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Abstract—A denotational semantics of quantum Turing ma- (i) We introduce a total trace on the monoidal subcategory
chines is defined in the strongly compact closed category offte  of (FdHilb,©) defined by isometries, which has previously
dimensional Hilbert spaces. Using the Moore-Penrose geredized been sought by others [14], [21].

inverse, a new additive trace is introduced on the restricton of i W lain th le of thent truction for t d
this category to isometries, which trace is carried over to adected (i) We explain the role o nt constructon tor trace

quantum Turing machines as monoidal automata. The resultiy Monoidal categories [16] in turning a computation process
traced monoidal category is further transformed into the indexed bidirectional or reversible.

monoidal algebra of undirected quantum Turing automata. (i) We capture the phenomenon in (ii) above by our
own concept “indexed monoidal algebra” [7], an equivalent
formalism for compact closed categories.

In recent years, following the endeavors of Abramsky and Due to space limitations we have to assume familiarity with
Coecke to express some of the basic quantum-mechanig@he advanced concepts in category theory, namely traced
concepts in an abstract axiomatic category theory settingonoidal categories [16], compact closed categories Hra],
several models have been worked out to capture the semgie Int construction that links these two types of symmetric
tics of quantum information protocols [1] and programmingnhonoidal categories [20] to each other. For brevity, by a
languages [11], [15], [23]. Concerning quantum hardwane, @nonoidal category we shall mean a symmetric monoidal one
algebra of automata which include both classical and quantthroughout the paper.
entities has been studied in [12].

The objective of the present paper is to provide a de-!l. MONOIDAL CATEGORIES AND INDEXED MONOIDAL
notational style semantics for quantum Turing machines as ALGEBRAS
hardware devices. At the same time, the rigid topological The following definition of (strict) traced monoidal cate-
layout of Turing machines as a linear array of tape celisories uses the terminology of [16]. Trace (called feedbiack
is replaced by a flexible graph structure, giving rise to the]) in a monoidal category’ with unit object, tensor®,
concept of Turing automata and graph machines as introdugg symmetriega g : A® B — B® A is introduced as a
in [6]. By denotational semantics we mean that the changingt trace, i.e., an operatiof(U ® A,U ® B) — C(A, B).
of the tape contents caused by the entire computation @oc
is specified directly as a linear operator, rather than just o
step of this process.

Our presentation will use the language of [1], [16], but TT‘X,B :C(U® A,U®B) —C(A,B)
it will be specific to the concrete strongly compact closed = ] .
category (FdHilb, @) of finite dimensional Hilbert spacesSalisfying the following three axioms:
at this time. One can actually read Section 4 separately \@nishing:
an interesting study in linear algebra, introducing a novel, .1 _ UV \ _ m .V U )
application of the Moore-Penrose generalized inversergfea Trap) =1, Trag @) =TrapTveaves):
Hermitian operators by taking their Schur complement isuperposing:
certain block matrix operators. This is the main technical-c U U
tribution of the paper. We believe, however, that the catego 1 74.5(f) © 9 = Tragc.pep(f ©g), whereg: C — D;
theory contributions are much more interesting and refevag,nking:
All of these results are around the well-known Geometry
of Interaction (Gol) concept introduced originally by Gula
[13] in the late 1980’s as an interpretation of linear logidNaturality of trace is meant in all three variables B, U.
The ideas, however, originate from and are directly reléed The wordsliding is used as a synonym for (di-)naturality in
a yet earlier work [2] by the author on the axiomatizatio/. When using the ternfieedbackfor trace, the notatiorf'r
of flowchart schemes, where the traced monoidal categaiyanges to] or 1, and we simply writeTrY (1Y, 4Y) for
axioms first appeared in an algebraic context. Our categdfyx 5 WheneverA and B are understood from the context.
theory contributions are as follows. One further axiom will be of interest for us in Section 4.

I. INTRODUCTION

Bfinition 2.1. A tracefor a monoidal category is a natural
family of functions

TT‘&U(CU’U) = ]-U-



derived composition: indexed monoidal algebrgor half-category)M consists of
B objectsA, B, ..., morphismsf, g,..., and an operatiorank,

fog=Traclcpac(f®g)forf:A—B,g:B—-C | op assigns to each morphisfh an objectA. We write

It is known, cf. [2, Axiom X3], that this identity is a conse-f : A to indicate the rank of. There is an associative binary

guence of the traced monoidal category axioms. Moreovegeration® (tensor) on objects and a unit objdctdefining a

in the presence of derived composition, it is sufficient tmonoid structurel/. On morphisms, the following operations

impose/check naturality with respect to permutations .only are defined.

Notice that we write composition of morphisms) (in & _ A hinary operation, also callegnsor which assigns to each
left-to-right manner, avoiding the use of “;”, which SOM&air of morphismsf : A andg : B a morphismf ® g : A® B.
may find more appropriate. Accordingly, when working in. A unary operatiortrace, by which every morphismyf :
a Hilbert spacef{, we shall think of a vectow € H as a A A B is assigned a morphistiu s f : B. We shall
“row vector”, that is, a morphisme : C — H. Consequently, rite 14 f if Bis understood. ’
we apply an operator (matrixj’ on v asvT', andnot Tv.  _ For each object, anidentity morphisml, : A ® A.

