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Abstract: Graphs with labeled extrenal vertices, called open graphs, are introduced
to model the switching behavior of molecules. Open graphs are given the structure of an |
algebra sorted by the set of all finite subsets of the alphabet used for labeling the external
vertices. The constants of this algebra are the star graphs and the only operation is
composition, which practically merges two graphs along their external vertices wearing
the same label. It is shown that every open graph can be built up from the constant
graphs using composition. Composition is introduced as a different operation over the
collection of open graphs having a perfect internal matching. The resulting structure is
called the Gallai-Edmonds algebra and is specified as a homomorphic image of the algebra

of open graphs.

Introduction

For more than a decade chemists have been trying to develop a molecular computer in
which most of the switching is done by molecular devices. The phenomenon “molecular
switching” has been suggested as an extrapolation of the dominant trend in semiconductor
technology to reduce the size of electronic switching elements in computers down to a

physically realizable minimum.

“On leave from Department of Computer Science, A. J6zsef University, Szeged, 6720, Hungary
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It has been known for a long time that certain properties of a chemical compound
can be studied effectively through the topological model of the molecule. This model is
simply the underlying undirected graph of the molecule in which atoms are represented
by vertices and chemical bonds by edges. The purpose of this paper is to show that the
switching behavior of a molecule, too, is a property that can be successfully pursued by

. studying this simple model.

Many organic compounds, e.g. most hydrocarbons, are such that in their molecules
one can recognize an alternating pattern of single and double bonds. Patterns of this
kind are known as conjugated systems in organic chemistry, and the graphs of molecules
possessing conjugated systems are called Hiickel graphs. For simplicity, let us restrict
our discussion to hydrocarbons, i.e. let us assume that our molecules consist of carbon
and hydrogen atoms only. Then the “perfect” molecules, in which every atom is a link
in an appropriate conjugated system, are those having the property that every carbon
atom has a unique neighbor to which it is connected by a double bond. Strictly speaking,
hydrogen atoms are never part of a conjugated system, because it is implicitly understood
by the chemical description of such systems that the process of switching all the bonds
within the system to the opposite results in another comformational state of the molecule.
Hydrogen atoms, in contrast, are connected to their unique neighbor by a constant single
bond. Bearing this in mind, we shall ignore hydrogen atoms in Hiickel graphs. Then, in
terms of graph theory, the Hiickel graph of a perfect molecule is a graph having a perfect
matching.

A relevant property of Hiickel graphs is that, after suppressing the irrelevant hydrogen
atoms in them, they will generally not contain external vertices, that is, vertices with
degree one. This is a disadvantage, since the molecules will not have an “interface”
by which they could be observed or manipulated from the outside world. There is no
reason to stick back the hydrogen atoms as external vertices, because these atoms would
only represent “dead ends” in the molecule. However, if we do not have a reasonable
interface, then the phenomena that can be studied on Hickel graphs are confined to
those of resonance theory as described in [13]. A suitable interface can be provided for a
molecule by breaking the homogeneous hydrocarbon structure at its border and inserting

some “alien” atoms or molecules that can serve as electron donors or acceptors for the
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internal part of the molecule. For some examples, the reader is referred to [6].

The abstract model of a hydrocarbon molecule supplied with an interface is a soliton
graph. As introduced in [7], a soliton graph is a finite undirected graph G without loops
and multiple edges such that the degree of every vertex in G is at most 3. A state of a
soliton graph G is a matching M in G which covers all the internal vertices of G. We
wish to emphasize that M need not be a perfect matching, since the external vertices of
G need not be covered by M. Any of the external vertices, however, might be covered by
an edge in M which covers an internal vertex in the first instance. Such a matching M is
called a perfect internal matching.

There is one subtlety regarding the representation of the interface by external vertices
in soliton graphs which is not captured by the above description. This is the labeling of
the external vertices. In fact, we cannot consider two soliton graphs to be isomorphic if
they are just isomorphic in the usual graph theoretic sense. We have to provide a unique
label for each external vertex and require that an isomorphism between two soliton graphs
preserves the labeling.

