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Abstract: Westudy certain basic properties of the set M of finite undirected
multigraphs in a category theoretic setting. It turns out to be very natural
to consider M as an indexed algebra. The main results of this paper concern
representation theorems for indexed algebras. The study is motivated by
problems in the structure theory of soliton automata.

1. Introduction

The results reported in this paper originate from a study of structural properties of soliton
automata. Soliton automata provide an abstract mathematical model of the switching
behaviour of certain complex molecules under the influence of soliton waves [Dv1]. Soliton
switching is being discussed as promising component of future computing devices [Cal].
The states of a soliton automaton are weighted undirected graphs with the same
underlying unweighted graph. This underlying graph represents a molecule, and the weight
on the edges corresponds to the multiplicity of the respective bonds. A transition is
initiated by “inserting” a soliton at some external node and “directing” it to another or
even the same external node. Such a transition will cause the weights of the edges to
change with each traversal of the soliton. In every graph which occurs as the state of a
soliton automaton, the weights of the edges are 1 or 2 only; moreover, for every interior
node, the sum of the weights of the edges originating from this node is one more than
the number of these edges. Intuitively, a soliton can only move along edges of alternating
weights. A soliton path is a path from one exterior node to another or even the same
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exterior node on which the weights alternate dynamically, that is as the soliton “moves”
along the path. For an example see Figure 1. Note that the model of soliton automaton is
an abstraction, of course. Hence, the words ‘soliton,’ ‘molecule,’ etc. should not be taken
in their technical sense without some caution.
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Figure 1. Example of a soliton graph with
a cycle. Note that the double lines denote
double bonds, not multiple edges.

A soliton automaton is non-deterministic in general. It is deterministic if the state
changes are deterministic. Moreover, it is strongly deterministic if in every situtation
the soliton has no choice between different paths. Mathematically, strong determinism is
the easiest property to deal with. Strongly deterministic soliton automata are character-
ized in [Dal] as having trees or certain special graphs, called chestnuts, as the connected
components of their underlying graphs (assuming the automaton is “reduced” in a sense
defined in [Dal]). A chestnut is, essentially, a cycle of even length with all entry points
and bifurcations at even distances from each other. The computational power of strongly
deterministic soliton automata can, to a certain extent, be described by their transition
monoids. These transition monoids turn out to be primitive groups of permutations gen-
erated by involutorial elements [Dal]. While it is known that all symmetric groups can
be obtained in this way and that, on the other hand, some primitive groups cannot be
obtained in this way, the precise characterization of the groups occurring as transition
monoids of strongly deterministic soliton automata is still an unsolved problem. More-
over, it is not clear in which way the structure of a soliton graph would be reflected in the
structure of the corresponding group of permutations.

For the more general case of deterministic soliton automata, the analysis is even
more complicated due to the fact that in the underlying soliton graphs also cycles of odd
lengths could exist. So far, only two special situations have been dealt with. First, soliton
graphs with a single exterior node—when deterministic—have the cyclic group of order 2 or
the trivial group as transition monoid [Da3]. Second, deterministic soliton automata with
at most one cycle are studied in [Da2]. Again, some special cases excepted, the transition
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monoids are primitive groups of permutations generated by involutorial elements. However,
the exceptional cases add certain imprimitive groups; the latter can be characterized to
some extent as certain groups of monomial matrices over GF(3).

The general analysis of deterministic soliton automata is an open problem and, of
course, the questions of above carry over to this more general case.

This was the starting point for the investigation leading to this paper on undirected
multigraphs. The theory of multigraphs is to serve as a basis for an algebraic structure
theory of soliton automata. This application is presented in [Bal]. However, beyond this
application to soliton automata, the theory of multigraphs is of interest in its own right.

The paper is structured as follows. In Section 2 we provide a very brief review
of the notation used. In general, we assume that the reader is familiar with category
theory and with the theory of partial algebras (see [ML1], [Bu0], [Rel]). In Section 3, we
define the algebra M of (finite) undirected multigraphs. Sections 4-6 build the category
theoretic framework in which M can be appropriately described. In the first step, we
introduce families of indexed sets as functors from an index category to the category Set.
Two particular index categories, U and N, are of special interest with respect to the
goal of characterizing M. Section 4 ends with a representation for families of U-indexed
sets in terms of families of N-indexed sets. In Section 5, we introduce indexed algebraic
signatures. In particular, we define a U-indexed algebraic signature GR and an N-indexed
algbraic signature Gr and establish the connection between them. Finally, in Section 6 we
define indexed algebras, in particular GR-algebras and Gr-algebras. M is obtained as a
GR-algebra. The main result of this section is a representation theorem of GR-algebras in
terms of Gr-algebras. The paper ends with a few concluding remarks in Section 7.

Considering our original and motivating application, the structure theory of soliton
automata, this paper achieves a fundamental step towards a precise treatment of the
composition of soliton graphs; no doubt, that quite a few more steps are required. However,
we consider this one which clarifies the basic category theoretic issues as quite essential.

2. Review of Notation

The symbols N and N denote the set of non-negative integers and the set of positive
integers, respectively. For n € N, let [n] = {1,2,...,n}. For a set A, Fin(A) denotes the
set of all finite subsets of A and ||A]| is the cardinality of A. If A and B are sets then
A S B is the symmetric difference of A and B, thatis, A6 B=(A\B)U(B)\ 4).

As usual, if C is a category, |C| denotes its objects and C°P is its opposite. We use
the symbol o to denote composition in diagrammatical order. This includes composition
of functors and natural transformations. For a general background in category theory see
[ML1], for instance.