A column vector (v.l) 'S a morphlsmH_ — G, which Intuitively, a (*half”-)morphism f : A stands for a real
is naturally isomorphic to a (row) vector in the dual Spacr%orphismf . T — A in a corresponding hypothetical SDCC
H*. We shall use the symbols and 0 as “generic” identity .

. . . categoryC. Tensor in M is essentially® in C, and [4 f
e aboon o e comer e Bt 1 454 &1 capures tne canonial wac f te
P ‘ orphismfs : A — A ® B in C that corresponds tgf

technical simplification we shall be working with the stricg] ; . . L
compact closure. There is also an indexing mechanism in

monoidal formalism, even though the monoidal category %%//l which employspermutation symbolas a key instrument.

Hilbert spaces with the usual tensor product is not strict. Using Mac Lane’s coherence theorem for monoidal categories
Definition 2.2. A monoidal categoryC is compact closed [20], a permutation symbob : A = B is a free symbolic
(CC, for short) if every object! has a left adjointd* in the representation of a permutatioh — B in C, independently
sense that there exist morphismis : I — A ® A* (the unit of any concrete® sharing the given object structufd with
map) andes : A* ® A — I (the counit map) for which the g,
two composites below result in the identity morphismsand ~ permutation symbols do not form a category over the objects
La~, respectively. of M, though. They do form a monoidal category in which the
A = I@A g0, (AA) DA objgcts areobject t_e_rms(words) ove_r/\/l’s_ objects asobject _
. variables Composition and tensor in this free category will
AR (A" ®A) D100 AR =4, be denoted bye and @ in the axioms 11-19 below. Since
AY = AR =104, AR (AR A) each object term evaluates to an object according to thagive
(A* @A) @ A" -, 01,. @A =A% monoid M, every permutation symbagd : A = B has a

. .. unique canonical interpretation as a permutatibn— B in
CategoryC is self-dual compact close(SDCC, for short) if any monoidal category having/ as its object structure. In

A = A* for each ot_)jeclA. The categor)f_SDCC has as objects  © algebraic language, each permutation symbod — B
all SDCC categories, and as morphisms monoidal f“nCtosrérves as a unary operation v, which takes a morphism
preserving the given self-adjunctions. As it is well-knownf . A to a morphismf - p : B. Two permutation symbols
every CC category admits a so callednonical trace[16 ' : o :
definyed by the ?orri/wula [16] p,p A= B are sqld to bequwalenxp_ = p/, if they denpte
the same permutation in every monoidal category having the

TTX,Bf = (dy- ®1a)o (1y+ @ f) o (ey ® 1p). object structurel.

) Composition ¢) is the following derived operation i.
See Fig. 1.

—Forf: A® Bandg: B®C,

U A . 7N A fog :IB ((f ®g)- (CA,BB %) 10))'
See Fig. 2.

f = f
‘ ‘ A;B \/B C
* -
B B A C

Fig. 2. Composition as a derived operation

Fig. 1. Canonical trace
Operations inM are subject to the following nine equa-
On the analogy of enriched categories [19] indexdibnal axioms, which postulate that the resulting indexed
monoidal algebras have been introduced recently in [6]. Anonoidal algebra (IMA, for short) be indeed equivalent to



an SDCC category.
I1. Functoriality of indexing

fo(prep)=(f-p1)-p2
for f: A and composable; : A = B, ps : B = C;

f-1a=f for f: A
I2. Naturality of indexing
(f@g) (pr@p2)=f-p1®g:p
for f: A, g:B,p1:A=C, ps: B= D;
(Ta f)-p=la(f-(1aa@p))

for f: AR A® B, p: B=C.
I3. Coherence

f-pr=f-p2 for f: A p;: A= B, wheneverp, = p,.

14. Associativity and symmetry of tensor
(fRg@h=f®(@g®h)for f: A,g: B,h:C;
f®g=(g®f)-capforf:Ag:B.
I5. Right identity
folp=fandf®1l; = ffor f: A— B.
16. Symmetry of identity
1a-can =14

I7. Vanishing
Irf=fforf:4

lags f=IB(Ja f-(1a@cpa@1pc))

for f: AR BRA® B®C.
I8. Superposing

la(feg) =lafegforf:A®A®B,g:C.
19. Trace swapping

I(Jaf)=la(s (f (caaBs@1c)))
for f:A® A B BR®C.

Analogously to a functor, amdexed monoidal homomor-

Given an arbitrary traced monoidal categafy one can
turn it functorially into an IMA Alg(C) by the help of the
Int construction [16]. The trick is to simply restrict the CC
categoryInt(C) to its self-dual object§A, A), and then use
Theorem 2.1 to obtain an equivalent IMA. See Theorem 5.1
below for details.

