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Abstract

Real-time Strategy (RTS) games provide a challenging en-
vironment for Al research, due to their large state and ac-
tion spaces, hidden information, and real-time gameplay. Star-
Craft II has become a new test-bed for deep reinforcement
learning systems using the StarCraft II Learning Environment
(SC2LE). Recently the full game of StarCraft II has been ap-
proached with a complex multi-agent reinforcement learning
(RL) system, however this is currently only possible with ex-
tremely large financial investments out of the reach of most
researchers. In this paper we show progress on using varia-
tions of easier to use RL techniques, modified to accommo-
date actions with multiple components used in the SC2LE.
Our experiments show that we can effectively transfer trained
policies between RTS combat scenarios of varying complex-
ity. First, we train combat policies on varying numbers of Star-
Craft Il units, and then carry out those policies on larger scale
battles, maintaining similar win rates. Second, we demon-
strate the ability to train combat policies on one StarCraft II
unit type (Terran Marine) and then apply those policies to an-
other unit type (Protoss Stalker) with similar success.

1 Introduction and Related Work

Real-Time Strategy (RTS) games are a popular testbed
for research in Artificial Intelligence, with complex sub-
problems providing many algorithmic challenges (Ontafién
et al. 2015), and the availability of multiple RTS game APIs
(Heinermann 2013; Synnaeve et al. 2016; Vinyals et al.
2017), they provide an ideal environment for testing novel
Al methods. In 2018, Google DeepMind unveiled an Al
agent called AlphaStar (Vinyals et al. 2019a), which used
machine learning (ML) techniques to play StarCraft II at a
professional human level. AlphaStar was initially trained us-
ing supervised learning from hundreds of thousands of hu-
man game traces, and then continued to improve via self play
with deep RL, a method by which the agent improves its
policy by learning to take actions which lead to higher re-
wards more often. While this method was successful in pro-
ducing a strong agent, it required a massive engineering ef-
fort, with a team comprised of more than 30 world-class Al
researchers and software engineers. AlphaStar also required
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an enormous financial investment in hardware for training,
using over 80000 CPU cores to run simultaneous instances
of StarCraft II, 1200 Tensor Processor Units (TPUs) to train
the networks, as well as a large amount of infrastructure and
electricity to drive this large-scale computation. While Al-
phaStar is estimated to be the strongest existing RTS Al agent
and was capable of beating many players at the Grandmas-
ter rank on the StarCraft II ladder, it does not yet play at the
level of the world’s best human players (e.g. in a tournament
setting). The creation of AlphaStar demonstrated that using
deep learning to tackle RTS Al is a powerful solution, how-
ever applying it to the entire game as a whole is not an eco-
nomically viable solution for anyone but the worlds largest
companies. In this paper we attempt to demonstrate that one
possible solution is to use the idea of transfer learning: learn-
ing to generate policies for sub-problems of RTS games, and
then using those learned policies to generate actions for many
other sub-problems within the game, which can yield savings
in both training time and infrastructure costs.

In 2017, Blizzard Entertainment (developer of the Star-
Craft games), released SC2API: an API for external control
of StarCraft II. DeepMind, in collaboration with Blizzard,
simultaneously released the SC2LE with a Python interface
called PySC2 designed to enable ML research with the game
(Vinyals et al. 2017). AlphaStar was created with tools built
on top of SC2API and SC2LE. PySC2 allows commands to
be issued in a way similar to how a human would play; units
are selected with point coordinates or by specifying a rectan-
gle the way a human would with the mouse. Actions are for-
matted as an action function (e.g. move, attack, cast a spell,
unload transport, etc.) with varying numbers of arguments
depending on the function. This action representation differs
from that used in other RTS Al research APIs, including the
TorchCraft ML library for StarCraft: Broodwar (Synnaeve et
al. 2016). In this paper we refer to the action function and
its arguments as action components. Representing actions
as functions with parameters creates a complicated action-
space that requires modifications to classic RL algorithms.

