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Abstract

Visual homing is the ability of an agent to return to a goal position by comparing the
currently viewed image with an image captured at the goal, known as the snapshot image.
In this paper we present additional mathematical justification and experimental results for
the visual homing algorithm first presented in [1]. This algorithm, known as Homing in
Scale Space, is far less constrained than existing methods in that it can infer the direction of
translation without any estimation of the direction of rotation. Thus, it does not require the
current and snapshot images to be captured from the same orientation (a limitation of some
existing methods). The algorithm is novel in its use of the scale change of SIFT features as
an indication of the change in the feature’s distance from the robot. We present results on
a variety of image databases and on live robot trials.

1. Introduction

Visual homing (VH) provides the ability for an agent to return to a previously visited
position by comparing the currently viewed image with a remembered image captured at
the reference position. This allows the agent to return to the reference position from any
nearby point with a sufficient degree of visual similarity. In this paper we provide formal
justification for the Homing in Scale Space algorithm first proposed in [1]. We also present
additional experimental results that demonstrate the algorithm’s effectiveness for a variety
of different environments and on live robot trials.

VH has been studied both as a model for local animal navigation and as a tool for local
robot navigation. A particular model of the homing behaviour of honeybees known as the
snapshot model was proposed by Cartwright and Collett [2, 3]. This model proposes that
honeybees can return to important locations in their environment by pairing visual features
between the current image and an image stored at the goal position known as the snapshot
image. Disparities in both the position and size of features in the current image from the
snapshot image are used to compute correcting vectors. These vectors are then summed to
produce an overall home vector. This general strategy pervades much of the work on VH from
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both the biological and robotics communities, including the work described in this paper.
However, as far as we are aware the algorithm presented here is the first since Cartwright
and Collett’s snapshot model to make explicit use of the disparity in apparent size of visual
features. The biological community have proposed variants of the snapshot model, as well
as alternative homing strategies for a variety of species including honeybees [4, 2, 3], ants
[5, 6], rats [7] and humans [8]. For social insects such as bees and ants it has been argued
that visual homing (sometimes referred to as ‘image matching’) is a crucial component in
their overall navigational strategy [9].

In robotics, a visual homing algorithm serves the purpose of a ‘local control strategy’
which Kuipers and Byun described as “how a robot can follow the link connecting two
distinctive places” [10]. The chief limitation is that it can only be applied in the immediate
neighbourhood of the goal location. There must be sufficient similarity between the current
image and the goal image for an accurate home vector to be computed. If the goal locations
are spaced closely together and in sequence then VH can be used as a means of executing
learned routes through an environment [11, 12, 13]. If the goal locations are distributed
throughout the environment, they can be treated as nodes in a graph. This representation
is known as a topological map. To navigate using such a map requires a localization system
that combines sensory information with a model of the robot’s motion. VH then fills the
role of moving the robot between connected nodes. It can also be used in the discovery
of new edges between nodes [14]. This approach falls under the category of topological
simultaneous localization and mapping (SLAM). VH has been employed by a variety of
researchers on topological SLAM [14, 15, 16, 17].

Visual homing can be considered a form of qualitative navigation, in the sense of Dai and
Lawton where spatial learning and path planning proceed “in the absence of a single global
coordinate system” [18]. This is in contrast with most work on grid-based or metric SLAM
where the production of a single coordinate frame map is the ultimate goal. The difference
lies in the degree of accuracy required to achieve the task at hand. It is possible to visually
home to a previously visited position even with inaccurate information about its direction.
As long as the difference between the robot’s direction of movement and the ideal direction
is less than 90o the robot will eventually reach home [19] (although naturally we strive for
higher accuracy). In the SLAM framework reaching a desired pose requires an accurate
map, accurate localization of the robot within the map, and a further path planning stage.
Methods of qualitative navigation such as visual homing are pursued because they offer the
possibility of robust navigation with low computational cost.

The next section considers related work on the visual homing problem. We then present
the mathematical formulation for the Homing in Scale Space algorithm. This is followed
by a discussion of our experimental methods and results. We conclude with a discussion of
these results and suggestions for future work.

2. Related Work

Existing methods for visual based homing can be classified as either holistic or correspondence-
based [20]. In the next two sections we will discuss these two classes of homing algorithms.
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2.1. Holistic Methods

Holistic methods rely on comparisons between images as a whole. An example of a
holistic method is the method of Zeil et al. who posit a simple distance metric between
images and implement homing as gradient descent in the space of this distance metric [21].
This method, while elegant in its simplicity, relies on the existence of a monotonic relationship
between image distance and spatial distance. It also requires small exploratory movements
of the robot in order to determine the gradient of the image distance function. Möller and
Vardy described an alternative method based on gradient descent that removes the need for
exploratory movements prior to computing a home vector [20].

Another holistic method is the so-called warping method of Franz et al. [19]. We present
this method in some detail as it used as a benchmark for comparison with our method.
The warping method searches for the parameters of motion which make the warped snap-
shot image most similar to the current image. A warped snapshot image is generated by
transforming the snapshot image as if the robot had actually moved according to the given
motion parameters. To make this transformation possible the assumption is made that all
objects are equidistant from the goal. This assumption is rarely satisfied in practise. How-
ever, in environments where the objects are all relatively distant from the goal it provides
a reasonable method of predicting the image that would result from small movements of
the robot. A precise prediction would require a priori information on the structure of the
environment, which is presumed not to be available in this context. The robot’s movement
is described by three parameters: α is the direction the robot has moved away from the
goal, ψ is the change in orientation, and ν characterizes the distance to the goal relative to
an assumed average landmark distance (see [19] for details). The snapshot image is warped
by iterating over a discretized set of possible values for the movement parameters (α,ψ,ν).
This search is tractable because it operates on one-dimensional images, which are sampled
from the centre rows of two-dimensional images captured from the omnidirectional camera
system. Despite the clearly unrealistic nature of the assumption that all landmarks are of
equal distance from the snapshot, the warping method has been found to perform robustly
in various indoor environments and has emerged as a standard for comparison for various
visual homing methods [22, 23]. For this reason we utilize the warping method to benchmark
the performance of our algorithm.

There has been notable recent progress by Möller in extending the warping algorithm
to operate directly on two-dimensional images [24] and in relaxing the assumption that all
landmarks lie at an equal distance from the snapshot location [25]. Comparison of our
method with these newer variants of the warping framework is planned for future work.

