
Fast Heuristic Search for RTS Game Combat Scenarios
David Churchill

University of Alberta, Edmonton, T6G 2E8, Canada (cdavid@cs.ualberta.ca)

Abdallah Saffidine
Universit Paris-Dauphine, 75775 Paris Cedex 16, France (abdallah.saffidine@dauphine.fr)

Michael Buro
University of Alberta, Edmonton, T6G 2E8, Canada (mburo@ualberta.ca)

Abstract

Heuristic search has been very successful in abstract game
domains such as Chess and Go. In video games, however,
adoption has been slow due to the fact that state and move
spaces are much larger, real-time constraints are harsher, and
constraints on computational resources are tighter. In this pa-
per we present a fast search method — Alpha-Beta search for
durative moves — that can defeat commonly used AI scripts
in RTS game combat scenarios of up to 8 vs. 8 units running
on a single core in under 5ms per search episode. This per-
formance is achieved by using standard search enhancements
such as transposition tables and iterative deepening, and novel
usage of combat AI scripts for sorting moves and state evalu-
ation via playouts. We also present evidence that commonly
used combat scripts are highly exploitable — opening the
door for a promising line of research on opponent combat
modelling.

1 Introduction
Automated planning, i.e. finding a sequence of actions lead-
ing from a start to a goal state, is a central problem in ar-
tificial intelligence research with many applications such as
robot navigation and theorem proving. While search-based
planning approaches have had a long tradition in the con-
struction of strong AI systems for abstract games like Chess
and Go, only in recent years have they been applied to mod-
ern video games, such as first-person shooter (FPS) and
real-time strategy (RTS) games (?; ?). Generating move
sequences automatically has considerable advantages over
scripted behavior, as anybody who tried to write a good rule-
based Chess program can attest:

• Search naturally adapts to the current situation. By look-
ing ahead it will often find winning variations, where
scripted solutions fail due to the enormous decision com-
plexity. For example, consider detecting mate-in-3 situa-
tions statically, i.e. without enumerating move sequences.

• Creating search-based AI systems usually requires less
expert knowledge and can therefore be implemented
faster. Testament to this insight is Monte Carlo tree
search, a recently developed sample based search tech-
nique that revolutionized computer Go (?).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These advantages come at a cost, namely increased runtime
and/or memory requirements. Therefore, it can be challeng-
ing to adapt established search algorithms to large scale real-
time decision problems, e.g. video games and robotics. In
what follows, we will see how the Alpha-Beta search al-
gorithm can be used to solve adversarial real-time planning
problems with durative moves. We begin by motivating the
application area — small scale combat in RTS games —
and discussing relevant literature. We then define our search
problem formally, describe several solution concepts, and
then present our ABCD algorithm (Alpha-Beta Considering
Durations) which we will evaluate experimentally. We con-
clude by discussing future research directions in this area.

2 Modelling RTS Game Combat
Battle unit management (also called micromanagement) is
a core skill of successful human RTS game players and is
vital to playing at a professional level. One of the top STAR-
CRAFT players of all time, Jaedong, who is well known for
his excellent unit control, said in a recent interview: “That
micro made me different from everyone else in Brood War,
and I won a lot of games on that micro alone”.1 It has also
been proved to be decisive in the previous STARCRAFT AI
competitions, with many battles between the top three AI
agents being won or lost due to the quality of unit control.
In this paper we focus on small-scale battle we call combat,
in which a small number of units interact in a small map
region without obstructions.

In order to perform search for combat scenarios in STAR-
CRAFT, we must construct a system which allows us to effi-
ciently simulate the game itself. The BWAPI programming
interface allows for interaction with the STARCRAFT inter-
face, but unfortunately, it can only run the engine at 32 times
“normal speed” and does not allow us to create and manip-
ulate local state instances efficiently. As one search may
simulate millions of moves, with each move having a du-
ration of at least one simulation frame, it remains for us to
construct an abstract model of STARCRAFT combat which is
able to efficiently implement moves in a way that does not
rely on simulating each in-game frame.