Since the release of PySC2 several works other than Al-
phaStar have been published using this environment with
deep RL. Tang et al. (2018) trained an agent to learn unit and
building production decisions (build order) using RL while
handling resource harvesting and combat with scripted mod-
ules. Sun et al. (2018) reduced the action space by training



Figure 1: 8m vs. 8m scenario showing game screen (left) and
PySC2 features used (right).

an agent to use macro actions that combine actions available
in PySC2 to play the full game of StarCraft II against the
built-in AI. Macro actions have also been used in combina-
tion with a hierarchical RL architecture of sub-policies and
states and curriculum transfer learning to progressively train
an agent on harder levels of the built-in Al to learn to play the
full game of StarCraft II (Pang et al. 2019). Samvelyan et al.
2019 introduced a platform using the SC2LE called the Star-
Craft Multi-Agent Challenge used for testing multi-agent RL
by treating each unit as a separate agent. Notably, these other
works have not used the complex action-space directly pro-
vided by PySC2, which mirrors how humans play the game.
This paper is organized as follows: in the next section
we describe how our experiments interact with the the
SC2LE; following that, we present our implementation of
component-action DQN; in the Experiments section we de-
scribe our experimental setup and results; finally we present
our conclusions and ideas for expanding on this research.

2 StarCraft II Learning Environment

The PySC2 component of the SC2LE is designed for ML/RL
research, exposing the gamestate mainly as 2D feature maps
and using an action-space similar to human input. An RL
player receives a state observation from PySC2 and then
specifies an action to take once every n frames, where n is
adjustable. The game normally runs at 24 frames per sec-
ond, and all our experiments have the RL player acting every
8 frames, as in previous work (Vinyals et al. 2017). At this
speed the RL player acts at a similar rate as a human, and the
gamestate can change meaningfully between states.

2.1 PySC2 observations

PySC2 observations consist of a number of 2D feature maps
conveying categorical and scalar information from the main
game map and minimap, as well as a 1D vector of other infor-
mation that does not have a spatial component. The observa-
tion also includes a list of valid actions for the current frame
which we use to mask out illegal actions. In our experiments
we use a subset of the main map spatial features relevant to
the combat scenarios we use:

player_relative - categorical feature describing if units are
“self”” or enemy (and some other categories we don’t use)

selected - Boolean feature showing which units are cur-
rently selected (i.e. if the player can give them commands)

unit_hit_points - scalar feature giving remaining health of
units, which we convert to 3 categories

2.2 PySC2 actions

Actions in PySC2 are conceptually similar to how a human
player interacts with the game, and consist of a function se-
lection and O or more arguments to the function. We use a
small subset of the over 500 action functions in PySC2 which
are sufficient for the combat scenarios in our experiments.
Those functions and their parameters are:

no_op - do nothing
select_rect - select units in a rectangular region

e screen (z,y) (top-left position)
e screen?2 (z,y) (bottom-right position)

select_army - select all friendly combat units

attack_screen - attack unit or move towards a position and
stop to attack enemies in range on the way

e screen (z,y)
move_screen - move to a position while ignoring enemies
e screen (z,y)

Any player controlled with PySC2 will still have its units
automated to an extent by built-in Al, as with a human player.
For example, if units are standing idly and an enemy enters
within range, they will attack that enemy.

3 Component-Action DQN

For this research we implemented the DQN RL algorithm,
first used to achieve human-level performance on a suite of
Atari 2600 games (Mnih et al. 2015), with the double DQN
enhancement (Van Hasselt, Guez, and Silver 2016), a duel-
ing network architecture (Wang et al. 2015), and prioritized
experience replay (Schaul et al. 2016). The number of unique
actions even in the small subset we are using is too large to
output an action-value for each one (for instance, if the screen
size is 84x84 pixels, there are 7056 unique “attack screen”
commands alone). To address this problem we output a sep-
arate set of action-values for each action component. Our
version of DQN, implemented using Python and Tensorflow,
features modifications for choosing actions and calculating
training loss with actions that consist of multiple components
(component-actions). Algorithm 1 shows our implementa-
tion, emphasizing changes for handling component-actions.