2.2. Correspondence Methods

Correspondence based homing methods utilize feature detection and matching algorithms
to form a set of correspondence vectors between the snapshot and current images. These
vectors give the shift of the features in image space, known as the image flow field (c.f.
1). The flow field formed by these correspondence vectors is then interpreted to yield the
direction of motion. These flow fields comprise both robot translation as well as rotation. The
separation of these two components of motion can be difficult, therefore most correspondence
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methods posit the additional assumption that all images are counter-rotated to the same
compass orientation prior to calculating homing direction. This process requires some form
of compass, or a search for the change in orientation which would minimize the difference
between the two images [21, 26, 27].

Vardy and Möller investigated the use of both matching and differential methods of
optic flow for visual homing [22]. They determined that if both snapshot and current images
were captured from the same orientation that the direction of translation could be computed
analytically from a single correspondence. The optic flow techniques they used could produce
dense flow fields, with home direction estimates produced for each vector in the flow field.
The resulting home vector estimates were summed, which induced a cancellation of errors
and resulted in very accurate and robust visual homing.

Various type of features have been utilized for determining correspondences, ranging in
sophistication from raw image windows [22] to descriptors based on the Fourier-Mellin trans-
form [28]. Other feature types which have been used include Harris corners [29], distinctive
landmarks [11], and high contrast features [2, 30, 31]. Recently, Scale Invariant Feature
Transform (SIFT) features have gained great popularity in many areas of computer vision
and robotics due to the stability of their descriptor vectors with respect to changes in scaling,
rotation, and illumination [32]. SIFT features have also been used to perform localization
and visual homing [33, 34, 35, 16, 36].

Pons et al. [35] use SIFT features in order to recover image orientation before imple-
menting the strategy of Vardy and Möller [22]. They search for the mode of the horizontal
component of correspondence vectors as an indicator of the rotational component of motion.
This technique is similar to one proposed by Röfer which sorts the horizontal shifts of all
features and determines the value that would make the sign of half of the shifts positive and
the other half negative [37].

Briggs et al. [34] deviate from the standard two-dimensional application of SIFT feature
detection by utilizing one-dimensional images in order to reduce processing time and memory.
Using the snapshot and current view images as the axes of a graph, images are matched using
SIFT features and the resulting correspondence curve is plotted. The direction of motion
required to return to the goal is then extracted from this matching curve. This technique
has much in common with that of the original warping method [19] and its more recent
two-dimensional variants [24, 25].

The method we present is similar to the correspondence methods described above in that
it relies upon finding correspondences between features. However, our interpretation of the
resulting correspondences is markedly different. Consider the flow field for pure translation of
an agent equipped with an omnidirectional camera. The field has a characteristic structure
with foci of expansion and contraction separated by 180◦ (see Figure 1). If objects are
distributed uniformly in the environment, roughly half of them will appear to have expanded,
while the remaining half will appear to contract. Typical correspondence methods consider
how the features have shifted but not whether they have expanded or contracted. The
problem is that in the presence of rotation it becomes much more difficult to determine the
home direction from feature shifts. Hence, the two-stage process referred to above. However,
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Figure 1: Ideal flow field for pure translation in a panoramic image [20].

whether a feature has changed in scale is independent of any change in orientation between
the two views. We utilize the change in scale of corresponding SIFT features to move towards
contracted features and away from expanded features.

3. Homing in Scale Space

3.1. Notation

The robot’s current position and the snapshot (i.e. goal) position will be represented
as position vectors c and s respectively. Let C and S represent the images captured from
these positions. Features extracted from an image will be denoted with the same symbol,
with a superscript giving the index of the feature. For example, Sj indicates the jth feature
extracted from the snapshot image.

One requirement of our method is that the direction of translation be visible within the
robot’s field of view. Therefore we utilize panoramic images that provide an omnidirectional
field of view in the horizontal direction (c.f. 3(a)).

We will refer to our method as Homing in Scale Space or HiSS.

3.2. Visual Homing

If c and s lie within the same plane, then the ideal movement from c to s can be described
by the home direction α and distance r (see figure 2). Some visual homing algorithms (e.g.
[22, 35]) require the change in robot orientation ψ to be known prior to computing either
α or r. The algorithm presented here has no such requirement. The method for estimating
α is presented below. In the experimental section we consider a variety of techniques for
estimating r.

If both α and r are known then the robot can move to its goal in a single step. However,
due to the unknown scale of the environment it is often more difficult to obtain an estimate
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of r than of α. If only α is known then homing can still be achieved by making small steps in
the direction of α. This requires some sort of similarity measure to determine when the robot
has arrived at s. In our experiments on live robot homing, we consistently underestimate
r so that the robot moves towards the goal in smaller and smaller steps—a technique that
prevents excessive oscillation around the goal.

Figure 2: The unknown quantities in the visual homing problem. Thick arrows indicate the forwards
orientation of the robot at c and s. The dotted line through c is parallel to the robot’s orientation at s.

3.3. Feature Scale Change

In the description of our method below, we make geometric arguments on the basis of
whether a perceived feature has expanded or contracted. That is, whether the object that
generated the feature is closer or further from the robot at the current position than at some
reference position. As opposed to estimating the distance to the feature, we use the change
in the scale parameter of SIFT features to indicate whether the feature has expanded or
contracted. Consider Cj the jth feature extracted from the current image:

Cj = {Cj,x, Cj,y, Cj,θ, Cj,σ,Cj,d} (1)

The feature’s location within the image is (Cj,x, Cj,y), its orientation is Cj,θ, its scale is Cj,σ,
and its descriptor vector is Cj,d.

As far as we are aware, Homing in Scale Space [1] was the first visual navigation method
to make explicit use of Cj,σ (henceforth referred to as σ if the context is clear). We have
also recently employed σ to localize a robot along a trained route [36]. Informally, σ is the
effective amount of Gaussian blurring required for a feature’s distinctive characteristic to
emerge (the distinctive characteristic being that the point is a local extrema with respect
to both scale and space). Consider a landmark which yields one or more SIFT features. If
the landmark is approached, it will take more blurring for the corresponding features to be
detected. Thus, σ increases as the distance between the landmark and viewer decreases.

