Moved Frame started moving to enemy base

Dropship Start Drop Frame transport started its drop
Dropship End Drop Frame transport ended its drop
Health Start Drop Transport health at start of its drop
Shields Start Drop Transport shields at start of its drop
Dists Start Drop Transport distance from goal at start of its drop
Health End Drop Transport health at end of its drop
Shields End Drop Transport shields at end of its drop
Dists End Drop Transport distance from goal at end of its drop

Deaths Whether transport destroyed
Map File Name Name of map file

Map Width Map width in StarCraft Tile units
Map Height Map height in StarCraft Tile units

Players Number of possible player starting locations
Enemy Race Race of enemy
Percent Seen Percentage of path transport in enemy vision

TABLE II: Recorded Stats with explanations

the only race whose first military unit can attack air units;
the Marine. When the built-in AI controls the Terran race, it
often creates many Marines which can easily kill incoming
Shuttles if they are using the direct path, which our sneak-
attack path helps to avoid, resulting in far fewer deaths. We
can also see from this table that our sneak-attack paths appear
to perform worse when playing against the Zerg race, which
can be explained by the choice of build-order used by the
hard-coded built-in AI. One of the build-orders the built-in
Zerg AI can choose to carry out involves the creation of many
Hydralisk units, which have powerful anti-air weapons capable
of killing Shuttles quite quickly. In an unfortunate coincidence,
the built-in AI creates these units just seconds before our
Shuttle arrives, and gathers them up precisely on top of our
chosen goal location on these specific maps (Destination,
EmpireOfTheSun, TauCross). The direct path uses a shorter
path to the enemy base, and arrives about 20 seconds earlier
before the Hydralisks are completed, and therefore does not
die to them in these specific cases. Since our experiment did
not include any logic to cancel the drop when it detected this
mass of Hydralisk units near the goal location, it resulted in
more deaths for these specific scenarios. This was a fascinating
edge-case that we were not expecting, and it uncovered a
weakness in our hard-coded build-order timing for our sneak-
attack, showing just how important it is to choose a new goal
location for the drop, or to cancel a drop altogether if this
scenario presents itself in a real game.

In Figure 4b we can see a comparison of the resulting hit
points remaining for the Shuttle unit once the drop has been
completed for the two paths. Due to Terran’s easy access to
air defenses, we see that the sneak-attack path avoids more
damage vs. the Terran race, and overall against all races.

6

(a) Ratio of the percentage of total games for the Shuttle unit
died when following both path types.

(b) Ratio of Shuttle average health remaining after drop completed.
Games where the Shuttle died were not counted here.

(c) Ratio of the average percentage total path duration the Shuttle
was in vision of enemy when following both path types.

(d) Ratio of the average duration the Shuttle took to reach the enemy
base when following both path types.

Fig. 4: Results of the four main statistics recorded for Experiment 2. A green shade indicates our sneak-attack system
outperforming direct paths for the given metric, while a red shade indicates underperforming.

In Figure 4c we see a comparison of the ratio of the
percentage of the duration of the path that the Shuttle was seen
for both path types. We can clearly see from these results that
the sneak-attack paths result in our Shuttle being hidden from
the enemy’s view for a longer amount of time while executing
the sneak-attack, in nearly every tested situation.

C. Building Placement for Defending Sneak-Attacks

Now that we have a system in place for calculating sneak-
attack paths, we can use this system in a defensive manner
by planning our own building positions to best prevent sneak-
attacks. For this experiment we do not have any objective way
to measure success, since our bot played against the built-in AI
which does not execute sneak-attack strategies. However, we
did generate several sample building placements and compared

them to those that professional StarCraft players implement
when defending against sneak-attacks, and found that they
have the same properties as expert human players. An example
calculated placement of buildings can be seen in Figure 5, in
which the buildings have been spaced as far apart as possible
in order to maximize the vision radius of the 3 buildings
constructed within our base. If we suspected our enemy of
wanting to execute a sneak-attack, it makes intuitive sense that
we would want to cover as much ground within our base with
vision in order to detect when they may be trying to attack,
as well as maximizing the distance they would have to travel
to sneak into our base. We can see from our example that the
best possible sneak-attack path found by our system would
require the enemy to travel below and around the right-hand
side of our base, which is far longer than that direct path.