1http://www.teamliquid.net/forum/
viewmessage.php?topic_id=339200



2.1 Combat Model
To fully simulate RTS game combat, our model is comprised
of three main components: states, units, and moves.

State s = 〈t, p,m,U1, U2〉
• Current game time t
• Player p who performed move m to generate s
• Sets of units Ui under control of player i

Unit u = 〈p, hp,hpmax, ta, tm, v, w〉
• Position p = (x, y) in R2

• Current hit points hp and maximum hit points hpmax

• Time step when unit can next attack ta, or move tm
• Maximum unit velocity v
• Weapon properties w = 〈damage, cooldown〉

Move m = {a0, . . . , ak} which is a combination of unit
actions ai = 〈u, type, target, t〉, with

• Unit u to perform this action
• The type type of action to be performed:

Attack unit target
Move u to position target
Wait until time t

2.2 Legal Move Generation
Given a state s containing unit u, we generate legal unit ac-
tions as follows: if u.ta ≤ s.t then u may attack any target
in its range, if u.tm ≤ s.t then u may move in any legal
direction, if u.tm ≤ s.t < u.ta then u may wait until u.ta.
If both u.ta and u.tm are > s.t then a unit is said to have no
legal actions. A legal player move is then a set of all com-
binations of one legal unit action from each unit a player
controls.

Unlike strict alternating move games like chess, our
model’s moves have durations based on individual unit prop-
erties, so either player (or both) may be able to move at a
given state. We define the player to move next as the one
which contains the unit with the minimum time for which it
can attack or move.

2.3 Model Limitations
While the mathematical model we propose does not exactly
match the combat mechanics of STARCRAFT it captures es-
sential features. Because we don’t have access to STAR-
CRAFT’s source code, we can only try to infer missing fea-
tures based on game play observations:

• no spell casting (e.g. immobilization, area effects)

• no hit point or shield regeneration

• no travel time for projectiles

• no unit collisions

• no unit acceleration, deceleration or turning

• no fog of war

Quite a few STARCRAFT AI competition entries are de-
signed with a strong focus on early game play (rushing). For
those programs some of the listed limitations, such as single
weapons and spell casting, are immaterial because they be-
come important only in later game phases. The utility of
adding others, such as dealing with unit collisions and ac-
celeration, will have to be determined once our search tech-
nique becomes adopted.

3 Solution Concepts for Combat Games
The combat model defined in Section 2 can naturally be
complemented with a termination criterion and utility func-
tions for the players in terminal positions. A position is
called terminal if all the units of a player have reached 0hp,
or if a certain time limit (measured in game frames, or unit
actions) has been exceeded. Combining the combat model
with the termination criterion and utility functions defines
a class of games we call combat games. In what follows
we will assume that combat games are zero-sum games, i.e.,
utilities for both players add up to a constant across all termi-
nal states. This property together with simultaneous moves
and fully observable state variables places combat games
in the class of “stacked matrix games”. Such games can
— in principle — be solved by backward induction start-
ing with terminal states via Nash equilibrium computations
for instance by solving linear programs (?). However, ?
(?) showed that deciding which player survives in combat
games in which units can’t even move is PSPACE-hard in
general. This means that playing combat games optimally is
computationally hard and that in practice we have to resort
to approximations. There are various ways to approximate
optimal play in combat games. In the following sub-sections
we will discuss a few of them.

3.1 Scripted Behaviors
The simplest approach, and the one most commonly used in
video game AI systems, is to define static behaviors via AI
scripts. Their main advantage is computation speed, but they
often lack foresight, which makes them vulnerable against
search-based methods, as we will see in Section 5, where
we will evaluate the following simple combat AI scripts:

• The Random strategy picks legal moves with uniform
probability.