For our purposes we need only determine whether the distance to a landmark has in-
creased or decreased with respect to a reference location. We utilize σ for this purpose.
This substitution is valid as long as σ decreases monotonically as distance increases. Figure
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3(a) shows a selection of panoramic images captured in the lobby of the S.J. Carew building
at Memorial University. A total of 10 images were captured at increasing distances from
a plaque on the wall. The top image shows the positions of SIFT features extracted from
the vicinity of this plaque (features lying outside the large rectangular region surrounding
the plaque were discarded). Subsequent images show the matched features for images at
distances of 2.4, 4.8, and 7.2m from the top image. Figure 3(b) shows the scale σ of matched
features versus distance from the reference location. A clear trend of decreasing scale with
increasing distance is observable. Although, there are a few exceptions such as the feature
indicated by the heavy trace.
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Figure 3: (a) Images taken from the lobby of the S.J. Carew building of Memorial University. Overlaid are
the locations of features extracted from the vicinity of a plaque on the wall. (b) Plot of the relation between
spatial distance and feature scale for the features extracted from the top image in (a). The heavy trace
indicates one feature which exhibits an increase in scale with increasing distance, contrary to the general
trend of decreasing scale with increasing distance.

Let Sj be the jth SIFT feature extracted from the snapshot image and Ck be the kth

feature from the current image. If these features are matched, we can compute a quantity
∆σ which indicates whether the feature has expanded or contracted.

∆σ = Sj,σ − Ck,σ (2)

If ∆σ > 0 then the feature has contracted. If ∆σ < 0 then the feature has expanded. A
value of zero indicates no detectable change in apparent size.

Consider a matched feature which is generated by an object in the environment at position
f . Let d(x,f) represent the distance from a position x to the feature f . The relationship
between d(x,f) and σ is not straightforward. It depends upon the discretization of the
scale-space pyramid, the relative positions of x and f , and the physical size of the object
that generates the feature. Nevertheless, we assume that when observing the same feature

7



from two positions such as c and s that the following holds.

sign(∆σ) = sign(d(c,f)− d(s,f)) (3)

The principles described below make use of this relationship, allowing us to compare the
scale value of matched features and infer information about the sign of distance changes.

3.4. Principles

Homing in Scale Space is based on two simple principles:

1. Move towards features that have contracted (∆σ > 0).

2. Move away from features that have expanded (∆σ < 0).

To determine whether a feature has expanded or contracted, we compute a set of SIFT
feature matches from S to C. Let mi = (Sj, Ck), represent the ith matched pair. We
determine whether a feature has contracted or expanded from the sign of ∆σ as given in
equation 2. If ∆σ = 0 then we exclude the feature pair, leaving a total of n matched pairs
where the feature has either expanded or contracted from S to C. For each mi we use the
angular position of Ck to define a partial movement vector vi which is a unit vector directed
either towards the feature if it is contracted, or away from it if expanded (details in section
3.4.2). All partial movement vectors are added to produce an overall movement vector h.
The overall direction of movement α is then computed from h.

h =
1

|
∑n

i=0 v
i|

n∑
i=0

vi (4)

α = atan2(hy, hx) (5)

Notice that h is given as a unit vector, although this is not strictly necessary as we are only
interested in its direction α.

3.4.1. Principle 1

Consider the case of a contracted feature as shown in figure 4(a). The robot’s orientation
at c is shown by the short thick vector. Feature f is seen at an angle θ with respect to the
robot’s orientation. This angle is sufficient to specify a unit vector v directed towards f ,
which makes an angle ε with the line through cs. |ε| is the angular error, a value that would
be zero in the ideal case (f co-linear with cs). Also, shown is ρ the perpendicular bisector
of cs. As long as f lies on the same side of ρ as s then the distance from c to f will be
greater than the distance from s to f . Hence, the feature will appear to have contracted
and ∆σ should take on a positive value.

The unit vector v represents a partial motion vector corresponding to contracted feature
f . This vector would represent the ideal movement of the robot only if f was collinear with
cs . If f lies on the snapshot side of ρ then ε is constrained to lie in the range [−π

2
, π
2
].

Further, ε = ±π
2

only if f lies directly on ρ at an infinite distance.
Thus, a movement towards a contracted feature at a finite distance yields a home vector

with an angular error less than π
2
. Franz et al argue that homing under this condition
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(a) Single contracted feature (b) Multiple contracted features

Figure 4: The perpendicular bisector of cs, denoted ρ, separates expanded from contracted features. Here
features lie on the same side of ρ as s indicating contraction. (a) A single contracted feature is present. The
partial movement vector v is directed towards this feature, which is at an error angle of ε from cs. (b) Four
contracted features are present. h is the normalized sum of v1, v2, v3, and v4.

is convergent [19]. Let d(c(t), s) represent the distance from c(t) to s where c is now a
function of time t. Since the angular error is always less than π

2
movements along v will

yield a monotonic decrease in d(c(t), s). If guided by a single feature alone, the robot would
reach a point at which the feature ceases to be a contracted feature. At this point, the
following condition would hold,

d(c(t),f) = d(s,f). (6)

This condition indicates that c(t) (i.e. the robot) lies on a circle centred at f that intersects s.
We will refer to this circle as the scale horizon for feature f , so called because the feature’s
scale change ∆σ will change from positive to negative as the circle is entered. The area
enclosed by the scale horizon can be considered a dead zone with respect to the contracted
feature. Homing for a single feature converges to this dead zone but goes no further. An
example home vector field for a single feature is shown in figure 5(a).

When multiple contracted features are present, the scale horizons may have some degree
of overlap. Only points that lie in the intersection of all scale horizons will belong to the
dead zone. Thus, as more features are added the dead zone will tend to shrink and will
typically disappear entirely after the addition of just a few features. Examples for two and
three features are shown in figures 5(b) and 5(c). In the case of figure 5(c) three features are
sufficient to eliminate the dead zone. In summary, principle 1 yields convergent homing to
an area called the dead zone. When multiple contracted features are present the dead zone
will typically disappear, yielding convergent homing to s from all points in the plane.

While convergence to the dead zone as t→∞ is an attractive property, we would prefer
an angular error as close to 0 as possible to minimize the distance travelled. If we have
an ensemble of contracted features, each denoted as f i, we can compute a unit movement
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(a) One contracted feature (b) Two contracted features

(c) Three contracted features

Figure 5: Home vectors produced by the application of equation 5 on contracted features only. A circle
representing a feature’s scale horizon surrounds each feature-generating object f i. Only regions within the
intersection of all scale horizons lie in the dead zone. Such regions are shaded grey.
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vector for each. If the angular distribution of features is approximately uniform, then the
sum of all individual movement vectors h would point approximately towards s (see figure
4(b)). Yet even if the angular distribution of features was not uniform, the sum of individual
movement vectors would still exhibit an error less than π

2
, yielding convergent homing as

described above.

