Prototyping Parallel Sequence Edit-Distance
Algorithms in FPGA Hardware

David Churchill, Paul Gillard, Matthew Hamilton, and Todd Wareham

Abstract— Over the last 15 years, genome projects
worldwide have been producing ever-larger biological
sequence datasets. One approach to dealing with these
massive datasets has been to implement parallel analy-
sis algorithms in special purpose hardware. Field Pro-
grammable Gate Arrays (FPGA) are ideal testbeds
for designing and prototyping such hardware; how-
ever, there are a number of problems that can arise.
We illustrate some of these problems relative to our
experience in using the Xilinx Rapid Prototyping Sys-
tem to implement and test the parallel sequence edit-
distance algorithm proposed by Lipton and Lopresti
(1985).

Keywords— Parallel Algorithms, Edit Distance,
Field Programmable Gate Arrays (FPGA).

I. INTRODUCTION

Over the last 15 years, genome projects worldwide
have been producing ever-larger biological sequence
datasets. One approach to dealing with these massive
datasets has been to develop parallel analysis algo-
rithms. There are several techniques for parallelizing
algorithms, ranging from general-purpose processor
clusters to special-purpose hardware (see 3], [5], [10],
[11] and references). The latter is of particular inter-
est because it is very cost-effective for individual re-
searchers. Field Programmable Gate Arrays (FPGA)
are ideal testbeds for designing and prototyping such
hardware; however, though many successes have been
reported in the literature (see [10], [11] and refer-
ences), there are a number of problems can arise for
those wishing to design such hardware, some related
to the application and some to idiosyncrasies of the
FPGA prototyping systems themselves.

In this paper, we will illustrate some of these
problems relative to our recent experience in using
the Xilinx Rapid Prototyping System to implement
and test the parallel sequence edit-distance algorithm
proposed by Lipton and Lopresti [5]

Department of Computer Science, Memorial University of
Newfoundland, St. John’s, NL, Canada A1B 3X5

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada through operating grant
228014 (TW) and by the Canadian Microelectronics Corpora-
tion (PG).

II. BACKGROUND
A. The Sequence Edit-Distance Problem

Given two sequences of symbols over an alphabet,
many applications require some measure of the simi-
larity of (or alternatively, the distance between) those
sequences. The most common manner of structur-
ing such measures is in terms of sequence mutation
operators. The three most basic operators involve
changes to single symbols:

« mutation: change one symbol to another, e.g.,
A-T.

 insertion: insert a symbol, e.g., e = T

o deletion: delete one symbol, e.g., A — €.

Each of these operations can in turn have associated
weights. The (weighted) edit distance between
two sequences s; and sp is defined as the weight
of the sequence of mutation, insertion, and deletion
operations that transforms s; into s» and has mini-
mum summed operation-weight over all possible such
operation-sequences.

The classical dynamic programming algorithm for
computing edit distance (see [2, Chapter 11] and ref-
erences) can be stated as follows: Let the weights
of the mutation, insertion, and deletion operators
be w,,, w;, and wy, respectively, and let d(i,j),
0<i<|s1]and 0 < j < |s2l, denote the edit distance
between the strings composed of the first ¢ symbols
of s; and the first j symbols of s5. This quantity
d(i,j) can be computed by the recurrence

) 7=0
j i=0
.. dii—1,7—1)
d(i,j) = i
) min +C(i,), otherwise
d(l - 1;.7) + ws,
d(i,7—1) +wy

where C(i,7) = 0 if the ith symbol of s; is the same
as the jth symbol of s, and w,, otherwise. In the
remainder of this paper, we will follow the literature,
e.g., [5], [11], by focusing on the restricted case where
Wy = 2 and w; = wg = 1. All d(4,7) values can be
stored in a 2-D table in which d(|sy |, |s2|) contains the
edit distance between s; and s3. The question then
becomes, how do we fill in this table? The recurrence
specifies the Oth row and column cell-values; the key

d(i—1,j—1) | d(i—1,j)

| d(i.j—1) = d(i.))