IIl. M ONOIDAL VS TURING AUTOMATA

Circuits and automata over an arbitrary monoidal category
M have been studied in [3], [4], [5], [17]. It was shown that the
collection of such machines has the structure of a monoidal
category equipped with a natural feedback operation, which
satisfies the traced monoidal axioms, except for yanking.
Moreover, sliding holds in a weak sense, for isomorphisms
only.

Let A and B be objects inM. An M-automaton(circuit)

A — B is a pair (U, «a), whereU is a further object and
a:U®A— U® B is amorphism inM. If, for example,

M = (Set x), then the pairU, «) represents a deterministic
Mealy automaton with state#/, input A, and outputB.
The structure ofM-automata/circuits has been described as
a monoidal category’irc(M) with feedback in [17]. This
category was also shown to be freely generated/hy

In this paper we take a different approach to the study
of monoidal automata. We follow the method of [6] with
the aim of constructing draced monoidal category as an
adequate semantical structure for these automata. One must
not confuse this type of semantics with the meaning normally
associated with the categoirc(M) above, as they have
seemingly very little in common. A traced monoidal category
indicates adelay-freesemantics, as opposed to the step-by-
stepdelayedsemantics suggested Ia¥irc(M ). Arguing at an
intuitive level, the difference is the following. In a deky
model, the “combinational logicae : U® A — U ® B
describes one primitive step of the automaton, and the stepw
behavior is derived naturally as a kind of operational seinsn
in terms of sequences. In contrast, a delay-free model és lik
an asynchronous automaton (e.g. a flip-flop constructed from
two NAND gates), which must first stabilize on a given input,
keeping it steady over an indefinite number of steps, before
the next input can even be considered.

Even though the analogy above is quite appropriate, the
category that we are going to construct is not meant to be the
quotient of Circ(M) by the yanking identity, so as to turn it

into a traced monoidal category in the straightforward neann

: : W : , )

g? Izmpgir é}/t fun ctji\o/ln St.)(?l.t\r/]v: eonbjle'\gf\?ujr\]/(l:ti?)gd aj:lsi g(r:]osnfftgadﬁather, we define a brand new tensor and feedbgck (trace_) on

objectA in M an objecth A, so thath preserves the monoid our M—a_lutomataz which are analpgous o the basic operations

structure, and the morphism function assigns to each n*m;nrphiIn iteration theories [_1_0]' Regarding the bg_se categrywe

£ A amorphismhf : hA in such a way that, defines a shalll assume an additional, so called add|t_|ve teﬂscxro“th.at
® distributes overd. These two tensors will then be “mixed

homomorphism in the algebraic sense. - et -
Let IMA denote the category of indexed monoidal algebrz?gd .m.atched n t_he def_|n|t!on_ of tepsx for M—automgta,
éowdlng them with an intrinsic Turing machine behavior.

with indexed algebraic homomorphisms between them. TR X . T .
9 P The “prototype” of this construction, resulting in the in-

following result was proved in [6]. . . :
9 P [6] dexed monoidal algebra of conventional Turing automata, ha
Theorem 2.1.The categorieSDCCand IMA are equivalent. been elaborated in [7] using/ = (Rel, x,+) as the base
category. This category was ideal as a template for the kind



of construction we have in mind, since it is biproduct bynterface identifier for. For example, one can consider the
+ and self-dual compact closed according>to Below we DQTA in Fig. 3b as one tape cell of a Turing machifid/
present the quantum counterpart of this construction, imgrk having23? symbols in its tape alphabet and only 2 states (2 left-
in the biproduct strongly compact closed category [1] oftéini moving and 2 right-moving interfaces, both input and output
dimensional Hilbert spacef~dHilb, ®,®). More precisely, Correspondingly} is 8-dimensional, while the dimension of
the categoryM above will be the restriction oFdHilb to both K and £ is 4. In motion, if the control particle ofl’
isometries as morphisms, which subcategory is no longesides on the input interface labeled i) ((R,¢)), thenT M
compact closed or biproduct. We shall only use the inn&rin state; moving to the left (respectively, right). The point
product feature ofdHilb, completeness of the metric spacés, however, that the automatdhneed not represent just one
induced is irrelevant. cell, it could stand for any finite segment of a Turing machine
in fact a Turing graph machine in the sense of [6]. In our
IV. DIRECTED QUANTUM TURING AUTOMATA concrete example, a segmentTfi/ with n tape cells would

In this section we present the construction outlined abtwve,have3n qubits inside the circle of Fig. 3b, but still the same
obtain a strange asymmetric model which does not yet qualifyy 4 interfaces.
as a recognizable quantum computing device in its own right. An isometric isomorphisna : H; — Ho (unitary map if
The model represents a Turing machine in which cells arg, = H,) is a linear operator such that bothand o' are
interconnected in a directed way, so that the control (tapgmetries. Two automat®; : (H;,n;) : K — L, i = 1,2,
head) always moves along interconnections in the given fixageisomorphic notationT; = T, if there exists an isometric
direction, should it be left or right. In other words, directis isomorphismo : H; — H, for which
incorporated in the scheme-like graphical syntax, rathant

the semantics. We use this model only as a stepping stone n= (o' ®Ic)omo(0®Ir).

towards our real objective, the (undirected) quantum Qirieor simplicity, though, we shall work with representatives

automaton described in Section 5. rather than equivalence classes of automata.