Invalid action component choices are masked in several
parts of the algorithm. Random action function selection in
step 8 is masked according to the valid actions for that state.
When choosing a non-random action using the network out-
put in step 11, the action function with the highest action-
value is chosen first, disregarding actions marked as unavail-
able in the state observation, and then each parameter to the
action function is chosen according to the highest action-
value (step 11). Invalid choices for parameters to the action



Algorithm 1 Double DQN with prioritized experience re-
play and component-actions for StarCraft II

1: Input: minibatch size k, batch update frequency K, tar-
get update frequency C, max steps 7', memory size N,
M, in < N, initial € and annealing schedule

2: M[|+ 0

3: Initialize () with random weights 6, components d € D
4: Initialize Q,, with weights 6y, = 6

5: Initialize environment env with state s;

6: fort =1toT do

7: if rand() < € or t < M,,;, then

8: Select valid action function a randomly

9: Select action parameters a;, a?, . . . randomly
10: else

11: a; = {ad = argmaxQ?(s;,a?) | d € D}

ad

12: Take action a, in environment, observe Syy1, 7¢41
13: Mt mod N] < (8¢, at, Tt 41, St+1)

14: Priority[M [t mod N]|] = max(Priority)

15: Anneal € according to schedule

16: ift=0 mod C and t > M,,;, then 6, < 0
17: if t=0 mod K and t > M,,;, then

18: Sample k transitions (s;, a;,7;, ;) from M
19: a¥ « arg maxQ° (s}, a")

a0
20: m? < 1if a? is a parameter to a*’, else m? < 0
21: if s is terminal then
22: Yj < Tj
23: else
24: Set y; as in Equation 2
25: Update 6 minimizing Y m?L(y;, Q%(s;, a%))
d

26: Priority[j] < > m?|y; — Q%(s;, ad)]

function could be masked out in steps 9 and 11 in general, but
are not in this work since all values of the parameters we used
(screen and screen2) are valid. Only parameters that are used
by the chosen action function a) are used in the environment

update in step 12.

3.1 Loss Functions

In double DQN network updates are made during training
using the TD target value

y =1+ 7Qtar(s', argmaxQ(s’, a’)),

where 7 is the reward, v is the discount, @ and ;, are
the primary and target network, and s’ and a’ are the next
state and action taken in the next state. With a single action
component the loss to be minimized is L(y, Q(s, a)), where
L() is some loss function (e.g. squared error). When using
component-actions, there are separate action-values for each
component of the action. In general, an action is a tuple of
action components (a°, a, ..., ™), with an individual action
depending on a subset of those components. That is, some
components are not used for every action. This raises the
question of how to calculate training loss when the action
components used from one action to the next differ.

Several previous works have used variations of action
components with different RL algorithms. Tavakoli, Pardo,
and Kormushev (2018) use a method they call Branching Du-
eling Q-Network (BDQ) in several MuJoCo physical control
tasks with multidimensional action spaces. In these tasks, all
components are used in each complete action. They experi-
mented with 1) using a separate TD target, y, for each action
component a? corresponding to a component d € D, the set
of all action components; 2) using the maximum y¢ as a sin-
gle TD target; and 3) using the average of the y¢ as a single
TD target, which was found to give the best performance:

y=r+ 3 QL (s argmaxQq(s’,a’")) (1)
,d

IPliep a

Their training loss is the average of the squared errors of each
component’s action-value and y from Equation 1.

Action components were also used (Huang and Ontafién
2019) to represent actions in the microRTS environment to
train an agent using the Advantage Actor Critic (A2C) algo-
rithm, a synchronous version of the policy gradient method
Asynchronous Advantage Actor Critic (A3C) (Mnih et al.
2016). In that work each component is not used in ev-
ery action, but the policy gradient action log-probability
(log(mg(st,ar)), where my is the policy network) used in
training is always the sum of the action log-probabilities
for each action component. AlphaStar (Vinyals et al. 2019b)
also uses a policy gradient method and sums the action log-
probabilities from each action component, but masks out the
contribution from unused components.