Fig. 1. Recurrence Cell Relationships

A T G G A

0O 1 2 3 4 5

Fig. 2. Table Fill-In: Example #1

is then to recognize that this recurrence also allows
us to fill in a given cell if the values for the cells
immediately one cell up, to the left, and diagonally
have already been filled in (see Figure 1). Starting
from cell (1,1), one can then fill in the remainder
of the table by row, column, or diagonal, working
outwards one cell at a time from cell (1,1). Two
examples of such filled-in tables are given in Figures
2 and 3.

B. Parallel Sequence Edit-Distance Algorithms

As noted at the end of the last section, there are a
variety of orders in which the cells in an edit-distance
table can be filled in, each of which constructs the
value for a line of cells by using the values in the
previous line of cells relative to the selected order.
The observation that the values of the cells in each
such line depend only on the values of the cells in the

® 0 > @0
[
-
N
w
IS

Fig. 3. Table Fill-In: Example #2 (adapted from [5])

previous line is the basis for various linear-space im-
plementations of the algorithm described above (see
[2, Section 12.1] and references). However, if more
than one cell-value can be computed at a time, this
observation is also the basis for many parallel edit-
distance algorithms.

A naive parallel algorithm implementing this strat-
egy would use an (|s1| + 1) x (|s2] + 1) matrix of
processors and propagate the values through the ma-
trix according to the recurrence by diagonal starting
at cell (1,1). At each timestep, processor (7, j) in the
diagonal being computed would use the values stored
in processors (i — 1,5), (1 — 1,5 — 1), and (3,5 — 1)
in the diagonal computed in the preceding timestep
(see Figures 1 and 4). As there are |s1| + |s2| — 1
such diagonals, this algorithm runs in linear paral-
lel as opposed to quadratic serial time. However, it
uses a quadratic number of processors, which may be
impractical when s; and s, are large.

Using the observation mentioned at the beginning
of the chapter, we can reduce this to a linear number
of processors, in particular, the 2min(|sy|, [s2|) + 1
processors required to encode the largest diagonal in
the matrix (or rather, the largest “crooked” diago-
nal composed of adjacent diagonal-pairs). The val-
ues stored in these processors at the beginning of a
particular timestep correspond to the values stored
along a particular diagonal of the table, and the job
of each processor during the timestep is to compute
the values of a particular cell in the next diagonal.

The first and simplest such scheme was proposed
by Lipton and Lopresti in 1985 [5] (see Figure 5). The
processors are organized as a two-channel two-way
systolic array [7] in which each processor can commu-
nicate with the processors to its immediate left and
right in the array. The symbols in s; (interpolated

Fig. 4.
(5])

Table Fill-In: Example #2 (Parallel) (adapted from

with integers indicating the sequence-position of each
symbol) are fed in from the left of the array on the
upper channel and a similarly-interpolated version of
s is fed in from the right on the lower channel; this
corresponds to setting up the Oth row and column in
the dynamic programming table. Once values in the
two channels overlap in a processor, two situations
are possible: the channels specify one or more num-
bers or a pair of symbols. Processors in which num-
bers are present correspond to cells in the previous
diagonal, and processors in which a pair of symbols
are present correspond to a cell in the diagonal being
computed; in this latter case, the new value for such
a processor | (corresponding to d(i,j)) is computed
using the values stored in processors [—1 (d(i,j — 1))
and I+ 1 (d(i — 1,j)) as well as the value of proces-
sor | at the previous timestep (d(i — 1,5 — 1)). A
portion of the computation of such an array relative
to the strings in Figure 3 is shown in Figure 5. In
this figure, note how the middle portion of each row
encodes a diagonal of the table, such that the circled
values in this figure correspond to a version of the
table in Figure 3 rotated 45° clockwise. At the end
of the computation, the final values pumped out of
the sides of the array by both channels correspond to
the edit distance between the two given sequences.

Many other systolic array architectures have been
proposed for edit-distance and related sequence com-
parison problems in the years since 1985 (see [3], [10],
[11] and references); however, given the simplicity of
the scheme proposed by Lipton and Lopresti, we de-
cided that this was the one best suited for our initial
implementation efforts relative to FPGAs.