3. The Algebra of Undirected Multigraphs

In this section we review some basic notions concerning multigraphs. Moreover, we intro-
duce the algebra of multigraphs and show that it is generated by its constants.
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An undirected multigraph is a pair G = (V, E) with V the set of vertices and E the
set of edges. An edge e € E connects two vertices vy,v; € V without having a direction.
The vertices v; and v, are then said to be the endpoints of e. Note that the case of V) = Vg
is permitted. In this case, e is said to be a loop at or around v;. In this paper, we consider
finite multigraphs only. Hence, both V and E are assumed to be finite in the sequel.

For a vertex v € V, we define the degree d(v) of v to be the number of occurrences
of v as an endpoint of an edge in E. Note that, in this definition of the degree of v, every
loop contributes 2 occurrences to the count. The vertex v is called isolated if d(v) = 0,
exterior if d(v) = 1 and interior otherwise. Let ext(G) be the set of exterior vertices of
G. An edge e is said to be an ezterior edge if one of its endpoints is exterior.

Let G1 = (W1, E1) and G2 = (V4,, E;) be two undirected multigraphs. They are
said to be isomorphic if ext(G;) = ext(G,) and there are bijections ¢ of V; onto V, and p
of Ey onto E; such that the restriction of ¢ to ext(G,) is the identity mapping and ¢ and
n satisfy the usual conditions for graph isomorphisms. Similarly, G; and G, are considered
disjoint if Vi N'V3 C ext(G1) Next(G2) and Ey N E, = 0.

Thus, isomorphic undirected multigraphs always have the same set of exterior ver-
tices. We can also think of the exterior vertices of an undirected multigraph G as being
labelled by distinct elements of a finite set A; in this case we would say that G is of sort
A. Then an isomorphism between two undirected multigraphs of the same sort would have
to preserve the labelling of the exterior vertices. In the sequel, when we say that G is of
sort A or labelled by A we assume without special mention that the labelling induces a
bijection of A onto ext(G).

Consider a set U of finite sets which is closed under the operation of symmetric
difference and contains the set {[n] | n € N}. It follows that the set Fin(N.. ) is the smallest
possible choice for U. We now define a U-sorted algebra M on undirected multigraphs as
follows.

(i) For thesort A € U, the underlying set M4 of M is the set of all isomorphism classes
of undirected multigraphs of sort A, that is, the set of all isomorphism classes of
those undirected multigraphs whose exterior vertices belong to A or, equivalently,
are labelled by the elements of A.

In the sequel, we simplify the terminology by identifying isomorphism classes of undirected
multigraphs with appropriately chosen representatives. Note that, by this convention, any
finite number of undirected multigraphs can be assumed to be mutually disjoint.

(ii) M is equipped with a binary operation “.” (or rather, a collection of binary opera-
tions) called composition such that

.l A{Al X A/-{Ag s ﬁ'/IA),eA?

for all Ay, A, € U. Intuitively, the composition is that of “pasting” two undirected
multigraphs together at the exterior vertices which they have in common. Formally,
let Gy = (V1,Ey) € My, and G, = (V3 E;) € My, be two undirected multigraphs.
Without loss of generality, we may assume that G, and G, are disjoint. The com-
posite Gy - G, is obtained using the following steps:

(1) Let L = (Vi UV,, E\ UE,).



(2) For any two vertices vy, v2 € (V1UV2)\(A1N A3) which are connected in L by
a path comnsisting only of exterior edges with endpoints in A; N A;, add a new
edge connecting v; and v,. Let L' be the resulting undirected multigraph.
(3) For each cycle in L' containing only vertices in A; N A,, add a new isolated
vertex. Let L"” be the resulting undirected multigraph.
Observe that a cycle considered in step (3) has no multiple edges and its length is
always even.
(4) In L", delete the vertices in A; N A, and all edges with endpoints in this set.
The resulting undirected multigraph is defined to be G, - G,.
For given sorts Ay, Ay, the restriction of the composition to M4, x M4, is denoted
by [A1, A2]. An example of the composition is provided in Figure 2.
(iii) M has the following infinite set of constants: 0 € My denoting the empty graph;
14 € M4 for each two-element set A; ny € M4 for each n € N and A € U with
I|A]l = n. The interpretation of the constants is shown in Figure 3.

Figure 2. Example showing the 4 steps of
the composition in M. The edges inserted in
step (2) are indicated as dotted lines. In this
example, step (3) does not introduce any new
vertices.

Note that the philosophy of defining the composite of two undirected multigraphs is
exactly the same as that followed in the definition of the usual flowchart scheme operations
of composition, sum (tupling), and feedback (iteration) (for example, see [Bl1], [Ba2]). In
fact, our aim was to define the algebra M (or rather its contraction as defined below) to
be the undirected and symmetric counterpart of the algebra of flowchart schemes.
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Proposition 3.1 The algebra M is generated by its constants.

Proof: Indeed, every multigraph G can be assembled from its interior vertices of degree
n 2> 2, each considered as an instance of the constant n, for a suitable A € U, and some
instances of the constants 14 using only composition, which in this case can be either
“parallel” or “sequential.” []

ay az

o

1{3,(,}3 n{al,...,an}:
.

b an  an-i

Figure 3. Interpretation of the constants of

M.

To illustrate the proof of Proposition 3.1 we indicate how two special undirected
multigraphs can be obtained, the undirected multigraph consisting of a single isolated
vertex and the one consisting of a single vertex with a loop around it. The former is
obtained as I{a,b} - 1{a,s); in this case, step 3 of the construction introduces the 1solated
vertex while step 4 removes all other vertices. The latter is given by 2{a,b} * 1{a,b}; here
step 2 introduces the loop around the interior vertex of 2{a,p} while step 4 removes all
other vertices and edges.

4. Indexed Families of Sets and M

In the remainder of this paper we investigate the basic properties of the algebra M of
undirected multigraphs in terms of category theory.