In our implementation, on step 24, we use the mean target
component y as in Equation 1, but modified so that unused
components of the target action are masked out using m? =
1 if component d is in use for an action, m? = 0 otherwise:

LS miQd,, (s, arg maxQu(s',a”")) - (2)

y=r+ o
Pl a

The loss to be minimized with gradient descent on step 25
of Algorithm 1 is the sum of the losses of each used compo-
nent’s action-value compared to the target y:

LTotal - Z L(yv Qd(sa ad))

d€Dysed

where D, .4 are the components in use for a particular ac-
tion, and L() is the Huber loss used in DQN (Mnih et al.
2015), which is squared error for error with absolute value
less than 1, and linear otherwise.

We considered and tested two alternative loss calculations.
The first method was to sum the Huber losses of the compo-
nents compared pairwise with

y' = QL (5 argmaxQ (s, a?)),
|D used| ad’
masking out unused components from the action taken but
not from the target action. This method is similar to method
1) tested with BDQ (Tavakoli, Pardo, and Kormushev 2018).
It has the advantage of comparing losses from different ac-
tion component branches of the network to their correspond-
ing branch, but since it updates the primary network toward
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Figure 2: Diagram showing overall design of the network.

the action-values of unused components of the target action
we didn’t expect it to perform well.

The second alternative method we tried was to use the
Huber loss of the average of the action-values of the action
taken by the primary network (unused components masked
out) compared with the same average y from Equation 1.
This method seems reasonable since it uses the same for-
mula to calculate both the primary network total action-value
and discounted target network next state value. However,
branches with positive and negative action-values can cancel
each other out in both inputs to the loss function, resulting in
a small loss when individual components of the primary net-
work action-value may have a large error relative to the target
network. Both alternative loss calculations resulted in worse
performance and were not used in our final experiments.

3.2 Network and training parameters

The neural network used to predict action-values consists of
a shared convolutional neural network (CNN), followed by
separate branches for state value and the three action com-
ponents we used (function, screen, screen2). The network’s
overall design is shown in Figure 2.

The state input categorical feature maps are first prepro-
cessed to be in one hot format with dimensions 84x84x6.
Next the input is run through a series of blocks consisting
of parallel convolutional layers whose outputs are concate-
nated. First the one-hot input is run through each of 3 con-
volutional layers with 16 filters each and kernel sizes 7, 5,
and 3. The output of those layers is concatenated along the
channel dimension and given as input to each of two convo-
lutional layers with 32 filters and kernel sizes 5 and 3. Those
two outputs are concatenated and fed to a final convolutional
layer with 32 filters and kernel size 3. All convolutional lay-
ers here use padding and a stride of 1 to keep the output to
the same width and height, so as to preserve spatial data for
the action parameters which target parts of the screen.

Next the network splits into a value branch and one branch
for each action component. The value and function branches
each have a max pooling layer of size and stride 3, followed
by 2 dense layers of size 256. The function branch ends with
a final dense layer outputting the action advantages of the
function action component.

Both the screen and screen2 branches receive as input
the output of the shared CNN, which is fed into a 32 filter
3x3 convolutional layer, followed by a 1 filter 1x1 convo-
lutional layer as described in (Vinyals et al. 2017), giving
output dimensions of 84x84x1 and the action advantages of
each screen position. We experimented with adding the one-
hot encoded output from the function branch as input to the
screen branch followed by additional convolutional layers,
and similarly with the screen and screen2 branch with a sin-
gle layer added with value 1 in the position corresponding to
the screen choice and O elsewhere, but found that for the ac-
tion functions and scenarios used in these experiments there
was surprisingly no gain in performance. We believe a larger
network combined with more training time may be required
to take advantage of these connections.

Each convolutional and dense layer (except those leading
to action advantage outputs) is followed by a ReLU activation
and batch normalization. Training hyperparameters were se-
lected through informal search. We use the Adam optimizer
with learning rate of 0.001, a discount of 0.99, batch size
of 64, and L2 regularization. Minibatch training updates are
performed every 4 steps, and the target network is updated
every 10,000 steps. The prioritized experience replay mem-
ory size is 60,000 transitions, and all parameters are as de-
scribed in the sum tree implementation (Schaul et al. 2016).
In each training the exploration € is exponentially annealed
from 1 to 0.05 over the first 80% of total steps.