Definition 4.1. A directed quantum Turing automatdsa a Turing automata can be composed by the standastade

quadruple product of monoidal automata, cf. [4], [5], [17]. Ifl1 =
T=(H,K,L,T), (Hi,71): L — M andT, = (Ha, ) : M — N are directed

L . ) guantum Turing automata (DQTA, for short), then
whereH, I, and L are finite dimensional Hilbert spaces over

the complex fieldC, andr : H ® K — H ® £ is an isometry TyoTy = (H1 ® Ha, L, N, 7T)
in FdHilb.

Recall that arisometrybetween Hilbert space; andH;
is a linear mapr : H, — Ho such thato o ot = I, where (1,12 @ 1) © (I ©71) © (Tr,74, @ ) © (Iny @ 7o),
o' is the (Hilbert spacepdjoint of o. Following the notation wherery, x is the symmetry{® K — K@ H in (FdHilb , ®).
of general monoidal automata we write: K — £, and call As known from [17], the cascade product of automata is
the isometryr the transition operatorof 7. Thus,T" is the compatible with isomorphism, so that it is well-defined on

monoidal automatori?t, 7) : K — L. Sometimes we simply jsomorphism classes of DQTA. The identity Turing automaton
identify 7" with 7, provided that the other parametersiolre |, . x — K has the unit spac& as its state space,

is the automaton whose transition operatas

understood from the context. and its transition operator is simplix. The results in [17]
& imply that these data define a categddQT over finite
& N dimensional Hilbert spaces as objects, in which the morphis
a) @ b) g are isomorphism classes of DQTA.
Now let
Fig. 3. Two simple DQTA Ty =Hi,mn): K1 — Ly andTy = (Ha,12) : Ko — Lo

The reader can obtain an intuitive understanding of 12¢ DQTA, and defindly X 75 to be the automaton over the

automatorf” from Fig. 3a. The state spaé¢is represented by Hate spacet, « H, whose transition operator

a finite number of qubits, while the control is a moving paetic 7 = 7 X7y : (H;@H2)® (K1 8K2) — (H19H2)R(L19Ls)
that moves from one of the input interfaces (sp&eto one
of the output ones (spad®). It can only move in the input>
output direction, as specified by the operatoThe number of 4, . (H1 @ Ha) @ Ki — (H1 @ Ha) ® Ly, i=1,2 are:
input and output interfaces is finite. The control itself sloet

carry any information, it is just moving around and changest 71 = (™4 @ Ix,) © (I, ® 1) © (W34, 30, @ I, ), @nd
state of7'. In comparison with conventional Turing machines, 72 = In: ® 72

the state off" is the tape contents of the corresponding Turing In the above equationsp denotes the orthogonal sum of
machine, and the current state of the Turing machine is just Hilbert spaces. Intuitively; is the selective performance of

acts as followsr ~ o1 @ o4, Where the morphisms



either 71 or = on the tensor spacel; ® H,. The natural Z. With the additive symmetriesy x : H & K — K & H,

isomorphism~ is distributivity in the sense of [1, Proposi- (Iso, ®) again qualifies as a monoidal category. The biproduct

tion 5.3], which is meaningful in all biproduct compact ads property of® is lost, however. Nevertheless, one may attempt

categories. It is clear that the operaigiX 7, is an isometry, to define a trace operatiolf’ 7 in Iso by the Kleene formula

so that the operatio® is well-defined. We call this operation(1), wherer : U & K — U @ L. (Cut H® in the matrix ofr.)

the Turing tensor The Turing tensor is also associative, up to Since the Kleene formula does not appear to be manageable,

natural isomorphism, of course. we first redefinel¥ T and prove the equivalence of the two
The symmetriedC X £ — £ X K associated withiX are definitions later. Let

the “single-state” Turing automata whose transition ofera u N

is the permutation T 7=mp+700(I—-74)" 078, )

L K where ()™ denotes théMoore-Penrose generalized invereé

k.= K 0 I) :(Ce)KaL)— (CR)(LeK). linear operators. Recall e.g. from [8] that the Moore-Psaro
L I 0 inverse (MP inverse, for short) of an arbitrary operator

; . e P
Along the lines of [17] it is routine to check th& is also Z;II;\Iilr?glfv\fgecg:é%?oeng:peratw + K — H satisfying the
compatible with isomorphism of automata, afBQT, X)) , N B n I
becomes a monoidal category in this way. () ooo LoTo ando™oooot =0t

Our third basic operation on DQTA is feedback. Feedback(!) 7 ° ¢ ando™ oo are Hermitian.
follows the scheme of iteration in Conway matrix theories The connection between formulas (1) and (2) is the follow-
[10], using an appropriate star operation. et U o K — Ing If the Neumann Serieﬁz converges, thelﬂ — TA) is
U @ L be a DQTA having invertible and

TTHROUSK) - HS U L) A= —7a) P =T —7a)t.