The labeling of the external vertices provides another source of benefits, too. Given
two disjoint graphs with their external vertices being labeled, we can define the composite
of the two graphs by gluing them together at those external vertices that have the same
label. We shall see in Sections 3 and 4 that the operation of composition, together with
the star graphs as constants, allows an algebraic treatment for general graphs and also
for graphs having a perfect internal matching. A similar algebraic method has been
introduced in [4] to study graph rewritings of finite directed hypergraphs. Our graph
algebra is also closely related to flowchart scheme algebras, see e.g. [3, 5, 9].

The switching behavior of ‘molecules is modeled by soliton automata. The underlying
object of a soliton automaton is a perfect soliton graph, that is, a soliton graph G which has
at least one state (i.e. perfect internal matching). The states of the automaton are those of
the graph G, and the input symbols are pairs of external vertices of G. A transition of the
automaton in a current state is induced by propagating a particle (electron, soliton) from
the first vertex of the input to the second vertex along an alternating walk. The new state
is obtained by switching all the bonds to the opposite throughout the walk in a dynamic

way, so that each bond will change immediately after traversing the corresponding edge.



For more details, see [7].

This paper is organized as follows. In Section 2 we provide a short summary of
the notation and terminology used, and restate the Gallai-Edmonds Structure Theorem
for maximum internal matchings in general graphs. Section 3 describes the many-sorted
algebra G of graphs with labeled external vertices. It also contains a discussion about how
to choose the sorting set of this algebra in an optimal way. The main result of the paper
is the construction of the Gallai-Edmonds algebra & of graphs having a perfect internal
matching. The algebra S is characterized as a homomorphic image of G. These results
are contained in Section 4. Finally, in Section 5, we return to our motivating problem and
discuss the relationship between the syntax and semantics of soliton automata in terms

of equational axioms.

2. Preliminaries

In this section we review some of the basic notions concerning graphs. Our notation and
terminology will be compatible with that of [13] except that the words “point” and “line”
will be replaced by “vertex” and “edge”, respectively.

By a graph we mean a finite undirected graph in the most general sense, i.e. with
multiple edges and loops allowed. The empty graph, which has no vertices and no edges,
will also be allowed. For a graph G, V(G) and E(G) will denote the set of vertices and
the set of edges of G, respectively. An edge e € E(G) connects two vertices vy, v; € V(G),
which are said to be adjacent in G. The vertices v, and v, are called the endpoints of e,
and we say that e is incident with v, and v,. If v; = vy, then e is called a loop around v;.

The degree of a vertex v in graph G is the number of occurrences of v as an endpoint
of some edge in E(G). According to this definition, every loop around v contributes two
occurrences to the count. The vertex v is called ezternal if its degree is one, internal if
its degree is greater than one and isolated otherwise. An edge e € E(G) is said to be an
external edge if one of its endpoints is an external vertex. Internal edges are those that are
not external. The sets of external and internal vertices of G will be denoted by Ext(G)
and Int(G), respectively.

A matching M of graph G is a subset of E(G) such that no vertex of G occurs more



than once as an endpoint of some edge in M. Again, it is understood that loops are not
allowed to participate in M. The endpoints of the edges contained in M are said to be
covered by M. A marimum matching is one that covers a maximum number of vertices.
A matching is perfect if it covers all of V(G). The terms mazimum internal matching and
perfect internal matching are defined analogously, with the understanding that only the
vertices of Int(G) are required to be covered by these matchings. The number of vertices
(internal vertices) covered by a maximum matching (maximum internal matching) of G
will be denoted by 2v(G) (respectively, n(G)). By the deficiency (internal deficiency) of
G we mean the number |V(G)|| — 2v(G) (respectively, ||Int(G)|| — n(G)), where for a set
X, || X|| denotes the cardinality of X. An edge e € E(G) is forbidden if e is not contained
in any maximum internal matching of G. Note that this terminology has originally been
introduced for plain maximum matchings in [13], but we shall use it in a different context
here.