4 Experiments

We did three experiments to test the performance of our net-
work structure and action representation in different environ-
ments. First, we compared performance when training for
different amounts of training steps; second, we compared
performance on different scenarios, ranging from small (4
units each) to large (32 units each) instances of a combat sce-
nario; third, we tested transfer learning performance by using
models trained exclusively on one scenario in other scenar-
ios. Performance of all trained models is compared to that of
a number of simple scripted players. All training and evalua-
tion is done with the opponent being the game’s built-in Al,
i.e. the same opponent a human player playing the single-
player game would face.

4.1 StarCraft II Combat Scenarios

Experiments were conducted on custom StarCraft II maps
that each contain a specific combat scenario. The scenarios
limit the size of the battlefield to a single-screen sized map,
which removes the requirement to navigate the view to differ-
ent areas of the environment. In each episode an equal num-
ber of units are spawned for both the RL or scripted player
being tested, and a built-in Al controlled player. Units appear
in two randomized clusters, randomly assigned to the left or
right side of the map, which are symmetric about the cen-
tre of the map. The built-in Al enemy is immediately given
an order to attack the opposite side of the screen, causing
them to rush at the RL player’s units, attacking the first ene-
mies they reach. Once given this command, the in-game Al
takes over control of the enemy units, which executes a policy



which prioritizes attacking the closest units of the RL player.
This use of the built-in Al to control the enemy for combat
experiments has been shown to be effective for testing and
training combat algorithm development (Churchill, Lin, and
Synnaeve 2017).

We trained and evaluated our models and scripted players
on scenarios with equal numbers of Terran Marines (a ba-
sic ranged unit in the game) per side, numbering 4, 8, 16,
or 32. The Marine scenarios will be referred to as “#m vs.
#m”, where # is the number of Marines. We also evalu-
ated our models on scenarios with the same counts of Protoss
Stalkers, referred to as “#s vs. #s”. Stalkers are larger units
with longer range and a shield which must be reduced to zero
before their health will deplete. These scenarios were con-
structed in a symmetric fashion in order to give both sides an
equal chance at winning each battle. If one side is victorious
from an even starting position, it must mean that their method
is more effective at controlling units for combat. An effec-
tive human policy for such scenarios involves first grouping
up the players’ units into a tight formation, and then using
focus-targeting to most efficiently destroy enemy units.

Episodes end when all units of one side are destroyed
(health reduced to 0), or until a timer runs out. The timer
is set at 45 real-time game seconds for Marine maps, and
1:30 for the Stalker maps since Stalkers have more health
and shields causing the battles to last longer. The map then
resets with a new randomized unit configuration and a new
episode begins. The maps output custom reward informa-
tion to PySC2, which are calculated using the LTD2 formula
(Churchill 2016), which values a unit as by its lifetime dam-
age, a function of its damage output per second multiplied
by remaining health. The unit values are normalized to equal
1 for a full health unit of the highest value in the scenario,
and the difference in total unit value (self minus enemy) be-
tween steps is added to the step reward. Since there are posi-
tive rewards for damaging enemy units and negative rewards
for taking damage, episode rewards tend to be similar in sce-
narios with different numbers of units. The damage part of
the LTD2 calculation doesn’t affect the rewards in scenarios
that feature only one unit type, as in the experiments pre-
sented here, but it will affect future experiments with more
scenarios with mixed unit types. The total reward per step is
observed by the RL player in step 12 of Algorithm 1.

4.2 Training and Evaluation

‘We trained models in scenarios with 4, 8, 16, and 32 Marines
per side, for 300k and 600k steps. In informal testing we
found that 300k steps was enough to see good performance
in these scenarios, and we chose double the number of steps
to compare with a longer training time. Training rewards per
episode for 300k and 600k steps is shown in Figure 3. Train-
ing was performed on a machine with an Intel i7-7700K CPU
running at 4.2 GHz and an NVIDIA GeForce GTX 1080 Ti
video card. It takes 5 hours to train for 300k steps using the
GPU and running the game as fast as possible. To train a
model we use PySC2 to run our custom combat scenarios for
as many episodes as needed to reach the step limit. The RL
player receives input from the game environment and takes
actions as described in Algorithm 1.