as its transition operator. ThéH 7' : K — L is the automaton We know that|[74|| < 1, where|| denotes the operator
over (thesamespace)H specified as follows. Consider thenorm. (Remember thatis an isometry.) Therefore the Kleene

matrix of 7: formula needs an explanation only|jf4| = 1. In that case,
HoUd HoL even if (I — 74) is invertible,7} may not converge.
HoU A 5 Just as the Kleene formula in computer science, the expres-
HoK ( o . ) sion on the right-hand side of equation (2) is well-known and
frequently used in linear algebra. For a block matrix
according to the biproduct decomposition 1 B
T:<[TA;TC]7[TB;TD]>ﬂ M = < C D ) ’

where[_,_] stands for coproduct and , _) for product. The whereA is square, the matri®) — CA* B is called theSchur

transition operator of T is defined by theKleene formula complemenbf A on M, denotedA/M. See e.g. [8]. Observe
that, under the assumptid@ = L,

u
In the Kleene formulasi™ = > 7%, wherer = I and r=I-{=ma)/l=m).
Tj‘“ = 7% o74. In other wordsy 3" is then-th approximation For this reason we calt = the Schur I-complementf 74
of 74’s Neumann seriesvell-known in operator theory. The on 7, and write(f! 7 = 74\ 7.
correctness of the above definition is contingent upon th@aorem 4.1. The operatorr4\7 is an isometry.
existence of the limit and also on the resulting operatondpei
an isometry. For these two conditions we need to makePéOOf' Isolate the kemnel\" of (I —74), and lett/, be the

short digression, which will also clarify the linear algelor _orth(_)gonal complement [22] oF oniA. The matrix of(/—74)
in this breakdown is

U7 = lim (1p +7c o T4 0 TR). (1)
n—oo

background.

Let Iso denote the subcategory ¢fdHilb having only N U
isometries as its morphisms. Notice thi&to, ®) is no longer I—14y= N 0 0 . 3)
compact closed, even though the multiplicative tengois Uo < - 1-1 >

still intact in it. (The duals are gone.) This tensor, howeve . - i
does not concern us at the moment. Consi@ers an additive Put this matrix in the top left corner of.

tensor inlso: N Uy L
1 & 12 = ([11,0], [0, 2]) N 1 0 'l

. . . . U TN -0 70

for all isometriesr; : H; — IC;, i = 1, 2. Clearly,7, &7 is an 0 A A B

isometry. The new additive unit (zero) object is the zeracepa K Tg/ e D



Sincer is an isometry (regardless of its concrete orthogonal Multiply by (I — A") from the right:
representation as a matrix operator), all entries in thev@abo

T_ (17— [ _ At
block matrix with superscripf\' must be0. Consequently, BB'—(I-4)AT = I-Al,
(I —79) is invertible andrs\7 = 79\, where BB' + AAT = I
To: UK - Uy D L The result is equation (4), which is given. The proof is now
complete.
is the restriction of- to the bottom righ® x 2 corner. Indeed, P . )
N Lemma 4.2. Lett : UBVDOK - UDV & L be an isometry
0 0 (0 0 defined by the matrix
0 I-7% —\o I--9-t ) B
1
so that M B, ., where M = PoQ
¢, G D RS
TCO(I—TA)+OTB:780(1772)71071%. 1 2

It turns out from the above discussion tHdt— 74) is group T 1 = (P\M) =1 — (S + R(I — P)"Q) is invertible, then
inver.tible and range-Hermi'Fian_n cf. [8], [_9]. Thergfo_re the v (fhu 7) =fuey T

MP inverse of(I — 74) coincides with its Drazin inverse,

which is the group generalized inverse of this operator. Sderoof. Using the kernel-on-top representation of operators as
again [8], [9]. It follows that we can assume, without loss o#xplained under Theorem 4.1, we can assume (without loss of
generality, that(I — 74) is invertible. Note that (3) is only generality) that/ — P is also invertible. Then the statement

a unitary similarity, therefore the sliding axiom is needed follows from the Banachiewicz block inverse formula [9,
make this argument correct. See Theorem 4.4 below. Forbetfgoposition 2.8.7]:

readability, replace the symbots, 75, 7¢, andrp by A, B,

-1
C, and D, respectively. Furthermore, ignore the composition ( é g ) =
symbolo as if we were dealing with ordinary matrix product.
Then we have: ‘A1 +A—1B(D_CA—1B)—1 _A—lB(D_CA—lB)—l
( A B > < At ot ) B < I 0 > —(D—-CA™'B)~tCcA~! (D—-CA'B)~! ’
T T - :
¢ bJ\B D 01 usingA — I — P, B = -Q, C — —R, andD = I — S.
The following four matrix equations are derived: Computations are left to the reader. 0
AAt + BBY = 1, (4) Note that the Banachiewicz formula does not hold true for
1 o the MP or the Drazin inverse of the given block matrix when
ACT +BDT 0, ®) A=Y and (D — CA7'B)~! are replaced on the right-hand
cA'+DB" = 0, ®)  side by AT and (D — CA*B)*, respectively, even if one
cct+DDF = T (7) of these square matrices is invertible. There are apprepria

block inverse formulas for generalized inverses, cf. [9t b

these formulas are extremely complicated and are of no use
(D+C(I—A)'B)YD'+B(I-AH"1ch=1. for us.