If G is a graph and X is any subset of V(G), then I'(X) denotes the set of all vertices
in V(G) which are adjacent to at least one vertex in X. The subgraph of G induced by
X, denoted G[X], is the restriction of G to X. For short, the graph G[V(G) — X] will be
denoted by G — X.

A graph G is factor-critical if G — v has a perfect matching for any v € V(G). Note
that G itself does not have a perfect matching if it is factor-critical. Moreover, G has
no external vertices. Indeed, if v € Ext(G) and v’ is the vertex adjacent to v, then in
G — v' the vertex v becomes isolated and thus unmatchable. A maximum matching of
a factor-critical graph is called a near-perfect matching. Clearly, the deficiency of every
factor-critical graph is 1.

Let G be a bipartite graph with bipartition (V4, V2). The surplus of G viewed from V;
is the number :

min{(|IT(X)}| - I X1) | X € V1, X # 0}.

One of the most useful results in matching theory is the so called Gallai-Edmonds
Structure Theorem found independently by Gallai [10, 11] and Edmonds [8]. The reader is
referred to Section 3.2 in [13] for a detailed discussion of this theorem, which characterizes

the structure of maximum matchings in graphs. A counterpart of the Gallai-Edmonds



Structure Theorem for maximum internal matchings, Theorem 2.1 below, has been stated
and proved in [1].

For any graph G, let D(G) denote the set of all internal vertices in G that are not
covered by at least one maximum internal matching. Furthermore, let A(G) be the set of

vertices (internal or external) in V(G) — D(G) adjacent to at least one vertex in D(G).
Finally, let C(G) = V(G) — A(G) — D(G). Then we have

Theorem 2.1 The following five statements hold for the decomposition D(G), A(G),
C(G):
(i) the components of the subgraph induced by D(G) are factor-critical,

(ii) the subgraph induced by C(G) has a perfect internal matching,

(iii) the bipartite graph obtained from G by deleting the vertices of C(G) and the edges
spanned by A(G) and by contracting each component of D(G) to a single vertez has
positive surplus (as viewed from A(G)),

(i) if M is any mazimum internal matching of G, it contains a near-perfect matching
of each component of D(G), a perfect internal matching of C(G) and matches all
vertices of A(G) with vertices in distinct components of D(G),

(v) 7(G) = ||lInt(G)|| — ¢(D(GR)) + ||A(G)||, where ¢(D(G)) denotes the number of com-
ponents of the graph spanned by D(G).

As the first result of this paper we generalize Theorem 2.1 for graphs containing loops.

Proposition 2.2 Theorem 2.1 holds also for graphs containing loops.

Proof. First suppose that G contains only one loop e around some vertex v € V(G).
Replace e with a triangle by inserting two new vertices v; and v, on e. Let G’ denote the
resulting graph.

Let us locate the vertices v, v; and v, in the decomposition D(G’), A(G'), C(G')
of V(G') by Theorem 2.1. If one of v, v; and v, is in D(G'), then all of them must
be in D(G'), otherwise condition (iii) would be violated or a factor-critical graph would
have an external vertex. Consequently, v, v; and v, are in the same component of the
subgraph of G’ induced by D(G'). Moreover, the deletion of v; and v, from e preserves

the factor-critical property of this component.



If any of v, v; and v, is in A(G"), then it must be v, so that v; and v; are in C(G").
In this case, too, the deletion of v; and v, from e is harmless, showing that e is a loop
around v € A(G).

If all of v, v; and v, are in C(G"), then the edges connecting v with v, and v, in G’
are clearly forbidden. In this way we can associate a perfect internal matching of C(G)
with each perfect internal matching of C(G’) by deleting the vertices v; and v; from e.

If G has several loops, then repeat the above argument for all the loops to see that the
desired decomposition of G is the restriction of the decomposition D(G’), A(G"), C(G")
to V(G). o

3. The algebra of graphs

In this section we show how graphs can be given a many-sorted algebraic structure based
on a distinctive treatment of their external vertices.