• Using the Attack-Closest strategy units will attack the
closest opponent unit within weapon’s range if it can cur-
rently fire. Otherwise, if it is within range of an enemy
but is reloading, it will wait in-place until it has reloaded.
If it is not in range of any enemy, it will move toward the
closest enemy a fixed distance.

• The Attack-Weakest strategy is similar to Attack-Closest,
except units attack an opponent unit with the lowest hp
within range when able.

• Using the Kiting strategy is similar to Attack-Closest, ex-
cept it will move a fixed distance away from the closest
enemy when it is unable to fire.

The Attack-Closest script was used in second-place entry
UAlbertaBot in the 2010 AIIDE STARCRAFT AI compe-

2



Maxmin

a1 a2

b1 b2 b1 b2

Minmax

b1 b2

a1 a2 a1 a2

Best Response

b1

a1 a2

Nash

a1b1

a1b2 a2b1

a2b2

Max node
Min node

Script node

Nash node

Figure 1: Maxmin, Minmax, Best Response, Nash

tition, whereas Skynet, the winning entry, used a behavior
similar to Kiting.

3.2 Game Theoretic Approximations
As mentioned above, combat games fall into the class of
two-player zero-sum simultaneous move games. In this set-
ting, the concepts of optimal play and game values are well
defined, and the value Nash(G) of a game G (in view of
the maximizing player MAX) can be determined by using
backward induction. However, as discussed earlier, this pro-
cess can be very slow. ? (?) describe how games with
simultaneous moves can be sequentialized to make them
amenable to fast alpha-beta tree search, trading optimality
for speed. The idea is to replace simultaneous move states by
two-level subtrees in which players move in turn, maximiz-
ing respectively minimizing their utilities (Figure 1: Min-
max and Maxmin). The value of the sequentialized games
might be different from Nash(G) and it depends on the or-
der we choose for the players in each state with simulta-
neous moves: If MAX chooses his move first in each such
state (Figure 1: Minmax), the value of the resulting game
we call the pure maxmin value and denote it by mini(G).
Conversely, if MAX gets to choose after MIN, we call the
game’s value the pure minmax value (denoted maxi(G)).
An elementary game theory result is that pure minmax and
maxmin values are bounds for the true game value:
Proposition 1. For stacked matrix games G, we have
mini(G) ≤ Nash(G) ≤ maxi(G), and the inequalities are

strict iff the game does not admit optimal pure strategies.

It is possible that there is no optimal pure strategy in a
game with simultaneous moves, as ROCK-PAPER-SCISSORS
proves. Less intuitively so, the need for randomized strate-
gies also arises in combat games, even in cases with 2 vs. 2
immobile units (? (?)). To mitigate the potential unfair-
ness caused by the Minmax and Maxmin game transfor-
mations, (?) propose the Random-Alpha-Beta (RAB) algo-
rithm. RAB is a Monte Carlo algorithm that repeatedly per-
forms Alpha-Beta searches in transformed games where the
player-to-move order is randomized in interior simultaneous
move nodes. Once time runs out, the move with the highest
total score at the root is chosen. (?) shows that RAB can
outperform Alpha-Beta search on the Maxmin-transformed
tree, using iterative deepening and a simple heuristic evalu-
ation function. In our experiments, we will test the stripped
down RAB version we call RAB’, which only runs Alpha-
Beta once.

Another approach of mitigating unfairness is to alternate
the player-to-move order in simultaneous move nodes on the
way down the tree. We call this tree transformation Alt.

Because RAB’ and the Alt transformation just change the
player-to-move order, the following result on the value of
the best RAB move (rab(G)) and Alt move (alter(G)) are
easy to prove by induction on the tree height:

Proposition 2. For stacked matrix game G, we have

mini(G) ≤ rab(G), alter(G) ≤ maxi(G)

The proposed approximation methods are much faster than
solving games by backward induction. However, the com-
puted moves may be inferior. Section 5 we will see how they
perform empirically.