The main results of this section concern a rigorous treatment of the relabelling
of exterior vertices required to construct the composition of undirected multigraphs in
M. In particular, we give a back-and-forth translation of labels between I and the set
{[n] | n € N}. This issue is important, as depending on the situation the preferred label
set will change. A representation theorem is proved which affords the connection.

Recall that an indezed category C over an indez category Ind is a functor Ind°? —
Cat (see [Bul]). Given an index i € |Ind|, we write C; for the category Ci, and given
an index morphism o : ¢ — j, we write C, for the functor Co : Ci — Cj. We also
adopt from [Bul] the construction of flattening an indexed category by means of the
Grothendieck fibration [Grl]. For an indexed category C : Ind° — Cat, its flattening
Flat(C) is defined as follows.

o Objects: pairs (i,a) € [Ind| x |C;|.



o Morphisms: pairs (o, f) : (i,a) — (j,b) where o : i — j is a morphism in Ind and
f:a— Cubis a morphism in C;.

e Composition of morphisms: for morphisms (o, f) : (¢,a) — (j, b) and (0, g) : {J,0) —
(k,c) in Flat(C), let

(o,f)o{0,9) = (o0, foCqsg): (i,a) — (k,c).

In particular, note that, given any index category Ind, every functor C : Ind°® — Set
defines an indexed category—also denoted by C—in which C; is the set Ci considered as
a discrete category and, for an index morphism o : ¢ — j, C, is Co viewed as a functor
between the discrete categories C; and C;. Although it would seem natural, we do not
refer to such a functor as a “family of indexed sets over Ind.” Instead, we reserve this
term for covariant functors Ind — Set.

Definition 4.1 Let Ind be a category. An Ind-indezed family of sets is a functor C :
Ind — Set.

Thus, an Ind-indexed family of sets is an |Ind|-sorted family of sets in the usual
sense, equipped with some mappings between its members corresponding to the morphisms
in Ind. Although the indexed family of sets C is not an indexed category we nevertheless
use the notation C; and C, for Ct and Co as long as there is no risk of confusion.

Following the pattern of the first three examples in [Bul], we define the indexed
category of indexed algebras, and characterize the graph algebra M as a special object in
this category. We first introduce the indexed category

ISET : Cat®? — Cat

of indexed sets. The construction is analogous to that of the indexed category SSET in
[Bul], Example 1.
For a category S, define ISETg as the category [S — Set] of functors of S into
Set. Thus, ISETg can be considered as the category of all S-indexcd family of sets. For
a functor A : S — S/, the functor ISET, : ISETg — ISETSg is defined as follows.
o On objects: For X € |[ISETg|, that is, for a functor X : S’ — Set, let

ISETAX =Ao0X:S — Set.

e On morphisms: For a natural transformation 4 : X — Y between functors X,V €
[ISETs|, let
ISETpap=Aopu:AoX — AoY.

The construction of Flat(ISET) is left to the reader.

In a similar fashion, one defines the indexed category ISET™ of indexed pointed
sets. In the construction, one replaces the category Set by the category Set* of pointed
sets with point preserving mappings as morphisms (see [ML1]).

In this paper, the follwing two index categories U and N are of particular interest.

e Given a set U as in section 3, the category U has U as its set of objects. The mor-
phisms are the bijections between sets in U with the identities and the composition
defined as usual.



o The category N has N as its set of objects*. The morphisms are the n-ary per-
mutations for each n € N. Again the identities and the composition are defined as
usual.

Given a family
U= {ha:A—][|A]]| A€ U}

of bijections, we can define a functor ¥ : U — N in such a way that
VA=|A| and ¥a=1y;'oaoyp
holds for every A,B € U and every a: A > BinU. Ifa: A — B and 8: B — C, then

\Pao\Pﬂ=¢Zloao¢Bo¢§10ﬁo¢c
=y o(aop)oc = Tlaof).

This shows that ¥ is indeed a functor.

The carrier of the algebra M of undirected multigraphs is a family of sets indexed
by U. Hence, M can be considered as a functor M : U — Set as follows: With each
A € U = |U|, M associates the set M, of undirected multigraphs whose exterior vertices
are labelled by A. With every morphism a : A — B of U, M associates the bijection
My : M4 — Mp defined as the relabelling of the exterior vertices of undirected multigraphs
according to a.

The restriction of U to the objects {[n] | n € N} is isomorphic with N. Therefore,
one can define the family of N-indexed sets {M[n) | n € N}, that is, the functor ConM :
N — Set. This functor is referred to as the contraction of M. We generalize this idea to
obtain a contracting functor Con : ISETy — ISETy, which maps each object (functor)
and each morphism (natural transformation) to its restriction to N, that is, to the set
{[n] | » € N}). On the other hand, for each functor ¥ as defined above, we have the
functor ISETy : ISETN — ISETy in the opposite direction.

Theorem 4.2 For every family ¥ = {14 : A — [||A||]] | A € U} of bijections one has

id{U—»Set] = ConoISETyg
and

id[N-aSet] = ISETg o Con

using appropriate natural isomorphisms.

* As a matter of notational convenience, we frequently identify n € IN| = N with
[n] € |U]. Thus N can be considered as a subcategory of U.
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(UF)A = Fy,

FA (ISET ¢ (Con F)) A = F[||Al]
Fao (ISET ¢(Con F))a
ISET ¢(Con F))B = Fi||B
FB T (ISET #(ConF)B = FIB]]

Figure 4. Diagram for the firsts part of the
proof of Theorem 4.2.