The product on the left-hand side yields: Lemma 4.3. LetT : UB VDK — U DV & L be an isometry

as in Lemma 4.2. IP\M = I, then

We need to show that

DD' 4+ DB'(I — AN7'CT +C(I — A)~'BDT
+ C(I_A)—IBBT(I_AT)—lcT TTV (TTU 7_) :TTU@V T.
Proof. Again, we can assume that- P is invertible. To keep

By (5) and (6) this is equal to: the computation simple, 1é¢ andV both be 1-dimensional.

DD' — CAT(I — AN~1cT —C(I - A)~tACT This, too, can in fact be assumed without loss of generality,
+ C(I—-A)'BBI(I-Ah"'Ct, if one uses an appropriate induction argument. The indogctio
however, can be avoided at the expense of a more advanced
which is further equal td> D + CQC', where matrix computation. Thus,
Q=(I-A)"'BBI(I-AN) 1 AT - A1 (I-A) A g w
According to (7) it is sufficient to prove th& = I. A couple =y s %2 ’
of equivalent transformations follow. vil vl

1. Multiply both sides ofQ = I by (I — A) from the left: wherew; and (v; |), ¢ = 1,2 are row and column vectors,
respectively. To simplify the computation even furthet,thee

BBYWI — AN~ — (I - H)AT(I - AT - A I'— A, numbersp, g, r, s be real. The2 x 2 matrix I — M is singular

BBI(I - AN — (1 -A4)AT (T -ANH = I and range-Hermitian, therefore it is Hermitian (only beseau



the numbers are real, see [9, Corollary 5.4.4]), so that tmiLet 7 : i/ & K — U & L be an isometry with[A, B], [C, D])

be of the form
a b

I_M:(b b2/a)

for some real numbers, b with a =1 — p # 0. Then

TTUT: ( ’Ucl g/ >7
wherec = (1 — b?/a) + b?/a =1,
u = wuz—(b/a)-u,
(wl) = (val)—(b/a)-(v1]), and
D = D—i—(l/a)-(vll)ul.

Sincec =1, w and (v |) must be0. Consequently,

(8)

In order to calculatgl — M)™*, let M’ = S(I — M)S~1,
whereS = S~ is the unitary matrix

_1 -b a 2 _ 2 2
S—d-< a b),d—a + b°.

After a short computation,

a-uy=>b-uy anda- (va])=b-(v1]).

! 0 O
M (o &*/a >
It follows that:
0 0
J— +7
(I-M) S<o a/d2>S’ and
0 0
ﬂu$vT:D+(U1l’U2l)S(O a/d2 )S(Z;)

Comparing this expression with

fv (ffy 7) = D" =D+ (1/a) - (v1 |)us,
we need to prove that
)s

0 0 U1
On the left-hand side we have:

U2

CYRSILY )=+

(a~v11+b~v2l)(a~u1+b~u2)

=
L nl @+ L ) Gy @)
‘%%¥+wwwwﬂwém>

_ é (01 Vs

The proof is complete.

Theorem 4.4. The operationf);; defines a trace for the
monoidal categoryIso, ®).

being the biproduct decomposition (matrix)«afThen, for the
“matrix” S of o:
iy ((c@oto(c @)

= D+0OSHI-SAS)TSB
D4+ CS 1SSt - SAS HTSB
D4+ CS YS(I—A)SHTsSB
D+CS™'S(I-A)*S™'SB
D+C(I—A)"B=fy .

In the above derivation we have used the obvious property
(SMS Yt =8SMts!

of the MP inverse. Remember thatis a permutation, so that
o~! = ot. Superposing, yanking, and the derived composition
axiom are trivial. Therefore the only challenging axiom is
vanishing.

Lett: UDVBSK —-UBV G L be an isometry given by

the matrix
M B (P Q
(C D),WhereM_(RS).

We need to prove thaty (1 7) =fluey 7. Again, without
loss of generality, we can assume tiat— P) is invertible
0 0

and
0 So )’

whereY = N @V, and Sy : Vy — V), is invertible. If A/ is
the zero space, so that— P\ M itself is invertible, then the
statement follows from Lemma 4.2. Otherwise

v (e 7) =fyy (fa (i 7))-
By Lemma 4.3tx (fu 7) =fluen 7, and by Lemma 4.1,

I—P\M:(

M (Muen T) =tuenaev, T =Nuev T

The proof is now complete. 0

At this point the reader may want to check the validity of
the Conway semiring axioms

(ab)* = a(ba)*b+1, (a+b)* =(a*b)*a

for all a,b € C, where
1-¢)!

c*=(1—C)+={ 0

See [10]. Obviously, they do not hold, but they come very
close. It may also occur to the reader that the Schur
complement defines a trace in the whole cate@BdHilb , &).
Of course this is not true either, because the Banachiewicz
formula does not work for the MP inverse.