Recall from the Introduction that the external vertices of a graph G are intended to
provide an interface for the internal part of G. To establish this interface in a proper way,
it is necessary to assign a unique label to each external vertex of G. Since we are dealing
with finite graphs, any countable infinite set is sufficiently large to choose the labels from
it. We shall use the set N, of all positive integers for this purpose. A graph together with
a labeling of its external vertices is called an open graph. Thus, an open graph is a pair
(G, p), where G is a graph, called the base graph of G, and p is an injection of Ext(G)
into N, . If the image of the mapping p is A C N, then we say that (G, p) is of sort A.

Two open graphs (G, p;) and (Gy, p) of the same sort are isomorphic if there exists
a bijection ¢ : V(G;) — V(G;) such that ¢ is an isomorphism between G, and G in the
usual sense and ¢ preserves the labeling, i.e. p;(v) = p2(¢(v)) for every v € Ext(G;). For
example, the two open graphs of Fig. 1 are not isomorphic, although their base graphs
are such.

When drawing open graphs we shall, as in Fig. 1, omit the bullets representing the
external vertices in order to emphasize the non-terminal nature of these vertices. Also, we
shall identify each external vertex with its unique label if no danger of confusion arises.

With this assumption we can as well identify an open graph with its base graph. As a



Figure 1: Two non-isomorphic open graphs

practical notational shorthand, rather than writing that (G, p) is an open graph of sort
A, we shall just write that G : A is a graph, bearing in mind the labeling p.

The algebra G of open graphs is sorted by the set U of all finite subsets of N,. For any
sort A € U, the underlying set G4 of G is the set of all isomorphism classes of open graphs
of sort A. To simplify the terminology, we shall be dealing with isomorphism classes of
graphs by choosing appropriate representatives of them.

There is only one general binary operation defined in the algebra G. This operation

is called composition and is denoted by “-”. Composition is a mapping
-1 G4 xGp — Gagp forall A,BeU,

where A © B denotes the symmetric difference of sets A and B. Intuitively, composing
two open graphs means pasting them together along those “colliding” pairs of external
vertices that are labeled by the same number. In the extreme case when this collision
process becomes circular, composition will result in an isolated vertex by definition.
Formally, let G : A and H : B be two graphs. Without loss of generality we may
assume that V(G) and V(H) are such that they have their external vertices AN B in
common, but otherwise they do not intersect each other. The composite L : A& B of G

and H is constructed through the following four steps.
(1) Let Ly = GU H, that is, V(L;) = V(G) U V(H) and E(Ly)= E(G)UE(H).
(2) For any two vertices vy,v; € V(G)UV(H) — (AN B) which are connected in L; by
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Figure 2: The four steps of composition

a path consisting only of external edges with endpoints in AN B, add a new edge

connecting v; and v,. Let L, be the resulting graph.

(3) For each cycle in L, containing only vertices in AN B, add a new isolated vertex to

L,. Let L3 be the resulting graph.

Note that a cycle considered in step (3) has no multiple edges and its length is always

even.
(4) L=Ls— (AN B).

An example showing the four steps of composition is provided in Fig. 2.
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Figure 3: The constants of the algebra G

m, f,

Figure 4: Two loops with different handles

The algebra G has the following infinite number of constants:
0 : @ stands for the empty graph;
14 : A for each two-element set A € U;

n4 : A for each positive integer n > 2 and set A € U such that ||Af| = n.

The interpretation of the constants is shown in Fig. 3. Note that for every n € Ny, the

base graph of n is the n-star Kj,, cf. [13], hence all the labelings of the external vertices

of this graph by the elements of A results in the same open graph.

The graphs

M, = 3apc) sy and fo =20, -my

shown in Fig. 4 will be of special interest in the next section. The “handle” of m, is the

unique perfect internal matching of that graph as a singleton set, hence the external edge

of f, is forbidden.