Proof: For the first statement, we need to find a natural isomorphism u : id[U-»Set] —

Con o ISETy. For this purpose, we define uF : F' — ISETg(ConF) for each functor
F : U — Set as the second component of a suitable morphism

(¥,uF): (U, F) — (N,ConF)
in the flattened category Flat(ISET). By definition,
ISET¢(ConF) = ¥ o ConF.
Hence, for every A € U,
(ISET¢(ConF))A = (ConF)¥A = (ConF)|A| = F[||A]|].

Therefore, we can define (uF)A to be Fy4. Now consider a morphism o : A — B in U.
Then

(ISETg(ConF))a = (ConF)¥a
= (ConF)(y);l oaotp)= F(z,/)zl owaoyg)
=F1,b;1 o Fao Fiyp.
The diagram corresponding to these equations is given in Figure 4. This proves that u is
a natural isomorphism.
For the second part, let ¥g = {¢% : A — [||A||]] | A € U} be a family of bijections
subject to the condition that 1Y is the identical n-ary permutation whenever A = [n] for

some n € N. Essentially, ISETy, affords an embedding of ISETyx in ISETy. As an
immediate consequence of the definitions one has

id[N—-»Set} = ISET\yO o Con.

Now let ¥ = {¢p4 : A — [||A||]] | A € U} be an arbitrary family of bijections. One verifies

that
id{N—ﬁSet} = ISET\I;O o Con

= ISETg, 0 Cono ISETg 0 Con = ISETy o Con
using the natural isomorphism v = ISETg o po Con. []
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By Theorem 4.2, the functor ISETg is a kind of inverse of the contraction functor
Con. From this point of view it is a bit inconvenient that the “inverse” would vary with
the choice of the functor ¥. Indeed, occasionally we would prefer to have a “canonical
inverse” Con™!. Such a functor Con™! is constructed next. As a preparation, we define
a the family Ord : U — Set of U-indexed sets as follows.

o On objects: For A € U, Ordg = OrdA is the set of all bijections of [||A||]] onto A.
e On morphisms: For a morphism a« : A — B in U, Ord, : Ord4 — Ordpg is the
bijection which maps ¢ € Ordy to ¢ o a.
Obviously, Ord is a functor. It can be equipped with the multigraph operations [A, B]
as follows. Consider A,B € U with [|A|| = n, ||B|| = m, and ||[AN B|| = ¢, and let
¢ € Ord4 and x € Ordp. Enumerate the elements of ¢~™!1(A \ B) and x~}(B \ A) as
Lh<lh<...<lh_gand ky < kg <...< kp_q, respectively. Now define the permutation
(¢[A, Blx) of [n + m —2q] by

ifi € [n—gq

. (li)>
(el4, Bl)(i) = {i(kj), if it =n— g+ j for some j € [m — ¢|.

Consider two morphisms a: A — A’ and §: B — B’ in U. The morphisms « and
[ are said to be compatible if, for alla € A and b € B,

a(a) =p(b) <> a=be ANB.
For compatible morphisms « and 3, we defnea©: A6 B — A'©6 B’ by

_Ja(z), fze A
(a0 pf)(z) = {g(x), ifz € B.

Clearly, a © 8 is a morphism in U.

One verifies by some computation that this composition obeys certain natural “re-
labelling rules.” It is shown later, that these rules also obtain in M.

Proposition 4.3 Let o : A — A’ and : B — B’ be compatible morphisms in U. The
diagram

(4, B]

Ord s x Ordg —————>— Ord 50

Ordy x Ord,gi lOrdagg

Ol‘dAt X OrdBf MOI‘C{AI;@B;
[, B']

commutes.
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We now turn to defining Con™'. For any N-indexed family of sets G : N — Set,
we consider the functor Con™'G : U — Set given as follows.
o On objects: For A € U let (Con™'G)A be the quotient of G[||Al]] x Ords with
respect to the equivalence relation ~ given by

(a,9) ~ (bx) &= b=G(pox ")(a).

For an interpretation of this equivalence relation, an undirected multigraph of sort
A can be regarded as being of sort [||A]] together with an ordering of its exterior
vertices. In this sense, two multigraphs are equivalent if and only if they differ only
in the ordering of their exterior vertices.
e On morphisms: For a morphism o : A — B in U, let (Con™'G)a be the bijection
of (Con"'G)A onto (Con™'G)B which maps the equivalence class of (a,¢) onto
the equivalence class of (a,¢ 0 a).
The correctness of this definition is easily verified. Moreover, one extends Con™! to a
functor in the obvious fashion.
We now establish the connection to our earlier results. Given a family of bijections
U = {a: A — [|]A]]] | A € U}, one obtains a natural isomorphism between ISET¢G
and Con™'G as follows.
e For A € U, represent the equivalence classes in (Con"'G)A by pairs of the form
(a, 11);1). Note that every equivalence class contains a pair of this form; moreover,
this pair is actually unique as (a, ;") ~ (b,%;") implies b = G(p3' oa)(a) = a.
In this way,
(ISET%G)A = G[||Al]] = (Con™" G)A.

To prove that 2 is a natural transformation, let & : A — B be a morphism in U. Then,
for all a € G[||Al|],

(ISET¢G)a)(a) = G(¢" 0 a0 9p)(a) € G[|| BY]
and
((Con"lG)a)(a, w;l) ~ (a, ybzl oa)~ (G(d)zl oaopg)a), zbgl).

This construction is natural in G. Hence, it yields a natural isomorphism between
ISET¢ and Con™!. Therefore, in Theorem 4.2 we can replace ISETg by Con™!. De-
noting Con™'G by G[Ord], we have the following representation theorem for families of
U-indexed sets.

Theorem 4.4 Every family F of U-indezed sets 1s naturally isomorphic to G[Ord] for a
suitable family G of N-indezed sets.