In a recent paper [21], Malherbe et al. introduced the so
called kernel-image trace as a partial trace [14] on anytizddi

if c£1
if c=1.

Proof. Naturality of trace with respect to permutations is easyategoryC. Given a morphismr : Y K — U D L in C

to see. For example, the sliding axiom (dinaturality4hcan
be shown for an arbitrary permutatien: ¥V — U/ as follows.

with a block matrix ([ta,7c], [TB,7D]) @s above, the
kernel-image traca%ﬂ. 7 is defined if bothrg and ¢ factor



through (I — 74), that is, there exist morphismis: £ — U each traced monoidal category axiom is essentially the same
andk : U — L such that in (DQT,X) as it is in(Iso, ®). Thus, the statement follows

from Theorems 4.4 and 4.5.
To=io(I—714) and 75 = (I —74) 0 k. U
V. MAKING TURING AUTOMATA BIDIRECTIONAL

See Fig. 4. Now we are ready to introduce the model of quantum Turing
; automata as a real quantum computing device.
K o 1y Definition 5.1. A quantum Turing automatoof rank C is a
1T triple T = (H,K,7), whereH and K are finite dimensional
Te Hilbert spaces and : H@ K — H ® K is aunitary morphism
UL in FdHilb .
Fig. 4. The kernel-image trace 2]
a) & & b) &

In this case

u _ _ .

1%—i T=Tp+Tcok=7Tp+ioTg. Fig. 5. One cell of a Turing machine as a QTA

It is easy to see that{ , 7 is always defined ifr is . '

an isometry, andi/_, 7 = . (Use the kerel-on-top Agdain, two automatd’; : (H;, K, 7:), i = 1,2 are called
transformation of I —r4) as in Theorem 4.1.) Therefot& |somorph|c_:|f there exists an isometric isomorphism H; —

is totally defined or{Iso, &) and it coincides withj¥. Using 2 for which 7, = (" @ Ix)omo(o®Ix).

[21, Remark 3.3] we thus have an alternative proof of olExample In Fig. 5a, consider the abstract representation

Theorem 4.4 above. of one tape cell drawn from a hypothetical Turing machine
Now we turn back to the original definition of trace inhaving two statesi and 2. The tape alphabef0,1} is also
(Iso, @) by (1). binary, which means that there is a single qubit sitting i& th

Theorem 4.5. For every isometry : U &K — U @ £, 14 + Cell. Thus, H is 2-dimensional. The control particle can
is well defined as an isometig — £. Moreover, reside on any of the given four interfaces. For example, if
c is on the top left interface, then control is coming from the
T =g r. left in state 1. After one move; can again be on any of

Proof. This is in fact a simple formal language theory exefl€S€ four interfaces, so that the dimensioriofs 4. Notice

cise. Take a concrete representation @ an(n+ k) x (n+1) e undirected nature of fone (rjnove, as opp(r)]sed_ o the rigid
complex matrix(a;; ), wheren, k, and! are the dimensions of input—output orientation forced on DQTA. The situation is,

U, K, andL, respectively. For a corresponding set of variabld¥Wever, analogous to having a separate input and dual butpu
X = {w;;}, consider the matrix iteration theoat - interface for each undirected one in a corresponding DQTA.
- 17 S s

determined by the iteration semiring of &rmal power series See Fig. 5b. Letly deno_te the quantum 'I_'uring automaton
over thew-complete Boolean semirinB with variablesX as (QTA: for short) so obtained, equipped with an appropriate

described in Chapter 9 of [10]. The fundamental observatidf@nsition operator as ans x 8 unitary matrix. :
is that 1" (a;;) is the evaluation of the series matri () We are going to describe the structure of QTA directly as

under the assignment,; = a;;, provided that each entry in an indexed monoidal algeb@7 . The object monoid foQ7

this matrix is convergent. In our case, sifag | < 1, this ma- "2 the mlcl)r_10|d of ohpjectsllrﬁlso, @)]; M_Ic;ph:csm?ﬂ(gi of rankf
trix is definitely convergent ifv = 1, and 1! (a;;) =1 (a4 ). are all isomorphism classes of QTA of ra ensor o

A straightforward induction on the basis of Theorem 4.4 th orphisms will be denoted k3, for the symboks is heavily

i N\ (o ; ; : overloaded.
?ge;digce(glﬁgo_ngidé?lé;'t:ggglng thi;t every iteration theory With a slight ambiguity we identify each permutation sym-

bol p with its interpretation in(lso,®) as a permutation
Corollary 4.6. The monoidal categoryDQT,KX) is traced isometry. Using the algebraic language, by an automatoiC

by the feedback. (transition operator : H ® K) we mean one with state space
Proof. Now the key observation is that, for every isometrH_ and interfacesC. Thus, our Qxamp_le automaton T : 4
T USK — UG L and objectM with 7 : 2 x 4. The algebraQ7 is defined as follows.