3.4.2. Principle 2

Principle 2 is illustrated in figure 6. Features f 1 and f 2 lie on the same side of ρ as c.
Thus, they will appear to have expanded. The vectors v1 and v2 are now directed away from
their corresponding features. For v1 this yields an angular error ≤ π

2
, but not for v2. The

difference is that f 2 lies in the region between the perpendicular bisector ρ and a parallel
line through c called ρ′. We will call this region B (the bad region). Movement vectors for
expanded features in region B exhibit angular error greater than π

2
. Any expanded features

not in region B will lie in region A. These features will yield convergent movement vectors
since there is no dead zone associated with expanded features.

We can argue that region A will tend to be much larger than region B, and therefore will
contain more features. If the distance d(c, s) is small relative to the size of the environment
then this will likely be the case. If so, then the ‘good’ features in region A may outweigh the
‘bad’ features in region B. We have found this to be true in our experimental results. Also,
if features are evenly distributed However, it must be acknowledged that convergent homing
can not be guaranteed for principle 2.

Figure 6: Feature-generating objects f1 and f2 lie on the same side of ρ as c. Therefore, these features will
have expanded in the current view image C and the corresponding partial movement vectors v1 and v2 point
away from them. Regions A and B are defined with respect to ρ and ρ′ as shown. The partial movement
vector v1 for f1 in region A has an angular error less than π

2 . However, the vector v2 for f2 has an error
greater than π

2 .

Implementation Details

We use panoramic images of our environment to represent views from the robot’s per-
spective. These images are w pixels wide by h pixels high and represent a complete viewing

11



Sample Image Name Image Size Capture Grid Grid Spacing

A1OriginalH 561×81 10×17 30cm

CHall1H 561×81 10×20 50cm

CHall2H 561×81 8×20 50cm

Kitchen1H 583×81 12×9 10cm

Moeller1H 583×81 22×11 10cm

ISLab 346×50 9×8 61cm

Figure 7: Detailed information for each of the six image databases used.

angle of 2π in the horizontal direction and γmax radians in the vertical direction. Each pixel
represents a spacing of δx radians in azimuth, and δy radians in elevation, computable by:

δx =
2π

w
δy =

γmax
h

We therefore can convert a feature F i with pixel coordinates (F i,x, F i,y) to angular coordi-
nates (θi, γi).

θi = δxF
i,x γi = δyF

i,y

For movements in the plane, only θi is required. We can compute a partial movement
vector for feature F i, which is directed towards contracted features but away from expanded
features.

vi =



[
cos θi
sin θi

]
if ∆σ > 0

[
cos(θi + π)
sin(θi + π)

]
if ∆σ < 0

(7)

Our method operates on pairs of features that have been matched from S to C. These
matches are determined via the standard match criterion described by Lowe [32] in which a
match is accepted only if it is significantly better than the second closest match.

4. Experimental Methods

4.1. Image Databases

Six image databases were used for testing. For each database a capture grid was defined
on the floor of the capture area. Images were captured by a camera mounted upwards on
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a robot, viewing a hyperbolic mirror. Next, the image is projected onto a sphere. The
final image is obtained by sampling the image for positions on the sphere taken at constant
angular increments. This representation is convenient in that all pixels from a single image
column correspond to the same azimuth, while all pixels from a single row correspond to the
same elevation. Sample images of this format along with information on the image databases
are found in figure 7.

The A1OriginalH, CHall1H, and CHall2H databases were captured at the University of
Bielefeld. A1OriginalH was captured within the Robotics Lab of the Computer Engineering
Group, while CHall1H and CHall2H are of the main hall of the university. Kitchen1H
and Moeller1H were captured by Sven Kreft and Sebastian Ruwisch in a small kitchen and
living room, respectively. All visible objects remained stationary throughout the collection
process. More details on the collection of these databases can be found in [22] (covering
A1OriginalH, CHall1H, and CHall2H) and [38] (covering Kitchen1H and Moeller1H). All of
these databases have been made publicly accessible at http://www.ti.uni-bielefeld.de/
html/research/avardy/index.html.

The ISLab database was captured at the Intelligent Systems laboratory at Memorial Uni-
versity. The setting for the database is a lab with an off white floor lit by fluorescent lighting.
Since it is an active laboratory, some of the images contain people who move throughout
the collection process. This active setting provides for a more challenging environment for
homing to take place, since features occasionally vanish or change locations between images.
The floor of the lab is tiled by square tiles which measure 30.5×30.5cm. Images were cap-
tured on a grid equal to every second tile spacing. The area surrounding the image capture
can be seen in the floor plan depicted in figure 8. Additional details on the format of our
images are available in [39].

In order to demonstrate the invariance of our method to rotation, input images will be
rotated by a random amount before each test is performed. A circular shift of the image
simulates the rotation of the robot about an axis perpendicular to the ground plane. Images
are rotated by a randomly chosen angle θr in the range [0, 2π). For some experiments we will
also simulate a change in elevation of the robot by shifting the image upwards or downwards
by a random amount vshift ∈ [0, h), where h is the image height. Unlike the horizontal shift
induced by a rotation, vertical shifting will leave some portion of the image undefined. These
undefined pixels will be filled in with black. See figure 9 for an example of an image that has
been both rotated and vertically shifted. These vertical shifts allow us to test the robustness
of our algorithm to changes in the position of the image horizon.

4.2. Configuration

We utilize David Lowe’s SIFT implementation available from http://www.cs.ubc.ca/

~lowe/keypoints/. Our method operates best when a large number of SIFT features have
been extracted. We therefore modified several parameters in order to maximize feature
production, while still maintaining accurate results. The values changed from those of Lowe’s
original implementation are as follows:

1. The number of scales at which keypoints are extracted is increased from 3 to 6 to
increase the number of overall keypoints, while maintaining feasible running time.
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Figure 8: Diagram of the Intelligent Systems Lab at Memorial University of Newfoundland
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Figure 9: Images from the A1OriginalH database taken at location (1,1). Top image shows the original
image taken by the robot. Bottom image shows the image after a random amount of rotation, plus a random
vertical shift. The remaining pixels after vertical shifting are filled in with black.