Proof: Put G = ConF. []
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5. Indexed Algebraic Signatures and M

In this section we introduce the indexed category of indexed algebraic signatures ISIG. In
order to deal with the algebra M of undirected multigraphs in this setting, we then define
the U-indexed algebraic signature GR and the N-indexed algebraic signature Gr. The
latter is obtained as a kind of contraction of the former. The main result of this section
describes the connection between these two functors.

Definition 5.1 Let S be a category. Its rank category ST is the coproduct of the categories
S,S2% ... in Cat. The objects of ST are tuples of the form

(S1,-.+, 8} Sn41)

with s; € |S| for i = 1,...,n 4+ 1. The morphisms

(815 -y SniSnt1) = (S1y-- oy Sh;Sney)

are tuples
<C€1, oo )an;an-{»l)

of morphisms a; : s; — s in S for ¢ € [n + 1]. The objects of S* are called ranks.’

Definition 5.2 Let S be a category. An S-indezed algebraic signature is a functor T :
St — Set”.

Let ¥ be an S-indexed algebraic signature. Intuitively, with each rank

(31)" -»3n§3n+1)

the functor ¥ associates the set of n-ary operation symbols of this rank, that is, the
elements of £(s1,...,8n;8n+1) which are different from the point *. We interpret the
morphisms of ST as rank relabellings. Suppose that { is an n-ary operation symbol of
rank r = (S1,...,8n;8n+1), that is, & € Er\ {*} and that ¢ : r — 7’ is a morphism in
S*. Then the functor ¥ specifies whether the relabelling according to p is permitted or
not: p is said to be allowable or permitted for ¢ in ¥ if and only if (£9)0 # *. We use the
notation o : ¢ +— ' to mean that g is allowable for ¢ and that (£p)¢ = ¢'. In this case
we would also say that the replacement ¢ + &' is permitted by g in T.

In a manner simmilar to [Bul], we use the extension of the map S — St to a
functor (.)* : Cat — Cat, to define the indexzed category of indezed algebraic signatures
as

ISIG = (()*)°? o ISET* : Cat°® — Cat.

Flattening ISIG results the category Flat(ISIG), whose objects are pairs (S, L),
where S is a category and T is a functor St — Set*. A morphism from (S, T) to (S', ')
is a pair (A,w), where A : S — S is an index renaming functor and w : £ — ISIGA X'

5 To keep the notation simple in the case of ranks of the form (; s) for s € S, we often
write s instead.
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is a natural transformation. Note that the operation symbols of rank (s1,...,8n;Sn41) of
ISIGAY' are precisely the operation symbols of ! whose rank is (Asy,...,Asn; Aspt1).
A relabelling o is permitted in ISIGA X' for such an operation symbol if and only if Ag is
permitted for it in X'.

The natural transformation w : & — ISIGA X' is said to be non-degenerate if for no
r € |St]| the arrow wr sends any operation symbol to *. Let ISig denote the subcategory
of Flat(ISIG) in which the second components of the morphisms are non-degenerate.
Clearly, the composition of such morphisms is again of this kind which proves that ISig is
indeed a subcategory.

We now consider this construction for our special index categories U and N. First
we define a U-indexed algebraic signature GR as follows.

e Operation symbols: For each triple r = (4, B;C) € [U*| = U®, GR(r) contains an
operation symbol [4, B] of rank r if and only if C = A© B.

o Relabelling rules: A rank relabelling (a,8;7) : (A, B;A© B) — (A',B'; A' © B')is
permitted for [A, B] and yields [A', B'] if and only if a and 3 are compatible and
y=a06p.

e Constants: There is a unique constant 0 of rank @, that is, of rank (;0). The
relabelling idy is permitted for 0 by definition.

For each two-element set A € U, there are two constants 14 and 24 of rank
A. Every relabelling a : A — A’ is permitted resulting in 14+ and 24, respectively.
For each n-element set A € U, n > 3, there is unique constant n4 of rank A.
Every relabelling « : A — A' is permitted resulting in n 4.
Note that GR is the signature of our graph algebra M, enriched with the natural relabelling
rules. It is easy to see that these rules make GR a functor Ut — Set”.
Next we define an N-indexed algebraic signature Gr by “contracting” the signature
GR.

o Operation symbols: Let r = (n,m;n + m — 2¢) € N* with ¢ < min(n,m). Then
Gr(r) consists of the operation symbols [r, {] with 7 and ¢ satisfying the following
conditions:

— 7 is a bijection between sets, w : z — y, where z and y are subsets of [n] and
[m], respectively, with ||z|| = |ly]| = ¢.
~ ¢ is a permutation of [n + m — 2q].
Before defining the relabelling rules and the constants, we explain the intended interpre-
tation of the operation symbols.
Consider [r,£] € Gr(r) where r = (n,m;n + m — 2q) with ¢ < min(n, m) and
7:z — y. Let ¢, : ¢ — [q] and ¢y : y — [g] be bijections such that oz is monotonic
and 7 = gz 0,1 Let ¢ 1 [n]\z — [n — q] and ¢}, : [m]\ y — [m — g] be the unique
monotonic bijections®. Let A = [¢] + [n — ¢] and B = [g] + [m — ¢] be “new” sets, that
is, sets such that neither they themselves nor any of their non-empty subsets is in U. Let
o4 =wr+ ¢, [n] = A, and pp = @y + ¢}, : [m] — B. The situation is illustrated in
Figure 3. We extend U by adding A, B, and A © B as new objects and by adding all
necessary morphisms. Let U’ be this extension of U. GR has a unique extension to U’

6 Strictly speaking, one would have to use an isomorphic copy of [m — ¢] in order to
cnsure that AN B = [q] for the sets constructed in the sequel.