— ForT = (H,K,7) andp : K = L, T - p comes with the
u _NURM PEA)
(M 7) @ Ly =1 (T @ Im)- transition operator

This equation is an immediate consequence of (I ® p~Yoro(ln®p). (9)
(oDt =0t®l, — The identity automatofic : K & K is the single-state QTA

which is an obvious property of the MP inverse. (See the deﬁﬂ?‘ving the transition operator.
ing equations (i)-(ii) ofe™.) In the light of this observation, ki = ([0,1],[1,0]) (10)



— For automata a —C o>—C o
Ty = (H1,K1, 1) andTy = (Ha, Ko, 72),
Tlﬁﬂng(H,lcl @ICQ,TIEHTQ), = =

Fig. 6. A segment of a Turing machine as a QTA
whereH = H; ® Hs and 9 9 9 Q

nEn=nkmn: (11) be morphisms infnt(DQT). By definition, 71 = (H1,71) :
H® (ICI @’CQ) — H® (Kl @’CQ) Kl — ICI andT2 == (HQ,TQ) . ’CQ — ]C2 in DQT Again, by
—ForT=MH,UBUSK,T), the very definition ofg in Int(DQT),
luT=HK,ur), TeT=T1KT,: K&Ky — K1 ® Ks.
where Similarly, as to (12), if
IuT:TUEBU (TO(IH®(KZ/{,Z/{@IIC)))- (12) T(Z,Z)H(U@U@K,L{@U@IC), that is

Notice the “alternating twist’s in the definition of1 and ], T=MHr):UsUsKk > USUSK,
which is characteristic of thént construction. For a better then the morphismy, : Y — U & K in C (that is,
intuitive understanding, see also the corresponding goal®
definitions in [7] with respect to conventional Turing autam Towy : UU) > USKUSK)

Recall from Section 2 that the functdig takes an arbitrary in Int(DQT)) that corresponds td@" by compact closure is
traced monoidal category and turns it into an indexed maioidhe automaton
algebra through thént construction.

(H,u) UeUBK —-UBKDU,

Theorem 5.1. Q7 = Alg(DQT) is an indexed monoidal
algebra. wherer, = 7 o (Iy ® kuuex). Therefore

Proof. (Sketch) First we review the definition of the functor Ty = TrU Ty ) = (H,0),
7 : SDCC — IMA from [6], which turns an SDCC category

into an equivalent IMA. LetC be an SDCC category overVNere
a monoid M as objects. Then, for each objedt in M, o = YU (r0 Iy ® (Iy ® rru)))

the morphisms ofM = ZC with rank A are all morphisms _Lueu _

I — Ain C. Indexing in M is essentially the restriction of =1 (7o (I @ (Fuu & 1)) =lu 7
the covariantiom functorC(I,_) to permutations, and The proof is complete. O

Example (Continued) In Fig. 6a, consider a segment of our
hypothetical Turing machine consisting ofcells. As shown
For f: Aandg: B, in Fig. 6b, the semantics of this segment as a QTA is:

1A:dA:I—>A®A-

fOMg=f®cg: 1 — AR B, IQ(n—l) ((Eﬂ?le())'p):Zlv

and forf : A® A® B, |4 f is defined as the canonical tracdVN€reép : 4n — 4n is the permutation that sends= 1,2 and

of the morphismfa : A — A® B in C that corresponds tg | = 47— 1,4n to 4(n — 1) + k andl, respectively, and
according to compact closure. Li k) — 2i+(k—2) if0<i<n-—1,k=3,4
Now let C be the restriction ofInt(DQT) to its self- pldith)= 2(n—-1)+2(i—-1)+k if1<i<n k=12
dual objects(K, K). That is, a morphisnK — L in C is a
morphism(K, K) — (£, £) in Int(DQT). The morphisms of _ ) )
rank C in Alg(DQT), being the morphism&Z, Z) — (K, K) We have provided a theoretical foundation for the study of
in Int(DQT), are therefore isometrie®l ® K — H ® K guantum Turing mgchines.. _The.bipro<.juct str_ongly compact
for someH. In FdHilb, these are exactly the unitary mapg,losed categorydHilb of finite dimensional Hilbert spaces
H® K — H® K. Consequently, the correspondence betwesfrved as the underlying structure for this foundation. We
the morphisms ofilg(DQT) and Q7 is one-to-one and onto. narrowed down the scope of this category to isometries,
Itis easy to verify that the unit magx in C is rx i, SO that switched from multiplicative to additive tensor, and define

the definition (10) ofLx is correct. Also, indexing becomes the® NeW additive trace operation by the help of the Moore-
combination of the covariant and contravari@nin functors P€Nrose generalized inverse. This trace was then carried ov
DQT(I,_) and DQT(_,I) as specified in (9). Concerningtq the monoidal F:ategoryofdlrected.quantum Tprlng autamat
(11), let Finally, we applied _the[mf construction to obta_ln a compact
closed category, which we further transformed into the xede
T :(2,2) = (Ki,Ky) and Ty : (2, 2) — (Kg, K2) monoidal algebra of undirected quantum Turing automata.

VI. CONCLUSION
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