Composition is sometimes too complex to deal with. We therefore introduce a pair
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Figure 5: Deriving composition from sum and merge

of simpler operations as an equivalent substitute for composition in the algebra G. The
first operation is sum, which is the restriction of composition to operands having disjoint
sorts. Sum is denoted by “+”. The other operation is called merge. Merge is rather a
collection of operations associating with each two-element set B € U and sort A D B a
unary operation

1B: G4 — Gu-B.

If G: Ais a graph and B = {a, b}, then Jp G is obtained from G by merging the external
edges incident with a and b in it. Again, in extreme cases like G = 1p, [p G introduces a
single isolated vertex by definition. Instead of giving a formal definition of the operation

merge, we invite the reader to check that
I18G=G-1p. (1)

Thus, merge is a derived operation in G.

Let G : A and H : B be two graphs. If AN B = {a4,...,ax}, then choose D, =
{a!,...,d,} and D, = {a/,...,a}} from U in such a way that D, N D, =0 and D;NA =
D;NnB=20fori=1,2 Itis easy to see that

k
G-H=", ey (1 Taay (G+ ‘;1{&;,4;'}) + H), (2)

see also Fig. 5.
Equations (1) and (2) above show that in G, composition is equivalent to the couple

of derived operations sum and merge. We can also learn from (2) that the relabeling of
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an open graph of sort A according to a bijection x : A — B, too, is a derived operation
ing.

In the algebra G, relabelings and composition are related in a characteristic way. For a
bijection x : A — B between sets A, B € U, let G, denote the relabeling G4 — Gg induced
by x. Consider two bijections o : A — A’ and f:B — B forsets A,A',B,B" € U. The
bijections a and A are said to be compatible if, for alla€ Aand b € B,

ala) = f(b) < a=be ANB.

In this case we say that the relabelings G, and Gz are allowable for composition. For

compatible bijections a and 83, we definec © 8: A© B — A'6 B' by

_Joafz), ifze A
(a©B)(z) = { B(z), ifz € B.
IfG:Aand H: B are graphs and a : A — A', 3 : B — B’ are compatible, then it is

clear that
Gaep(G - H) = Ga(G) - Gs(H).

This observation motivated the category theoretical definition of indexed algebras in [2].
Proposition 3.1 The algebra G is generated by its constants.

Proof. We have to prove that all open graphs can be built up from the constant graphs
using composition or, equivalently, using the operations sum and merge. Every graph
G : A is the sum of its connected components, hence we can assume that G is connected.
If G is empty, then G = 0. If G is not empty but it has no internal vertices, then G is
either the constant 1, or it is an isolated vertex, in which case G =[1,2} 141,2)-

Suppose now that G has at least one internal vertex. Consider the “skeleton” of G,
which is a collection of star graphs, one n-star for each internal vertex in V(G) of degree
n. Obviously, the skeleton of G can be represented as the sum of appropriate constants in
G and G can be reconstructed from its skeleton by adding the internal edges to it one-by-
one using the operation merge. The details of this construction are straightforward and
therefore omitted.

By a graph expression we mean an expression built up from the constant and oper-

ation symbols of the algebra G. Although merge is not a basic operation in G, we shall
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nevertheless use ] in graph expressions in accordance with equation (1).

Definition 3.2 A graph expression t is in normal form if
t :PEpIp (Cl + ...+ Cn) -+ tt,

where
— n >0 and ¢; : A; is a constant for every i € [n] = {1,...,n}. If n =0, thent = ¢
by definition.
— P is a set of pairwise disjoint two-element subsets of Uje;A;, where J is the set of
all subscripts j such that ¢; # 14,.
— = Zle T{1,2) 1{1,2) is the sum of k isolated points for some k > 0.

The normal form of graph expressions is akin to the normal form of flowchart scheme
expressions defined in [9]. In fact, our intention was to introduce the algebra G as the
symmetric counterpart of the algebra of flowchart schemes. For the description of the
algebra of flowchart schemes, the reader is referred to 3, 5]. The operation sum has the
same interpretation in the two algebras, while merge is the symmetric equivalent of the
operation feedback in the algebra of schemes. General composition in G corresponds to
a mixture of composition, sum and iteration (feedback) in scheme algebras. The only
non-ideal components of the algebra G in the sense of [9] are the constants 14.