14



Finally, let ¢ a0p : [n+m—2q] — AOB be the inverse of the bijection” (idpn— gy +id[m —q)) o€.
Note that this construction provides a one-to-one correspondence between the operation
symbols [r, €] and the triples (p4,98,9408). Now, the operation symbol [r,£] can be
interpreted as an operation on undirected multigraphs G € M) and H € M|, as follows.
First, relabel G and H according to ¢4 and ¢ p to obtain graphs G' € M4 and H' € Mp.
Next, compute G'[A,B]H' in M as if A and B were in U. Finally, relabel the result
according to cp:;le g+ The correctness of the resulting labelling is stated in the following
lemma.

Lemma 5.3 £ = (¢4[4,Bles) o 0155
Proof: By the definition of [4, B] in Ord one has
(palA, Blpp)o (-id[n~—q] + id[m—q}) = jd[m+n—2q]~

Given the definition of ¢ 4gp, this implies the statement of the lemma. []

> »
>

- ol [m—q

[n] [m]

Figure 5. [llustration of ¢., ¢y, ¢}, and ¢,
for the interpretation of the operation symbol

[, &].

We now continue the definition of the N-indexed algebraic signature Gr.
o Relabelling rules: Let

(0, B;9) : (n,min +m = 2g) = {n, m;n + m — 2q)

be a morphism in N®, that is, a rank relabelling. Let [r,£] and [r', ¢'] be operation
symbols of rank (n, m;n+ m — 2¢). In order to determine whether the replacement

T To be exact, idy_q + idim—q) : [0 — q] + [m = ] — [n + m — 2q] here, that is, the
object [n — q] + [m — ¢] is identified with [n + m — 2¢].
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[x,€] — [x', €] is permitted by (a, ;) in Gr we again look “back” into GR. Again
consider the new objects A, B, and A © B introduced above for [r,€]. In the
same manner, let A', B', and A’ © B’ be new objects introduced for [7',¢']. Let
(0a,¢B,9a0p) and (pa, 0B, paep) be the triples corresponding to [, £] and
(7', &'], respectively, as described above. The permutations «, # and vy determine
the bijections a* : A — A', f*: B — B',and v* : A© B — A' © B’ for which

@AOa*zaO@A'a @Boﬂﬁzﬂo‘pB’?

and
YAaeBOY =7Yopaon

holds. The replacement [r,£] = [/, £'] is permitted by (a, #;7) in Gr if and only
if (a*, *;~*) is allowable for [A, B] in GR, that is, if and only if a* and 3* are
compatible and v* = a* © B*. It is easy to see that, when the replacement is
permitted, (e, 8;7) and [r, €] together determine [’, £'] uniquely; in this case, one
defines (Gr{a, B;v))[r, €] = [, €']. Otherwise, (Gr{a, 5; W), €] = *. Clearly, this
defines Gr{a, 8;7) as a morphism in Set™.
e Constants: There is a unique constant 0 of rank 0. The relabelling idy is the only
one permitted for 0 yielding 0.
There are two constants 1 and 2 of rank 2. Every relabelling a : 2 — 2 is
permitted for these yielding 1 and 2, respectively.
For every n € N, n > 3, there is a unique constant n. For n, every relabelling
a : n — n is permitted yielding n again.
It is clear that relabellings with the identity morphisms have no effect and the replacement
rules are “transitive”, that is, Gris indeed a functor.
In the sequel, we write Ar ¢, Br¢, Ap ¢, and By ¢ for the new sets A, B, A', and
B' introduced above.
As in Section 4, consider again a family ¥ = {4 : 4 — [||A]|] | A € U} of bijections
and the functor ¥ : U — N determined by ¥. We establish a morphism

(¥,w) : (U,GR) — (N, Gr)

in ISig by defining the natural transformation w: GR — ISIG¢Gr as follows
e For each triple r = (4, B; A© B) € U?, the mapping wr : GR(r) — (ISIG¢Gr)(r)
is defined by
wr([4, B]) = [r,¢]

where
== @i’;l 0 ‘Ang op
is the (middle) restriction of z;’)gl opg to AN B and
€= (3[4, Blvg') o Yass.

e For each A € U, let w(; A)(na) =n.
For other ranks r, wr is the unique morphism {*} ~ (ISIG¢ GR)(r) in Set".
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Lemma 5.4 Letr = (A,B;A© B) € U® and r' = (A',B"; A' © B') € U® be such that
(wr)([4, B]) = (wr')([4", B']) = [r, ]
and leta:A— A", f:B—-B',andvy: A6 B - A' © B' be the morphisms defined by
Ya=aoyy Yp=Poyp and Yagp=7v°Y%aes,

that is, Wa, WP and W~ are the identity morphisms. Then vy = a 6 3.

Proof: By the definition of 7 and the assumption one has
o= ip;l o |4npo¥B = lb;} o |ginp 0 ¥Br-

Therefore, a and 3 are compatible. By the definition of ¢ and the assumption one has

€= (¥5'[A, Blyg') o Yaen
= (¥1'[4, Bl¢5') oyoYaen
and also, using Proposition 4.3,
£ = (43[4, B'lYp!) oaen
= Ord(a © B)(¥3'[4, Bl¢5') o Yaep
= ($1'[4, Blvg') o (a8 B) o paep:.

This impliesy=a 6 .

Theorem 5.5 Letr = (A,B;A6 B) € U® and r' = (A',B'; A' © B') € U? be arbitrary
ranks, and let (a, B;7) : 1 — ' be a rank relabelling in GR. For any family U = {14 :
A—[||A|l] | A € U} of bijections one has

(a,B;7) : [4,B]— [A', B']
in GR if and only if
(Ya,¥3; ¥y) : wr([A, B]) — wr'([4', B'))

in Gr.