2. The peak threshold for the magnitude of the difference of Gaussian values is decreased
from 0.08 to 0.01 in order to maintain more keypoints from areas of low contrast, since
indoor environments often contain such areas.

3. The ratio of scores from best to second best feature match has been increased from
0.6 to 0.8. As discussed in [32], this change results in a marginal decrease in match
accuracy while dramatically increasing the number of matches.

We use Ralf Möller’s implementation of the warping method. Parameters for the warp-
ing method were selected to ensure fairness with respect to running time. We selected a
discretization of 36 steps for all three movement parameters (α, ψ, ν). On an Intel Core2
2.13 GHz processor, this parameter selection resulted in an average execution time for the
warping method which was 4.8% faster per snapshot than our method. We consider this to
be a fair metric for results comparison.

4.3. Live Trial Implementation

Live robot trials were conducted using a Pioneer P3-AT robot. The environment for the
live trials was exactly the same as described for the collection of the ISLab database. Five
different snapshot positions were tested with the robot manually positioned at five different
start positions at the start of each trial. Trials were terminated in the case of collisions with
objects in the room or after 12 individual movements had been completed.

5. Results

5.1. Performance Metrics

Given two images S and C, the ideal visual homing algorithm computes α, the direction
needed to move in order to reach s from c. The robot will then move in the direction
of α and determine whether or not it has arrived at the goal. In order to measure the
accuracy of a given homing algorithm, we use two different performance metrics [22]. The
first metric, angular error, is the difference between α and the true homing direction αideal.
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The second metric is the return ratio, which measures the number of times the robot was
able to successfully navigate to the goal location. Angular error results will be averaged over
a set of start positions and describe only the error of instantaneous home vectors. The return
ratio metric describes the overall success of a homing attempt. It is possible that in some
pathological environments the majority of home vectors are accurate, except those close to
the goal. The inaccurate home vectors close to the goal are in the minority but may have
the effect of preventing the robot from reaching the goal for many start positions. In this
case, the average angular error metric will indicate successful homing but the return ratio
metric will indicate unsuccessful homing.

For results on the image databases, we have access to the true positions of both s and c.
Therefore, we can compute the ideal home angle as follows:

αideal(s, c) = atan2(sy − cy, sx − cx) (8)

thus, the angular error AE(s, c) can be found by:

AE(s, c) = diff(αideal − αhoming) (9)

where diff() is a function that yields the difference between two angles. We can then obtain
an overall average angular error as follows:

AAE(s) =
1

mn

m∑
x=1

n∑
y=1

AE(s, cxy). (10)

where AE(s, s) = 0.
To obtain a measure of performance for the entire image database we can define the

overall average angular error OAAE(db), which computes the overall average of AAE for
all snapshot images in database db.

OAAE(db) =
1

mn

m∑
x=1

n∑
y=1

AAE(sxy). (11)

The second performance metric is the return ratio. The return ratio is computed by
carrying out simulated homing trials on the capture grid of a particular database. We
declare a trial to be successful if the simulated robot was able to return to within a given
distance threshold of s. We define ret(c, s) as a binary valued function with a value of 1 for
successful homing and 0 for unsuccessful homing. ret(c, s) is evaluated on image database
db as follows:

1. For positions c and s apply the homing algorithm on C and S to obtain αhoming.

2. Calculate the new position of the simulated robot by moving in the direction of αhoming:
cnew = (cx + round(cos(αhoming)),cy + round(sin(αhoming))).

3. If cnew = s, homing is successful. If cnew is outside the boundary determined by the
capture grid, or is the same as a previously visited c (loop), then the trial is considered
unsuccessful. Otherwise, return to step 1 with c = cnew.
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If we iterate this process over all possible c for all possible s, we can determine the total
return ratio TRR(db) as the percentage of homing trials that succeed.

RR(s) =
m∑
x=1

n∑
y=1

ret(cxy, sxy)/mn (12)

TRR(db) =
m∑
x=1

n∑
y=1

RR(sxy)/mn. (13)

Figure 10 shows an example of the operation of our algorithm. In this case the two
images are taken from the same orientation for ease of interpretation.

(a) Contracted features

(b) Expanded features

Figure 10: Example of the application of HiSS. For both (a) and (b) the snapshot image shown on top is from
position (5, 8) of A1OriginalH. The current image below is from position (3, 8). Lines between the images
indicate matches between SIFT keypoints. In (a) these lines connect the contracted features in C with their
matches in S. In (b) expanded features are shown. The thin arrow indicates the true home position while
the thicker arrow indicates the computed home direction by contracted (a) or expanded (b) features.

5.2. Notation

Each test was performed using both homing methods. Wherever ‘H’ or ‘HiSS’ is noted in
a legend or table, it represents the results for the homing in scale space method. Wherever
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(a) HiSS, rot.
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(b) HiSS, rot. + v.
shift
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(c) Warping, rot.
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(d) Warping, rot. + v.
shift

Figure 11: Homing vector images with s set to (2, 3). The two plots on the left show the application of HiSS
with random rotation (first, AAE=12.3◦) and combined vertical shift (second, AAE=18.1◦). The two plots
on the right show the warping method with random rotation (third, AAE=39.2◦) and combined vertical
shift (fourth, AAE=59.4◦)

‘W’ or ‘Warp’ is noted in a legend or table, it represents the results for the warping method.
Since all tests were done with a certain level of vertical shifting, wherever 0px, 5px, 15px,
or 24px is noted, it corresponds to the maximum random vertical shift for that particular
trial. For example, ‘15H’ or ‘HiSS15’ both refer to a trial performed by the homing in
scale space method under uniform(0, 15) pixel vertical shift, where uniform(a, b) returns a
uniformly-distributed random number in the range [a, b].

5.3. Results on Image Databases

In figure 11 we see the results of homing to location (2, 3) in the A1OriginalH database
from every other location in the database. Computed homing angles are represented by unit
vectors.

Figures 12 and 13 are of grayscale grids plotted for each (x, y) location within each
database. The gray scale value for a particular location within a database is scaled from black
(0) to white (maximum of max(OAAE(hiss), OAAE(warping)) for a particular database).
This view allows us to see which locations in a particular environment perform well (darker),
or poorly (lighter). Note that the aspect ratio for these figures is not 1:1, refer to the axes
for coordinate information. These results are summarized for the angular error metric in
figure 14 and for the return ratio metric in figure 15.