4 Fast Alpha-Beta Search for Combat Games
In the previous section we discussed multiple game trans-
formations that would allow us to find solutions by using
backward induction. However, when playing RTS games
the real-time constraints are harsh. Often, decisions must be
made during a single simulation frame, which can be 50 ms
or shorter. Therefore, computing optimal moves is impossi-
ble for all but the smallest settings and we need to settle for
approximate solutions: we trade optimality for speed and
hope that the algorithms we propose defeat the state of the
art AI systems for combat games.

The common approach is to declare nodes to be leaf nodes
once a certain depth limit is reached. In leaf nodes MAX’s
utility is then estimated by calling an evaluation function,
and this value is propagated up the tree like true terminal
node utilities.

In the following subsections we will first adapt the Alpha-
Beta search algorithm to combat games by handling dura-
tive moves explicitly and then present a series of previously
known and new evaluation functions.

4.1 Alpha-Beta Search with Durative Moves
Consider Figure 2 which displays a typical path in the se-
quentialized game tree. Because of the weapon cooldown

3



t0

t1

t2

t3

t4

t5

t6

Time Action Sequences Path in Game Tree

M1

M2

M3

M4

m1

m2

m3

m4

m5

(M1,m1)

M2

m2

(M3,m3)

m4

(M4,m5)

Max node Min node Nash node

Figure 2: Durations

and the space granularity, battle games exhibit numerous du-
rative moves. Indeed, there are many time steps where the
only move for a player is just pass, since all the units are
currently unable to perform an action. Thus, non-trivial de-
cision points for players do not occur on every frame.

Given a player p in a state s, define the next time
where p is next able to do a non-pass move by τ(s, p) =
minu∈s.Up

(u.ta, u.tm). Note that for any time step t such
that s.t < t < min(τ(s,MAX), τ(s,MIN)), players can-
not perform any move but pass. It is therefore possible
to shortcut many trivial decision points between s.t and
min(τ(s,MAX), τ(s,MIN)).

Assume an evaluation function has been picked, and re-
maining simultaneous choices are sequentialized as sug-
gested above. It is then possible to adapt the Alpha-Beta
algorithm to take advantage of durative moves as presented
in Algorithm 1

We use the terminal(s, d) function to decide when to call
the evaluation function. It is parametrized by a maximal
depth dmax and a maximal time tmax and return “true” if
s is a terminal position or d ≥ dmax or s.t ≥ tmax.

The third argument to the ABCD algorithm is used to han-
dle the delayed action effect mechanism for sequentialized
simultaneous moves. If the state does not correspond to a
simultaneous decision, m0 holds a dummy value ∅. Other-
wise, we apply the effects of m0 after move m is generated
because m0 should not affect the generation of the comple-
mentary moves.

4.2 Evaluation Functions
A straight-forward evaluation function for combat games is
the hitpoint-total differential, i.e.

e(s) =
∑
u∈U1

hp(u)−
∑
u∈U2

hp(u)

Algorithm 1 Alpha-Beta (Considering Durations)
1: procedure ABCD(s, d,m0, α, β)
2: if computationTime.elapsed then return timeout
3: else if terminal(s, d) then return eval(s)
4: toMove← s.playerToMove(policy)
5: while m← s.nextMove(toMove) do
6: if s.bothCanMove and m0 = ∅ and d 6= 1 then
7: val←ABCD(s, d− 1,m, α, β)
8: else
9: s′ ← copy(s)

10: if m0 6= ∅ then s′.doMove(m0)
11: s′.doMove(m)
12: v ←ABCD(s′, d− 1, ∅, α, β)
13: if toMove = MAX and (v > α) then α← v

14: if toMove = MIN and (v < β) then β ← v

15: if α ≥ β then break
16: return toMove = MAX ? α : β

which, however, doesn’t take into account other unit prop-
erties, such as damage values and cooldown periods. ? (?)
propose an evaluation based on the life-time damage a unit
can inflict, which is proportional to its hp times its damage-
per-frame ratio:

dpf(u) =
damage(w(u))

cooldown(w(u))