Proof: Let wr([A,B]) = [r,£] and wr'([A",B']) = [#',¢']. Let ||A|| = n, ||B]]| = m, and
|AN Bl = q. Weextend the category U by adding new objects Ar ¢, Br¢, and Az ¢©Br g,
which are isomorphic copies of the sets [¢] + [n — ¢, [¢] + [m — ¢] and [n — q] 4+ [m — ¢] as
constructed above, respectively, and the necessary morphisms. Let U’ denote the extended
category. Note that [[A || = [|All, |Brell = B, |Are © Brell = |40 B||. We also
extend ¥ to U’ by letting

-1 : 1 1
@be,{ =¥a VYBee = “fgfj,,!p and lfbx‘iw,e@gr,e = QPA,JQB,'{'

N
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Lemma 5.3 shows that
w<Aw,€: B?r,f; Aﬂ',f &} Bw,ﬁ)((Aw,ﬁ’ Brr,éD = {Ti’, 6}

Let are : Ang — A, Bre: Bre — B and Yrg : Are © Brg > A© B be the
bijections for which

Wax’e = }.dn, ‘I’ﬁq{ye = .idm, a.nd ‘P7W15 = idn—[-m...?q.

By Lemma 5.4, Yr ¢ = Qe O Pre.

In a similar fashion we now extend U’ by adding further new objects Ax/ ¢, Br ¢,
and An g © By ¢ corresponding to [r',£'] and by extending GR and .

It follows that

(o, 8;7)
is allowable for [A, B] if and only if

(a’*a B*; 'Y*) = <aw,£ oao a;ll,gv y ﬂw,s ofo ﬂ;ll,gl§ T, £ ©YO "/;Il,fv)

is allowable for [Ar ¢, Br¢]. By definition, (a*, 8*;v*) is allowable for [Ar ¢, Br¢] if and
only if
(Ta®, WB™; Wy") : [7, €] = [, €]

in Gr. But,
Ya* = YoreoPao \Ifa;,{é, = Pa

and, similarly, ¥8* = ¥ and ¥~v* = ¥~. []

Corollary 5.6 w: GR — ISIGg¢Gr is a non-degenerate natural embedding.

Proof: w is natural by Theorem 5.5. It is also an embedding, because GR(r) always
contains at most one operation symbol, except in the trivial case r = (; A) when A is a
two element set. []

6. Indexed Algebras and M

In this chapter, we perform the final step of our construction. We consider GR-algebras—
U-indexed algebras—and obtain a representation theorem which states that every GR-
algebra is naturally isomorphic with a GR-algebra constructed from a Gr-algebra by the
functor Con™'. Again, the algebra M of undirected multigraphs is a special case.
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Definition 6.1 Let ¥ be an S-indexed algebraic signature. A T-algebra is an S-indexed
family of sets A : S — Set, called the carrier of the algebra, which is equipped with an op-
eration ¢ 4 : Asy X -+ X As, — Aspyq for each operation symbol ¢ in E(sy,..., 8] 8n41)
satisfying the following condition. For any two objects r = (s1,...,8n;8n41), ¥ =
(81,...y8h; Shyy) and any morphism a = (ay,. .., n;an41) in ST, if & and ¢’ are opera-
tion symbols in Tr and Xr', respectively, and

a: o O

in ¥ then the diagram

Asy X X Asp ———— = Aspy

Aag X -+ X Aan l lAcxn.H

¢

! ! !
Asy X - X Asy, - As. g

commutes.

Definition 6.2 Let A and B be Z-algebras. A ZL-homomorphism from A into B is a
natural transformation h : A — B which, at the same time, is a homomorphism of [S]-
sorted algebras.

Let IALG(X) denote the category of T-algebras. Every morphism (A,w) : (S, Z) —
S’, %) in ISig defines a functor
g

| wy : TALG(Z') - IALG(Z)

as follows.
o On objects: Let A’ be a ¥'-algebra. We define the T-algebra 4 = A4’
— For all objects s € |S|, one has As = A'(As).
~ For all morphisms « in S, one has Aa = 4'(Aa).
— Forallr = (s1,...,34; 3n41) € [ST| and ¢ € Tr\ {*}, one has ¢4 = (W) 4/
(note that w is non-degenerate).
¢ On morphisms: _l (A Acts as in ISET, forgetting the algebraic structure (see also
[Bul], [Bu2)).
Thus we have defined the indexed category

'(A,w) ’

TALG : ISig°? — Cat

of indexed algebras. Flattening IALG yields the category Flat(IALG) whose objects are
pairs (X, A), where A is a Y-algebra. A morphism from (Z, A) to (¥', A") is a signature

morphism (A,w) : (S, E) — (S',T') together with a £-homomorphism h: A — A’ *(A )
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Remark 6.3 The algebra M of undirected multigraphs is a GR-algebra. Its carrier is the
functor M : U — Set. The operations satisfy the compatibility conditions of Definition 6.1.

Remark 6.4 Let GR' denote the restriction of the signature GR to its binary operation
symbols. The functor Ord : U — Set equipped with the operations [A, B] is a GR'-algebra

by Proposition 4.9.

In the rest of the paper we show that every GR-algebra can be contracted to a
Gr-algebra in a natural way.

Definition 6.5 Let F : U — Set be an arbitrary GR-algebra. We introduce the Gr-
operations on ConF : N — Set in the following way.
e Consider a € (ConF),, b € (ConF)n, and [r,€] € Gr{n,m;n 4+ m — 2q). Let
¢4 [n] = A and ¢p : [m] — B be bijections satisfying # = ¢4 0 |4np © 05
Define a[r, £]b by

a[r, b = F((al4, Bles) ™" 0 E)((Fea)(a)lA, BI(Fep)(b))-
¢ Any constant of rank n in ConF' is the same as the corresponding one of rank [n]
in F.
Theorem 6.6 In Definition 6.5, a[r,£]b does not depend on the choice of o4 and ¢p.