From figures 12, 13, and 14 it appears that the OAAE for our method is lower than that
for the warping method. However, we must show that there is indeed a statistically significant
difference between the two methods. In order to determine which tests to perform, we first
analyzed the distribution of our data. For the angular error data, we used the Shapiro-Wilk,
or W normality test [40, 41]. Upon running the W test for each of the data sets individually,
as well as all combined data sets as a whole, each test returned a result of p < 2.2e − 16,
indicating that our data is not normally distributed. For this reason, we used the sign
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Figure 12: Grids showing AAE results for ISLab, A1OriginalH, and CHall1H databases.
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Figure 13: Grids showing AAE results for CHall2H, Kitchen1H, and Moeller1H databases.
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Database 0H 5H 15H 24H 0W 5W 15W 24W
A1originalH 12.4◦ 17.8◦ 19.3◦ 20.9◦ 29.7◦ 34.2◦ 63.9◦ 71.7◦

Chall1H 14.3◦ 15.6◦ 16.8◦ 18.3◦ 33.5◦ 47.5◦ 58.9◦ 68.0◦

Chall2H 22.2◦ 24.7◦ 26.1◦ 28.0◦ 50.4◦ 54.3◦ 67.5◦ 74.5◦

Kitchen1H 22.5◦ 28.8◦ 31.6◦ 36.1◦ 46.4◦ 46.5◦ 49.2◦ 57.6◦

Moeller1H 24.3◦ 27.3◦ 29.0◦ 30.6◦ 34.9◦ 43.6◦ 59.6◦ 65.5◦

RobISLab 22.7◦ 27.3◦ 34.7◦ 46.6◦ 62.9◦ 75.4◦ 87.8◦ 84.7◦

Figure 14: Database Results - Angular Error
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Chall1H 0.934 0.916 0.906 0.860 0.494 0.291 0.193 0.097
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Kitchen1H 0.897 0.831 0.796 0.734 0.612 0.625 0.583 0.369
Moeller1H 0.881 0.834 0.804 0.775 0.602 0.453 0.175 0.125
RobISLab 0.870 0.823 0.749 0.599 0.412 0.195 0.095 0.112

Figure 15: Database Results - Return Ratio
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test which is applicable even if the data is not normally distributed [42]. The alternative
hypothesis tested is that AE(hiss) − AE(warp) < 0, representing superior performance of
HiSS over warping. A P-value < 0.05 is sufficient to support this alternative hypothesis
[42, 43, 44]. The results from these tests are shown in figure 16. In all cases the P-value is
< 0.05 indicating superior performance of HiSS over Warping.

5.4. Distance Estimation

As mentioned in section 3.2 visual homing can be achieved by incremental movements in
the direction α. However, we can reach the goal more efficiently using some estimate of the
distance r.

In [39] we considered a variety of image and feature-based measures in order to arrive
at a quantity with a consistently high correlation with r. The best measure found was the
percentage of SIFT keypoints matched, which we denote M%. Figure 17 presents plots of M%

versus the true distance r for all image databases. The relationship between these quantities
appears to be exponential in nature:

r = aebM% (14)

We used nonlinear regression using the R stats package to find the best parameters a and b
for each image database. The results are overlaid on the raw data in figure 17. The overlaid
graphs show 4 functions (one for each of the 0, 5, 15, 24 pixel vertical shifts). Note that
due to the similarity of the resulting values of a and b the lines are difficult to distinguish.
This indicates that the estimated relationships between M% and r are relatively resistant to
vertical shift. Figure 18 provides tables of the computed values of a and b.

We can see by figures 17 and 18 that the distance estimation function fits nicely to
the exponential curve. The function also remains remarkably similar despite large vertical
shifting within the image (represented by the different lines), making this method for distance
estimation feasible for environments without level movement surfaces. One downside to this
approach however is that as the true distance from the goal increases, so does the error in
the function. At areas in the graph where the slope of the computed function has a larger
magnitude, similar values of M% can yield dramatically different distances. This would
lead us to believe that this distance estimation method will be less accurate for long-range
homing, but become more accurate as we approach the goal.

Another issue of note is the fact that this function varies with image dimensions. Homing
within an environment using images with a height of 50 pixels will yield a different distance
estimation function than an image with a height of 100 pixels. Experimentally, we have
found that as resolution increases, more keypoints are found, and a higher value for M%

results.

5.5. ISLab Trials

To test our algorithm on our live robot, we used the environment of the ISLab database.
Five different goal locations were chosen, with 5 starting locations for each goal location
spaced evenly throughout the environment. The robot takes an image at its current location,
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Sign Test (With Alt. Hyp. HiSS-Warping < 0) - No Pixel Vertical Shift
Database Samples Mean Median 95% CI S-Value P-Value

A1originalH 28900 -0.236 -0.054 (−π,−0.051) 11873 2.2e-16
Chall1H 40000 -0.318 -0.120 (−π,−0.116) 14252 2.2e-16
Chall2H 25600 -0.471 -0.255 (−π,−0.246) 8571 2.2e-16
Kitchen1H 11664 -0.375 -0.111 (−π,−0.102) 4497 2.2e-16
Moeller1H 58564 -0.197 -0.003 (−π, 0.0) 28851 0.0057
RobISLab 5184 -0.707 -0.429 (−π,−0.399) 1287 2.2e-16

Sign Test (With Alt. Hyp. HiSS-Warping < 0) - 5 Pixel Vertical Shift
Database Samples Mean Median 95% CI S-Value P-Value

A1originalH 28900 -0.287 -0.069 (−π,−0.066) 11580 2.2e-16
Chall1H 40000 -0.556 -0.251 (−π,−0.244) 11481 2.2e-16
Chall2H 25600 -0.517 -0.316 (−π,−0.305) 7991 2.2e-16
Kitchen1H 11664 -0.309 -0.084 (−π,−0.074) 4859 2.2e-16
Moeller1H 58564 -0.285 -0.052 (−π,−0.049) 26075 2.2e-16
RobISLab 5184 -0.841 -0.659 (−π,−0.621) 1140 2.2e-16

Sign Test (With Alt. Hyp. HiSS-Warping < 0) - 15 Pixel Vertical Shift
Database Samples Mean Median 95% CI S-Value P-Value