LTD(s) =
∑
u∈U1

hp(u) · dpf(u)−
∑
u∈U2

hp(u) · dpf(u)

A second related evaluation function ? (?) propose
favours uniform hp distributions:

LTD2(s) =
∑
u∈U1

√
hp(u) ·dpf(u)−

∑
u∈U2

√
hp(u) ·dpf(u)

While these evaluation functions are exact for terminal po-
sitions, they can be drastically inaccurate for many non-
terminal positions. To improve state evaluation by also tak-
ing other unit properties such as speed and weapon range
into account, we can try to simulate a game and use the out-
come as an estimate of the utility of its starting position.
This idea is known as performing a playout in game tree
search and is actually a fundamental part of Monte Carlo
Tree Search (MCTS) algorithms which have revolutionized
computer GO (?). However, there are differences between
the playouts we advocate for combat games and previous
work on GO and HEX: the playout policies we use here
are deterministic and we are not using MCTS or a best-first
search algorithm, but rather depth-first search.

4.3 Move Ordering
It is well-known in the game AI research community that a
good move ordering fosters the performance of the Alpha-
Beta algorithm. When transposition tables (TTs) and itera-
tive deepening are used, reusing previous search results can
improve the move ordering. Suppose a position p needs to

4



be searched at depth d and was already searched at depth
d′. If d ≤ d′, the value of the previous search is sufficiently
accurate and there is no need for an additional search on p.
Otherwise, a deeper search is needed, but we can explore the
previously found best move first and hope for more pruning.

When no TT information is available, we can use scripted
strategies to suggest moves. We call this new heuristic
scripted move ordering. Note that this heuristic could also
be used in standard sequential games like CHESS. We be-
lieve the reason it has not been investigated closely in those
contexts is the lack of high quality scripted strategies.

5 Experiments
We implemented the proposed combat model, the scripted
strategies, the new ABCD algorithm, and various tree trans-
formations. We then ran experiments to measure 1) the in-
fluence of the suggested search enhancements for determin-
ing the best search configuration, and 2) the real-time ex-
ploitability of scripted strategies.

Because the scripts we presented in Subsection 3.1 are
quite basic, we added a few smarter ones to our set of scripts
to test:

• The Attack-Value strategy is similar to Attack-Closest,
except units attack an opponent unit u with the highest
dpf(u)/hp(u) value within range when able. This choice
leads to optimal play in 1 vs. n scenarios (?).

• The NOK-AV (No-OverKill-Attack-Value) strategy is
similar to Attack-Value, except units will not attack an
enemy unit which has been assigned lethal damage this
round. It will instead choose the next priority target, or
wait if one does not exist.

• Using the Kiting-AV strategy is similar to Kiting, except
it will choose an attack target similar to Attack-Value.

Most scripts we described make decisions on an individual
unit basis, with some creating the illusion of unit collabo-
ration (by concentrating fire on closest or weakest or most-
valuable units). NOK-AV is the only script in our set that
exhibits true collaborative behaviour by sharing information
about unit targeting.

Because of time constraints, we were only able to test the
following tree transformations: Alt, Alt’, and RAB’, where
Alt’ in simultaneous move nodes selects the player that acted
last, and RAB’ selects the player to move like RAB, but only
completes one Alpha-Beta search.