Fig. 5. Systolic Array Computation (adapted from Figure 1
in [5])

III. PROTOTYPING A PARALLEL ALGORITHM
Using FPGA

To implement the algorithm described in Section
11, we used the FPGA system available to us, namely
the Xilinx Rapid Prototyping System [9]. This sys-
tem runs the Xilinx ISE (Version 6.1.03i) develop-
ment [4] and ModelSim (Xilinx Edition II v5.7g)
hardware simulation packages; together, these pack-
ages provide various methods for specifying circuits,
creating hardware images, downloading such images
to chips, and testing the resulting chips. This system
has been paired with the Xilinx Virtex XCV2000E
FPGA chip, which is connected to the system by a
parallel-port interface.

Our prototyping experience can be broken into four
stages: system set-up, hardware algorithm specifica-
tion, hardware algorithm simulation, and hardware
algorithm execution. Details of each stage, including
the problems we encountered, are described in the
following four sub-sections.

A. System Setup

As the Xilinx system and hardware were already in
place in the MUN Computer Science VLSI Labora-
tory, the only major task we had in this stage was to
ensure that all relevant software was installed. This
was hampered by unexpected problems with software
licenses. The Xilinx system at MUN operates under
a license provided through a FlexLM server that is
supposed to cover all versions of the ISE software and
allow us to use all of the features (including Model-
Sim) once installed; however, this server did not in-

Fig. 6. 4-Bit Shift Register Comparator: Modular Design

Define ports:

in_CLK;

in_RESET;

in_valuel;

in_value?2;

out_allEqual;

vector r1(3 downto 0); // register 1
vector r2(3 downto 0); // register 2

Define behavior:
process (CLK, RESET)

if RESET = 1 then
ri = "0000"; r2 = "0000";

elseif CLK=’1’ and CLK’event then
r1(3) <= r1(2); r1(2) <= r1(1);
r1(1) <= r1(0); r1(0) <= in_valuel;
r2(3) <= r2(2); r2(2) <= r2(1);
r2(1) <= r2(0); r2(0) <= in_value2;

if (r1=r2) then
allEqual = ’1’;
endif
endif

Fig. 7. 4-Bit Shift Register Comparator: VHDL

teract well with the Windows XP operating system
under which we were running the Xilinx system —
at first the software would not detect a license at all,
then it would not get past compile-time due to license
problems, and finally we realized that we could not
get a full license to ModelSim. This entailed using an
evaluation copy, which only worked under the admin-
istrator account on the computer, and hence required
the presence of system administrators whenever the
machine was reset. This resulted in an initial block
delay of two weeks and then shorter delays through-
out the summer.

Fig. 8. Systolic Array (4-PE Configuration)

B. Hardware algorithm specification

The Xilinx system supports two distinct forms
of hardware prototype specifications, modular com-
ponent design and hardware description languages.
Modular component design involves coding the sim-
plest parts of the algorithm in gate-level logic and
then building more and more complex components
in a hierarchical manner from simpler ones until a
component is derived that implements the whole al-
gorithm. Hardware description languages are pro-
gramming languages that allow you to code an algo-
rithm at a high level which will then be translated by
a compiler into a hardware description for whatever
chip-system you are using.

To assess the relative advantages and disadvan-
tages of each approach (as well as gain familiarity
with the Xilinx system), we decided to implement
several basic circuits under both approachs. One
such circuit was a 4-bit shift-register comparator,
which checks if the bits stored in two 4-bit shift regis-
ters are identical. The description of this circuit de-
rived using modular design is given in Figure 6. This
approach works very well in designing small systems
and would seem ideal for larger systems such as sys-
tolic arrays composed of many copies of the same pro-
cessing element (PE); however, in our experience, it
was very hard to design even a simple PE such as that
used in [5] starting from the gate level, let alone the
PE underlying parallel hardware for more complex
types of sequence comparison. Such PE are much
more easily described using a hardware specification
language. The language we used in our project was
VHDL (VHSIC (Very High Scale Integrated Circuit)
Hardware Description Language) ([1], [6]), which is
very similar to many of the high-level programming
languages in use today. The VHDL code for the com-
parator is given in Figure 7. In such a description, we
just write down the various I/O ports and what we
want to happen every time the internal clock ticks,
and let the compiler take care of making an image
that can be downloaded into the FPGA.

In the end, we adopted a hybrid approach: We
used VHDL to implement our PE and then the ISE
schematic tool to place and link these PE. A view of
the final circuit is given in in Figure 8.