A1originalH 28900 -0.778 -0.528 (−π,−0.513) 6654 2.2e-16
Chall1H 40000 -0.734 -0.409 (−π,−0.399) 9888 2.2e-16
Chall2H 25600 -0.724 -0.541 (−π,−0.525) 6702 2.2e-16
Kitchen1H 11664 -0.307 -0.079 (−π,−0.067) 5016 2.2e-16
Moeller1H 58564 -0.535 -0.243 (−π,−0.234) 20712 2.2e-16
ISLab 5184 -0.927 -0.915 (−π,−0.874) 1133 2.2e-16

Sign Test (With Alt. Hyp. HiSS-Warping < 0) - 24 Pixel Vertical Shift
Database Samples Mean Median 95% CI S-Value P-Value

A1originalH 28900 -0.885 -0.718 (−π,−0.703) 5903 2.2e-16
Chall1H 40000 -0.867 -0.638 (−π,−0.625) 8217 2.2e-16
Chall2H 25600 -0.812 -0.697 (−π,−0.683) 6057 2.2e-16
Kitchen1H 11664 -0.375 -0.133 (−π,−0.120) 4796 2.2e-16
Moeller1H 58564 -0.609 -0.386 (−π,−0.376) 18772 2.2e-16
ISLab 5184 -0.665 -0.606 (−π,−0.573) 1512 2.2e-16

Figure 16: Tables representing the results from the sign test applied to angular error data for HiSS-Warping.
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Figure 17: Percentage Matched vs. Distance graphs for each database.
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Database Trial a b a std. err b std. err RSE
Islab 0px Vert 10.06780 -5.85665 0.05436 0.04763 0.8335

5px Vert 9.78177 -6.43592 0.06124 0.06236 0.9595
15px Vert 9.26169 -6.53532 0.06932 0.07979 1.144
24px Vert 7.8007 -5.4061 0.0731 0.1028 1.494

A1OriginalH 0px Vert 17.68985 -7.27702 0.03602 0.02122 1.24
5px Vert 17.89868 -7.73030 0.03793 0.02307 1.269
15px Vert 18.23209 -8.03045 0.04010 0.02428 1.286
24px Vert 18.11404 -8.17131 0.04154 0.02585 1.344

CHall1H 0px Vert 23.85965 -8.45522 0.05915 0.02441 1.668
5px Vert 23.85637 -8.75030 0.06172 0.02625 1.734
15px Vert 23.82518 -8.82529 0.06291 0.02698 1.772
24px Vert 23.32249 -8.90887 0.06561 0.02945 1.907

CHall2H 0px Vert 23.37360 -8.50571 0.08667 0.03625 1.88
5px Vert 23.71199 -8.87797 0.09259 0.03905 1.941
15px Vert 24.10059 -9.11256 0.10206 0.04246 2.037
24px Vert 24.07061 -9.26291 0.10868 0.04574 2.144

Kitchen1H 0px Vert 12.71268 -7.15042 0.07095 0.05730 1.447
5px Vert 12.91063 -7.58406 0.07962 0.06509 1.53
15px Vert 13.26301 -7.77610 0.08449 0.06660 1.538
24px Vert 12.50825 -7.31220 0.09264 0.07631 1.76

Moeller1H 0px Vert 20.28980 -8.72208 0.05359 0.03502 2.685
5px Vert 20.66887 -9.24524 0.05959 0.03914 2.787
15px Vert 21.09868 -9.46355 0.06302 0.04028 2.808
24px Vert 21.01630 -9.41256 0.06539 0.04160 2.886

Figure 18: Table of results for functions plotted in figure 17. a and b correspond to the values output by
performing non linear regression on function r = aebM% . Standard errors for a and b, as well as the residual
standard error (RSE) are also included.
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compares it to the goal image, computes the estimated values for r and α, turns in the
direction of α and moves a distance of r/2. Moving the full distance r on each step can
lead the robot to overshoot the goal and then oscillate around it. We found that moving a
distance of r/2 yields more stable behaviour. This process repeats until the robot believes it
is within 30cm of the goal (success) or for a maximum of 12 iterations (failure). Values for
r were computed from the fitted exponential function of M% discussed above on the ISLab
database. A real-time distance estimator is discussed in the future work section.

It was our original intention to compare homing in scale space to the warping method
live on the robot. However, the warping method was found to be too inaccurate to carry
out the trials. Of several dozen initial tests, the robot would inevitably veer off the allotted
limits for navigation. We suspect this is due to the nature of the images captured by the
robot. Due to unevenness in the floor and slight discrepancies in the diameter of the robot’s
wheels, both the height and inclination of the robot’s camera varied slightly as it travelled
across the floor. Since the warping method relies heavily on the stability of the horizon
within an image, we believe that this variance caused enough shift of the image horizon to
cause the warping method to perform poorly. Due to this, results for live trials using the
warping method are not included.

We will define two types of success for our live robot trials. Type A success means the
robot came to stop within both an estimated distance of 30cm and an actual distance of
30cm. Type B success means that at some point the robot came within a true distance of
30cm of the goal, but did not stop due to error in its distance estimation. If the robot passed
within 30cm of the goal at any point during a trial, but estimated it was not within the
threshold, we record it as having been an undetected arrival (UA). Therefore, type B success
is equivalent to any trial which recorded an undetected arrival without achieving type A
success. Figures 20 through 24 show results for each goal position, along with a table of the
associated estimated distance, actual distance, and distance estimate error for the final step
of each homing trial.

For the 25 homing trials conducted, 21 resulted in type A success and 4 resulted in type
B success. 14 of the trials resulted in the recording of an undetected arrival, which means
that the method is actually getting closer to the goal than its distance estimation function
would lead us to believe.

This effect is illustrated in figure 25 where we plot the relationship between the actual
distance from the goal ra and the error:

rerr = |r − ra| (15)

As ra increases, so does rerr. Using the Spearman method of correlation between these two
values yields a correlation coefficient of 0.784, which strongly reinforces this relationship.
The second graph is a histogram of rerr, showing a possible reason for the high number of
UAs in the live trials. The distance estimation function nearly always returns a value which
is higher than that of the actual distance to the goal, with a mean of 0.462m and a median
of 0.195cm. A possible reason for this is the fact that the distance estimation function was
computed from the ISLab database, in which images were spaced 61cm apart. Since the
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Trial Est Dist Act Dist Error Success UA Steps
1 ◦ 0.25 0.09 0.16 A NO 5

� 0.3 0.24 0.06 A YES 6
♦ 0.43 0.38 0.05 B YES 12
M 0.26 0.12 0.14 A YES 7
O 0.28 0.22 0.06 A NO 2

Figure 19: ISLab Live Homing Trial 1

Figure 20: ISLab live homing trial 1. The plot above shows the positions of the robot as it approaches
the goal area which is indicated by the shaded circle. The table below gives information on the final robot
position for the corresponding homing attempt. Distance and error units in the table are given in metres.
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Figure 21: ISLab live homing trial 2.
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Figure 22: ISLab live homing trial 3.
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Figure 23: ISLab live homing trial 4.