300k Steps, Smoothed Reward Over 100 Episodes
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Figure 3: Model training reward (normalized to the number
of Marines in the scenario) per episode (smoothed over 100
episodes) for 300k (top) and 600k (bottom) step models.

For each scenario/step count combination we trained three
models and used the best performing of those for the transfer
learning experiments. Trained models were evaluated by run-
ning 1000 episodes with a deterministic policy (i.e. € = 0),
using the trained model for inference only. In evaluation, the
result can be a win (1 point), draw (0.5) or loss (0). Wins oc-
cur when all enemy units are destroyed. Draws happen if both
sides simultaneously lose their last unit. If the map timer runs
out, the side with the most combined health/shields wins. If
that metric results in a tie then the episode is counted as a
draw. Evaluation results are presented as a score, equal to the
number of wins plus half of the number of draws, divided by
the number of evaluation episodes.

We also evaluated several scripted players:

No Action (NA) - This player takes the no_op action only,
which is equivalent to a human player providing no input.
Its units will attack and follow enemy units if they move
into range, controlled by the in-game Al

Random (R) - This player takes random actions. Both the
function choice and any arguments are randomized.

Random Attack (RA) - This player selects all friendly
units, and subsequently attacks random screen positions.

Attack Weakest Nearest (AWN) - This player selects all
friendly units on the first frame and then attacks the en-
emy with the lowest health, choosing the enemy nearest to
the average of the friendly units’ positions as a tie breaker.

5 Results and Discussion

Results of our experiments can be seen in Table 1. The first
column shows the scenario for which the experiment is being



Scripted Players
Scenario NA R RA AWN 4m

Learned Policy - 300k Steps Learned Policy - 600k Steps

Trained on Marines Trained on Marines
8m 16m 32m 4m 8m 16m 32m

4mvs.4m | 0.173 0.013 0.570 0.907 | 0.691
8mvs.8m | 0.146 0.019 0.561 0.721 | 0.694
lémvs. 16m | 0.119 0.004 0.391 0.038 | 0.591
32mvs.32m | 0.044 0.002 0.116 0.000 | 0.329

0.661 0.619 0.625 | 0.663 0.606 0.444 0.414
0.691 0.692 0.541 | 0.693 0.585 0.356 0.440
0.546 0.695 0.450 | 0.643 0.213 0.300 0.503
0.280 0.441 0.332 | 0.340 0.247 0.130 0.471

4svs.4s | 0.142 0.000 0.352 0.910 | 0.497
8svs.8s | 0.179 0.000 0.240 0.678 | 0.420
16svs. 16s | 0.211 0.001 0.030 0.013 | 0.114
32svs.32s | 0.130 0.000 0.002 0.000 | 0.075

0.491 0.008 0.479 | 0.525 0.291 0.236 0.408
0.406 0.015 0.386 | 0.512 0.192 0.204 0.303
0.183 0.034 0.356 | 0.288 0.152 0.154 0.196
0.239 0.223 0.320 | 0.386 0.193 0.355 0.170

Table 1: Experiment scores ((wins + draws/2)/# episodes) of scripted players and learned policies evaluated for 1k episodes
in multiple scenarios. Columns give the policy being evaluated, and rows give the scenario. e.g. the number in the 300k 4m
column, 8m vs. 8m row gives the score of the model trained for 300k steps on the 4m vs. 4m scenario when evaluated on the
8m vs. 8m scenario. The best performing policy in each category (scripted, trained for 300k steps, and 600k steps) is bolded.

conducted along a row, with the other column values showing
which policy controls the player units for the experiment.

5.1 Scripted Player Benchmarks

The results of the scripted players can be seen in columns 2-5
of Table 1. The performance of the benchmark scripted play-
ers on the Marine scenarios shows a large range of results.
The NA policy scores as high as 0.173, as units will attack
when enemies get within range even if the player does noth-
ing. The random bot gets scores from 0 to 0.019, whereas
the random attacking bot ranges from a score of 0.116 in the
32m vs. 32m scenario to 0.570 in the 4m vs. 4m scenario.
This shows that simply choosing to attack all the time is a
good strategy, but that it isn’t enough to win often with higher
unit counts (in the 32m vs. 32m scenario the bot is likely at-
tacking its own units sometimes). AWN achieves a score of
0.907 in the 4m vs. 4m scenario, but scores 0 in the 32m
vs. 32m scenario, indicating that formation becomes a big-
ger factor in more complex scenarios. We observed that units
often get stuck while trying to move to attack the same target.
The scripted players perform best in the 4m vs. 4m scenario
and perform worse as the number of units increases in all
cases except R in the 8m vs. 8m scenario. Scripted players
perform similarly in the Stalker scenarios.