Fig. 9. Simulation Results: Waveform Graph

C. Hardware algorithm simulation

Once a compiled version of our VHDL was suc-
cessfully saved to the system, the ModelSim pack-
age allowed us to view a waveform graph of all of
the input and output markers from our schematic for
each clock cycle (see Figure 9). While such graphs
are very useful for debugging circuits that instanta-
neously compute functions for which each input has
a well-defined output stated in binary, we soon re-
alized that such graphs are very difficult to inter-
pret in terms or circuits like our own in which inputs
and outputs are expressed in terms of multi-symbol
binary blocks that are sent and received over time.
Our first first test version had 4 processor elements,
each with 8 input/output lines which were all 5 and 6
digit binary strings. While its operation was easy to
follow relative to diagrams such as that in Figure 5,
the mental translation from the provided waveform
graphs to such diagrams was much more difficult than
originally planned and proved a major bottleneck in
the project — indeed, we are still in this stage of the
project.

D. Hardware algorithm execution

Though we were not able to create a working ver-
sion of the Lipton and Lopresti algorithm for reasons
sketched in the previous section, we were able to pro-
ceed to this stage with some of the simpler circuits
we developed. Here, we encountered one final barrier.
Once a circuit is entered onto an FPGA chip, drivers
must be written to allow testing programs to send
input to and receive output from the FPGA. These
drivers would then be distributed along with copies of
the FPGA board, and are thus an integral part of the
system. Unfortunately, we were not be able to locate
adequate documentation to write such drivers, even
for simple circuits, and suspect the task of writing
drivers for circuits with temporally-encoded inputs
such as our own would be more daunting still.

IV. CONCLUSIONS AND FUTURE WORK

Our major conclusion from this project is that
though FPGA systems are very useful for proto-
typing hardware, many problems not described in

the published literature await the new investiga-
tor. Though some of the problems described in
this paper (in particular, those involving licenses and
buggy operating systems) are easily solved by care-
ful choices and dealings with vendors, others (such
as the difficulty in visualizing and testing the opera-
tion of circuits such as that in [5] which incorporate
temporally-encoded inputs and outputs) are much
more difficult, and may possibly require the devel-
opment of new suites of tools for FPGA prototyping
systems. That being said, we are are still optimistic
about the prospects for applying such systems to the
development of special-purpose hardware for biolog-
ical applications; in particular, once we have mas-
tered implementing edit-distance computations rela-
tive to sequences, we look forward to implementing
hardware for computing edit distances between more
complex data structures such as trees [8].

REFERENCES

[1] Ashenden, P.J. (1990) The VHDL Cookbook. Department
of Computer Science, University of Adelaide.

[2] Gusfield, D. (1997) Algorithms on Strings, Trees, and
Sequences. Cambridge University Press.

[3] Hirschberg, J.D., Hughey, R., and Jarplus, K. (1996)
“Kestrel: A Programmable Array for Sequence Analy-
sis.” In ASAP’96. IEEE Computer Society. 25-34.

[4] ISE Quickstart Tutorial. £tp://£ftp.xilinx.com/pub/
documentation/ise6_tutorials/ise6tut.pdf

[5] Lipton, L. and Lopresti, D. (1985) “A Systolic Array
for Rapid String Comparison.” In Proceedings of the
1985 Chapel Hill Conference on VLSI. Computer Science
Press. 363-376.

[6] Perry, D.L. (1991) VHDL. McGraw-Hill.

[7] Quinton, P. and Robert, Y. (1991) Systolic Algorithms €
Architectures. Prentice Hall.

[8] Shasha, D. and Zhang, K. (1989) “Simple Fast Algo-
rithms for the Editing Distance Between Trees and Re-
lated Problems.” SIAM Journal on Computing, 18(6),
1245-1262.

[9] Xilinx. http://www.xilinx.com/

Yamaguchi, Y. and Maruyama, T. (2002) “High Speed

Homology Search with FPGAs.” In PSB 2002. World Sci-

entific Press. 271-282.

Yu, C.W., Kwong, K.H., Lee, K.H., and Leong, P.H.W.

(2003) “A Smith-Waterman Systolic Cell.” In FPL 2003.

Lecture Notes in Computer Science no. 2778. Springer-

Verlag. 375-384.