31



0 1 2 3 4 5

0
1

2
3

4
5

ISLab Live Robot Trial 5

X−Axis (Meters)

Y
−

A
xi

s 
(M

et
er

s)

Trial Est Dist Act Dist Error Success UA Steps
5 ◦ 0.28 0.14 0.14 A YES 4

� 0.26 0.13 0.13 A YES 5
♦ N/A 0.79 N/A B YES 12
M 0.25 0.25 0.00 A YES 6
O 0.29 0.14 0.15 A YES 2

Figure 24: ISLab live homing trial 5.
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Figure 25: Graph (left) of actual distance from goal ra vs. distance error rerr = |r − ra|, along with the
error histogram (right).

main purpose of the distance estimation function is to detect close proximity to the goal, it
would be preferable to estimate this function with finer-grained resolution—particularly for
smaller distance values.

6. Discussion

Our tests have demonstrated the superior performance of our method over the warping
method for all six image databases. Homing in scale space yielded a dramatically lower
angular error, as well as a higher return ratio than the warping method. The random
horizontal rotations and vertical shifts that were incorporated into the database experiments
were included to demonstrate our method’s invariance to orientation changes and robustness
to vertical image shifts.

Results from the live robot trials were in agreement with those from the image databases.
The type A success rate was found to be 84%. If we combine this with type B successes,
we see that homing in scale space was able to bring the robot to within 30cm of the goal
in all cases. These results were obtained in an environment where the warping method was
unable to achieve any measurable success.

6.1. Future Work

Recall the value of ∆σ which was used to determine whether a feature was classified
as contracted or expanded. In the case of images captured at nearby locations, we could
see many very small values for ∆σ. In the presence of camera noise and improper focus,
the chance of misclassification between contracted and expanded features may be high. We
experimented with a threshold parameter for filtering matches with low values of ∆σ. How-
ever, the results were inconsistent across different image databases. A more sophisticated
classification strategy should be investigated in the future.
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Distance estimation is another area where improvements can be made. The distance
estimation formula used in our live robot trials was computed using nonlinear regression
based on data from the ISLab database. We propose that a distance estimation function
for a particular environment could be calculated using relative motion data collected by
an inertial measurement unit (IMU), thus eliminating the need for an existing database.
Assuming that the robot captured the goal image and then moved away from it (e.g. in the
context of learning a route or topological map of the environment) we could estimate the
true distance to the goal via the IMU. The relationship between distance and M% could then
be learned on-line.

In this paper we have shown that homing in scale space is invariant to rotations of
an image about an axis perpendicular to the ground plane. However, we would like to
demonstrate more conclusively that the algorithm is invariant to any 3D rotation. We
have captured a database of images taken from a variety of roll, pitch, and yaw angles.
However, since we are using the same camera system as in this paper, the images are not
truly omnidirectional. Limitations in the field-of-view have an impact on the algorithm’s
performance and we are still determining the best way of analyzing these results. It would
be interesting to extend our technique for application on unmanned aerial vehicles (UAVs).
Since aerial vehicles travel in 3D we would need to augment the algorithm by computing
both the angle of azimuth (i.e. α) and the angle of elevation. This change could easily
be accommodated by making the partial movement vectors defined in equation 7 three-
dimensional.

Visual homing techniques can be applied only when the robot lies within the catchment
area of the goal location. Our image database results indicate a catchment area covering
the entire capture grid (areas ranged from 1.08 to 50 m2). Nevertheless, other techniques
will certainly be required to guide the robot into the catchment area. One simple strategy is
route-based navigation where the routes consist of sets of nodes with overlapping catchment
areas. We have investigated some methods for ensuring this overlap, but much more remains
to be done [13, 36]. Beyond route-based navigation is complete topological navigation where
route segments are concatenated together to form a graph [45]. There has been considerable
work on this area, also known as topological SLAM in recent years [14, 15, 16, 17, 46]. We
intend to apply the algorithm presented here both in route-based and topological navigation.

7. Conclusions

We have described a method for performing visual homing using the scale change of
SIFT features. In fact, the method is not reliant on SIFT itself but requires features with an
associated scale parameter. Numerous variants of the SIFT framework have been proposed
and could be used for this purpose (e.g. SURF features [47]).

In this paper we have shown that homing in scale space performed significantly better
than the warping method, which has been widely used as a benchmark in the field of visual
homing. Future work will focus on demonstrations of the technique in 3D and improving
robustness to field-of-view limitations.
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[38] R. Möller, A. Vardy, S. Kreft, S. Ruwisch, Visual homing in environments with
anisotropic landmark distribution, Autonomous Robots 23 (2007) 231–245.

[39] D. Churchill, Homing in scale space, Master’s thesis, Memorial University of Newfound-
land (2009).

[40] P. Royston, An extension of shapiro and wilk’s w test for normality to large samples,
in: Applied Statistics, 1982, pp. 115–124.

[41] P. Royston, Algorithm as 181: The w test for normality, in: Applied Statistics, 1982,
pp. 176–180.

[42] J. Gibbons, S. Chakraborti, Nonparametric Statistical Inference, Marcel Dekker Inc.,
New York, 1992.

37



[43] L. Kitchens, Basic Statistics and Data Analysis, Duxbury, 2003.

[44] E. L. Lehmann, Nonparametrics: Statistical Methods Based on Ranks, Holden and Day,
San Francisco, 1975.

[45] M. Franz, H. Mallot, Biomimetic robot navigation, Robotics and Autonomous Systems,
Special Issue: Biomimetic Robots 30 (2000) 133–153.

[46] S. Ferdaus, A. Vardy, G. Mann, R. Gosine, Comparing global measures of image similar-
ity for use in topological localization of mobile robots, in: Proceedings of the Canadian
Conference on Electrical and Computer Engineering, IEEE Xplore, 2008.

[47] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, SURF: Speeded up robust features, Computer
Vision and Image Understanding 110 (3) (2008) 346–359.

38