5.1 Setup
The combat scenarios we used for the experiments involved
equally sized armies of n versus n units, where n varied
from 2 to 8. 1 versus 1 scenarios were omitted due to over
95% of them resulting in draws. Four different army types
were constructed to mimic various combat scenarios. These
armies were: Marine Only, Marine + Zergling, Dragoon +
Zealot, and Dragoon + Marine. Armies consisted of all pos-
sible combinations of the listed unit type with up to 4 of
each, for a maximum army size of 8 units. Each unit in the
army was given to player MAX at random starting position
(x, y) within 256 pixels of the origin, and to player MIN at

position (−x,−y), which guaranteed symmetric start loca-
tions about the origin. Once combat began, units were al-
lowed to move infinitely within the plane. Unit movement
was limited to up, down, left, right at 15 pixel increments,
which is equal to the smallest attack range of any unit in our
tests.

These settings ensured that the Nash value of the start-
ing position was always 0.5. If the battle did not end in
one player being eliminated after 500 actions, the simula-
tion was halted and the final state evaluated with LTD. For
instance, in a match between a player p1 and an opponent p2,
we would count the number of wins by p1, w, and number
of draws, d, over n games and compute r = (w + d/2)/n.
Both players perform equally well in this match if r ≈ 0.5.

As the 2011 StarCraft AI Competition allowed for 50ms
of processing per game logic frame, we gave each search
episode a time limit of 5ms. This simulates the real-time
nature of RTS combat, while leaving plenty of time (45ms)
for other processing which may have been needed for other
computations.

Experiments were run single-threaded on an Intel Core i7
2.67 GHz CPU with 24 GB of 1600 MHz DDR3 RAM us-
ing the Windows 7 64 bit operating system and Visual C++
2010. A transposition table of 5 million entries (20 bytes
each) was used. Due to the depth-first search nature of the
algorithm, very little additional memory is required to facil-
itate search. Each result table entry is the result of playing
365 games, each with random symmetric starting positions.

5.2 Influence of the Search Settings
To measure the impact of certain search parameters, we per-
form experiments using two methods of comparison. The
first method plays static scripted opponents vs. ABCD with
various settings, which are then compared. The second
method plays ABCD vs. ABCD with different settings for
each player.

We start by studying the influence of the evaluation func-
tion selection on the search performance (see Section 4.2).
Preliminary experiments revealed that using NOK-AV for
the playouts was significantly better than using any of the
other scripted strategies. The playout-based evaluation func-
tion will therefore always use the NOK-AV script.

We now present the performance of various settings for
the search against script-based opponents (Table 1) and
search-based opponents (Table 2). In Table 1, the Alt se-
quentialization is used among the first three settings which
allow to compare the leaf evaluations functions LTD, LTD2,
and playout-based. The leaf evaluation based on NOK-AV
playouts is used for the last three settings which allow to
compare the sequentialization alternatives described in Sub-
section 3.2.

We can see based on the first three settings that doing a
search based on a good playout policy leads to much better
performance than doing a search based on a static evaluation
function. The search based on the NOK-AV playout strat-
egy is indeed dominating the searches based on LTD and
LTD2 against any opponent tested. We can also see based
on the last three settings that the Alt and Alt’ sequentializa-
tions lead to better results than RAB’.

5



Table 1: ABCD vs. Script - scores for various settings
Opponent ABCD Search Setting

Alt Alt Alt Alt’ RAB’
LTD LTD2 NOK-AV Playout

Random 0.99 0.98 1.00 1.00 1.00
Kite 0.70 0.79 0.93 0.93 0.92
Kite-AV 0.69 0.81 0.92 0.96 0.92
Closest 0.59 0.85 0.92 0.92 0.93
Weakest 0.41 0.76 0.91 0.91 0.89
AV 0.42 0.76 0.90 0.90 0.91
NOK-AV 0.32 0.64 0.87 0.87 0.82

Average 0.59 0.80 0.92 0.92 0.91

Table 2: Playout-based ABCD performance

Opponent Alt Alt’ RAB’
NOK-AV Playout

Alt-NOK-AV 0.47 0.46
Alt’-NOK-AV 0.53 0.46
RAB’-NOK-AV 0.54 0.54

Average 0.54 0.51 0.46

Table 3: Real-time exploitability of scripted strategies.
Random Weakest Closest AV Kiter Kite-AV NOK-AV