5.2 Learned Policies - Battle Size Transfer

Results for the learned policies can be seen in columns 6-
9 (300k training steps) and 10-13 (600k training steps) of
Table 1. We believe that these results yield two major obser-
vations. The first is that like scripted players, smaller sized
battles yielded higher scores for learned policies. We believe
this is because smaller battles are less complex, with far fewer
possible states, and therefore are easier for learning effective
policies. Also, smaller battles end faster, so more battles are
able to be carried out in the same number of training steps.
The second observation is that the experiments demonstrated
the ability to transfer a policy trained on battles of one given
size to another, while maintaining similar results. For exam-
ple, a policy trained on 4 vs. 4 Marines for 600k time steps

was able to obtain a score of 0.663 when applied to the 4
vs. 4 Marine scenario, and 0.643 when applied to the 16 vs.
16 Marines scenario, which was even better than the policy
trained itself on 16 Marines. We did however notice that re-
sults get worse as the difference in unit count between train-
ing and testing scenarios gets larger, which was expected.
One surprising result however was that for several scenar-
ios, the best policy was not one one that was trained on that
same scenario. For example, the policy trained on 16 vs. 16
Marines for 600k time steps was the 2nd worst policy when
applied in the 16 vs. 16 Marine scenario. Another surpris-
ing result was that most of the policies trained for 300k time
steps ended up performing as good, or even better than those
trained for 600k time steps. This indicates that either the sce-
narios are not complicated enough for more training to result
in better policies, or that the variability in model performance
is too large to see a trend for the number of models we trained.
By visual observation, most trained models learn to select
all friendly units and then mainly attack. Some learn to target
the ground near friendly units, causing those units to cluster.
Some models also learn to target damaged enemy units.

5.3 Learned Policies - Unit Type Transfer

The results in the bottom 4 rows of Table 1 are for exper-
iments carried out with policies learned on scenarios with
Marine vs. Marine battles, but applied to scenarios with
Stalker vs. Stalker battles. In general, the results show that
while the scores for these Stalker scenarios are not as high
as the Marine scenarios, the policies can indeed be trans-
ferred to units of different types. In particular, we can see
that smaller sized scenarios perform well, with scores taper-
ing off for larger scenarios. We believe this is due to the fact
that as more units enter the battlefield, the differences be-
tween those units such as size and damage type become more
apparent, causing the policy to perform worse. One surpris-
ing result was that the policies trained on 16 vs. 16 Marines,
especially the one trained for 300k steps, performed much
worse than the other policies overall, for which we currently
have no explanation.



6 Conclusion and Future Work

In this paper we presented an application of component-
action DQN to combat scenarios in a complex real-time strat-
egy game domain, StarCraft II. We showed that with short
training times and a relatively easy to implement RL system,
good performance can be achieved in these combat scenar-
ios. We successfully demonstrated transfer learning between
battle scenarios of different sizes: that policies can be learned
in a scenario of a given size, and then applied to scenarios
of different sizes with comparable results. We also demon-
strated transfer learning between different unit types, with
policies being learned in scenarios with Marine unit battles
being successfully applied to battles with Stalker units. We
believe that these results show promise for the future of RL
in RTS games, by allowing us to train policies in smaller, less
complex scenarios, and then apply those policies to different
areas of the game, reducing the need for longer training times
and much larger networks, like those found in AlphaGo.
Future work for this project can include implementing
a similar network architecture and action component sys-
tem using policy gradient RL methods to compare them to
component-action DQN. Also, testing in scenarios that re-
quire using more action types to achieve high scores may
help to better explore contributions of the component-action
method, which may improve transfer learning performance.
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