Rather than prove this claim directly, we formulate an equivalent statement and
prove that one as a consequence of Lemma 5.4. To do so, we introduce the following
alternative definition of a[r, £b.

Definition 6.7 Let ¥ = {¢4 : A — [||A]]] | A € U} be an arbitrary family of bijections,
and suppose that A, B, and A& B are such that w(A,B; A® B) = [r,£] where w : GR —
ISIGy Gr is the natural embedding justified by Theorem 5.5. For a € F[n] and b € F[m],
define a[r, €]b by

alr, b = (Fpaen)(F 31 )(a)[4, BI(Fyp")(b)-

Theorem 6.8 In Definition 6.7, a[r,£]b does not depend on the choice of the objects A
and B.

Proof: Suppose that also w(A', B'; A'© B') = (r,€]. Let a: A — A", B: B — B', and
~: A6 B — A'6 B’ be those bijections for which ¥a, ¥, and U are the identities. By
Lemma 5.4, v = a © B. Since F is a GR-algebra,

(Fy i) (@A, BYFeph)(b) = Flad B)(F¥3" ) (a)l4, BIFy5")(b).
On the other hand,
Fipacp = FyoFaep = Fla® B)o Faop .
Thus,
(Fibaon)(FE39)(a)[A, BI(F¥5")(b) = (FYaes ) (Fix! ) (a)[A' B (Fipp )(b)).
O



Corollary 6.9 The definitions of a[m,£]b in 6.5 and 6.7are equivalent.

Proof: Choose ¢4 = (,o;l, Ypg = gagl and Y4B = ‘leeB in Definition 6.5. []

Corollary 6.10 ConF is a Gr-algebra, and Con : IALG(GR) — IALG(GT) is a functor.

Proof: The first statement follows immediately from Corollary 6.9 and Theorem 5.5. The
sccond statement is then obvious. [

Note that the main point of the above three simple proofs is that we derive a non-
obvious semantic feature of Gr-algebras from the corresponding obvious semantic feature
of GR-algebras and a purely syntactic connection between their signatures.

Corollary 6.11 ConM is a Gr-algebra.

Let n,m,q € N, ¢ < min(n, m), and consider the sets Ar¢ = [¢g] + [n — g], Bre =
[4) + [m — ¢] and the mappings a4, , : [n] = Arg, ¢B,, : [n] = Brg as defined in
Section 5. Identifying [¢]+[n—¢] with [n] and [q]+ [m — ¢] with [m] yields two permutations
Ay, i [n]— [n] and @B [m] — [m].

Corollary 6.12 In G = ConF one has

afm,£]b = (GE)(GPa,, )(a)lidg, idnsm—24)(GEB, ( )(b)).
Proof: One observes that the replacement

[7"; 5] = [idq: idn+m—2q]

is permitted by
(ParerPBae; €71

O

Corollary 6.11 allows us to characterize [r,¢] as an operation which can be derived
from the “basic” one [idy, idn4+m—24], just as in the case of undirected multigraphs.

Theorem 6.13 For every family ¥ = {14 : A — [||A|]] | A € U} of bijections one has

idIALG(GR) = Cono IALG(\I,’w)
and

idIALG(G‘r) = IALG(QM) o Con

using appropriate natural isomorphisms.

Proof: One verifies that the natural isomorphisms u and v defined in the proof of The-
orem 4.2 are appropriate. One needs to show that for every GR-algebra F, uF is a
G R-homomorphism; this is immediate by 6.7. Using the proof of Theorem 4.2, the corre-
sponding statement for v is then a consequence. [
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Finally, as in Section 4, we can eliminate the index functor ¥ and replace the
functor IALG () by a “canonical inverse” Con~! of Con. For this purpose, we again
consider the functor Con™! : ISET(N) — ISET(U). It can be turned into a functor
IALG(Gr) — TALG(GR) as follows. Let G be a Gr-algebra. Then we define a GR-
algebra on Con™!'G:

e Consider A, B € U with ||A]| = n, ||B]| = m, and

|A N B|| = q. We need to define
[4,B]: (Con™'G)A x (Con™'G)B — (Con™'G)(A © B).

Given a € Gn, b€ Gm, pa:[n] — A, ¢p:[m] — B, let
(a,04)[A, B)(b,¢p)~ = (a[r, idntm—24]b; (4[4, Blop))™

where

-1
T= @40 lAnBO‘PB

and where ~ denotes equivalence classes.
e For any constant n in G and appropriate A € U and @4, let n4 be the equivalence

class (n,04)~.
Of course, one has to verify, that these definitions are correct. For [A, B], and using the
above notation, one obtains

(a,94)[4, B(b,oB) ~ (a',¢4)[4, BI(¥', ¢'5)

if
(ay(PA) ~ (a'v(P,A) and (b’ (PB) ~ (b’a(P,B)

using 6.5. For n4, note that (n,¢p4) ~ (n,¢’) for all o4 and ¢'4.

In this way, the natural isomorphism ISET¢G = Con~!G of indexed families of
sets induces a natural isomorphism IALG g G = Con~!G of indexed algebras. This
shows that TALG g . can be replaced by Con™! in Theorem 6.13. Denoting the algebra

Con™!G by G[Ord], we obtain a representation theorem for U-indexed algebras which
corresponds to Theorem 4.4, that is the representation theorem for U-indexed families of
sets.

Theorem 6.14 Every GR-algebra F is naturally isomorphic with G[Ord] for a suitable
Gr-algebra G.
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