1.00 0.98 0.98 0.98 0.97 0.97 0.95

5.3 Estimating the Quality of Scripts
The quality of scripted strategies can be measured in at least
two ways: the simplest approach is to run the script against
multiple opponents and average the results. To this end,
we can use the data presented in Table 1 to conclude that
NOK-AV is the best script in our set. Alternatively, we can
measure the exploitability of scripted strategies by determin-
ing the score a theoretically optimal best-response-strategy
would achieve against the script. However, such strategies
are hard to compute in general. Looking forward to mod-
elling and exploiting opponents, we would like to approx-
imate best-response strategies quickly, possibly within one
game simulation frame. This can be accomplished by re-
placing one player in ABCD by the script in question and
then run ABCD to find approximate best-response moves.
The obtained tournament result we call the real-time ex-
ploitability of the given script. It constitutes a lower bound
(in expectation) on the true exploitability and tells us about
the risk of being exploited by an adaptive player. Table 3
lists the real-time exploitability of various scripted strate-
gies. Again, the NOK-AV strategy prevails, but the high
value suggests that there is room for improvement.

6 Conclusion and Future Work
In this paper we have presented a framework for fast Alpha-
Beta search for RTS game combat scenarios of up to 8 vs. 8
units and evaluate it under harsh real-time conditions. Our
method is based on an efficient combat game abstraction
model that captures important RTS game features, includ-

ing unit motion, an Alpha-Beta search variant (ABCD) that
can deal with durative moves and various tree transforma-
tions, and a novel way of using scripted strategies for move
ordering and depth-first-search state evaluation via playouts.
The experimental results are encouraging. Our search, when
using only 5 ms per episode, defeats standard AI scripts as
well as more advanced scripts that exhibit kiting behaviour
and minimize overkill. The prospect of opponent modelling
for exploiting scripted opponents is even greater: the prac-
tical exploitability results indicate large win margins best-
response ABCD can achieve if the opponent executes any of
the tested combat scripts.

The ultimate goal of this line of research is to handle
larger combat scenarios with more than 20 units on each
side in real-time. The enormous state and move complex-
ity, however, prevents us from applying heuristic search di-
rectly, and we therefore will have to find spatial and unit
group abstractions that reduce the size of the state space so
that heuristic search can produce meaningful results in real-
time. ? (?) present initial research in this direction, but
their UCT-based solution is rather slow and depends on pre-
assigned unit groups.

Our next steps will be to integrate ABCD search into
a STARCRAFT AI competition entry to gauge its perfor-
mance against previous year’s participants, to refine our
combat model if needed, to add opponent modelling and
best-response-ABCD to counter inferred opponent combat
policies, and then to tackle more complex combat scenarios.

References
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault planning
in real-time strategy games. In Boutilier, C., ed., IJCAI, 40–45.
Churchill, D., and Buro, M. 2011. Build order optimization in star-
craft. In Proceedings of the Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE.
Coulom, R. 2006. Efficient selectivity and back-up operators in
Monte-Carlo tree search. In Proceedings of the 5th Conference on
Computers and Games (CG’2006), volume 4630 of LNCS, 72–83.
Torino, Italy: Springer.
Furtak, T., and Buro, M. 2010. On the complexity of two-player
attrition games played on graphs. In Youngblood, G. M., and Bu-
litko, V., eds., Proceedings of the Sixth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment, AIIDE
2010.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied to
abstract combat games. Advances in Artificial Intelligence 66–78.
Orkin, J. 2006. Three states and a plan: the AI of FEAR. In Game
Developers Conference. Citeseer.
Saffidine, A.; Finnsson, H.; and Buro, M. 2012. Alpha-Beta prun-
ing for games with simultaneous moves. In Proceedings of the
Twenty-Sixth Conference on Artificial Intelligence (AAAI-12).

6