7

Fig. 5: An example calculated placement of buildings (dark
blue) which results in an optimal configuration for maximizing
the length of an incoming sneak-attack path (white) from the
starting position (yellow) to the goal position (purple) near our
base’s resources (teal/green). Shown in transparent light red is
the vision influence map for the buildings used to perform the
sneak-attack path-finding.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel method for constructing
sneak-attack paths for RTS games by combining the ideas of
influence maps for vision and damage with the path-finding
ability of the A* algorithm. We implemented our system in
a modular fashion within UAlbertaBot using BWAPI, and
compared our sneak-attack paths to direct paths created via a
shortest distance implementation of the A* algorithm in a real-
time competitive setting against the built-in AI in StarCraft.
Our results showed that our paths resulted in fewer dropship
deaths, less overall damage taken, and less time spent within
enemy vision range than the direct paths, which we view
as a successful measure for sneak-attack path-finding. Our
results also showed that these paths resulted in overall longer
times to arrive at the enemy base, and identified an edge
case on 3 specific maps against the Zerg race in which these
results were quite disastrous - however in an actual competitive
environment we suspect the AI agent would simply modify its
goal position or cancel the sneak-attack in those cases. Overall
we feel like this new system was a success for calculating
sneak-attack paths in StarCraft, and could be easily adapted

to calculating other strategic paths for other games.
We then used this system in a defensive manner as by

calculating building positions to help prevent a sneak-attack
on our own base, and demonstrated an example building
placement which was calculated by our system, and resembled
those of expert human players. While we do not yet have an
objective measure for determining success for this defensive
system we feel that it intuitively shows much promise, and
part of our future work will be testing this in a competitive
setting in which more objective measures can be recorded.

In the future, we would like to test whether or not compa-
rable results would be possible by exclusively using influence
maps for guiding path-finding, without needing to combine
them with a separate path-finding algorithm like A*. If we
include another influence map using the distance from enemy
base as the influence, we could influence our paths to go
towards the enemy base, while still being influenced by the
other maps by just navigating toward the areas of highest
influence - saving time and memory by removing A* search.
We also hope to test this system in a more competitive setting
as soon as possible by entering the overall agent into a future
StarCraft AI Competition.

REFERENCES

[1] M. Buro and T. M. Furtak, “RTS games and real-time AI research,”
Proceedings of the Behavior Representation in Modeling and Simulation
Conference, 2004.

[2] S. Ontañon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
M. Preuss, and S. Ontañón, “A Survey of Real-Time Strategy Game
AI Research and Competition in StarCraft,” Tech. Rep., 2013. [Online].
Available: https://hal.archives-ouvertes.fr/hal-00871001

[3] D. Mark, Modular tactical influence maps, 2015.
[4] G. P. Amador and A. J. Gomes, “XTrek: An Influence-Aware Technique

for Dijkstra’s and A Pathfinders,” International Journal of Computer
Games Technology, vol. 2018, 2018.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] A. L. Zobrist, “A model of visual organization for the game
of go,” in Managing Requirements Knowledge, International
Workshop on, vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, may 1969, p. 103. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1969.10

[7] D. C. Pottinger, “Terrain analysis for real-time strategy games,” in
Proceedings of Game Developers Conference, 2000.

[8] M. Bergsma and P. Spronck, “Adaptive spatial reasoning for turn-
based strategy games,” Proceedings of the 4th Artificial Intelligence and
Interactive Digital Entertainment Conference, AIIDE 2008, pp. 161–166,
2008.

[9] J. Hagelbäck, “Potential-field based navigation in StarCraft,” 2012 IEEE
Conference on Computational Intelligence and Games, CIG 2012, pp.
388–393, 2012.

[10] M. Carlos Gonçalves Adaixo and D. Abel João Padrão Gomes, “Influ-
ence Map-Based Pathfinding Algorithms in Video Games,” Tech. Rep.,
2014.

[11] F. Pentikäinen and A. Sahlbom, “Combining Influence Maps and
Potential Fields for AI Pathfinding,” Tech. Rep., 2019. [Online].
Available: www.bth.se

[12] A. Heinermann, “Broodwar API,” https://github.com/bwapi/bwapi,
2013. [Online]. Available: https://github.com/bwapi/bwapi

[13] D. Churchill and M. Buro, “Build order optimization in StarCraft,” in
Proceedings of the 7th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2011, 2011.

8