For a graph expression t, let [t| denote the open graph which results from the evalu-
ation of ¢ in the algebra G. The following theorem is an immediate consequence of the

construction applied in the proof of Proposition 3.1.

Theorem 3.3 For every open graph G there ezists a graph ezpression t in normal form
such that G = |t|. The normal form t is unique up to an appropriate relabeling of its

constants.

As opposed to the algebra of flowchart schemes, the sorting set U of the algebra G
has been chosen too generously. To do the labeling more economically, we could fix the
labels of a graph with n external vertices to be exactly the integers 1,2,...,n. The
sorting set of the family of open graphs labeled in this way is the set N of all nonnegative
integers, each sort n € N corresponding to the set [n] € U. As to the operations in

the resulting contracted structure Con(G), composition will associate with each triple
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(n,m,q) of nonnegative integers satisfying ¢ < min(n, m) a binary operation
“(nmyg) * Con(g)n X Con(g)m —* Con(g)n+m-2q-

If G:n and H : m are open graphs in Con(G), then G -(n,m,q) H is obtained by first
taking the disjoint union of G and H, then merging the edges adjacent to the last g
external vertices of the two graphs, and finally, relabeling the remaining external vertices
of Hton—q+1,...,n — ¢+ m— ¢ in a monotone way. Composition, however, must be
supported by all n-ary permutations for all n € N as unary operations in Con(g ) in order
to be able to adjust the desired labeling of the operands before composing them together.

Concerning constants in Con(G), there is a unique constant 1 : 2 and there are con-
stants n : n for each n > 2, corresponding to the constants 14 and ny of G, respectively.

Although the algebra Con(G) is more succinct than G, it is less attractive because it
lacks the original symmetry, namely the commutativity of composition, that G has by its
definition. Moreover, Con(G) is rather inconvenient to work with, for in this algebra we
have to keep “rotating” graphs in graph expressions (i.e. relabeling them by appropriate
permutations) to make composition work. It is natural to ask: in what sense are the
algebras ¢ and Con(G) equivalent? This question has been answered in [2] in a category

theoretical framework.

4. The Gallai-Edmonds algebra of graphs having a perfect internal matching

The Gallai-Edmonds Structure Theorem is especially well-suited to demonstrate the use
our new algebraic method on it. In this section we shall see that the decomposition of
the set of vertices of a graph G by Theorem 2.1 is in fact a decomposition of G itself as
a graph according to the algebra G.

A somewhat disturbing fact about Theorem 2.1 is that, although it concerns maximum
internal matchings of graphs, the definition of factor-critical graphs is based on the concept
of (plain) perfect matching. We want to be able to express the factor-critical property in
our own framework, that is, in terms of perfect internal matchings. For, let G : A be a
graph and e be an edge in E(G). By cutting G at the edge e we mean creating a new
graph cut(G,e) : AU B for some indefinite two-element set B disjoint from A, so that

18 (cut(G,e)) = G. Thus, cut is a kind of inverse of the operation merge.
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Let e; and e, be two distinct edges of a graph G. We say that e; and e; are inherently
incompatible if neither of e; and e; is forbidden, but for every maximum internal matching
M in G, e; € M iff e; ¢ M. Observe that if €; and e, are inherently incompatible in G,

then both e; and e, must have at least one endpoint in Int(G).

Proposition 4.1 A graph G is factor-critical iff one of the following two conditions is
satisfied:
(a) G is a single isolated vertez;
(b) G has no isolated vertices and for every edge e € E(G), cut(G,e) has a perfect
internal matching. Moreover, the two new ezternal edges created in cut(G,e) are

inherently incompatible.

Proof. If.  Since an isolated vertex is a factor-critical graph, we can assume that
condition (b) holds. Supposing that G has an external edge e, consider the external
edges e; and e; created in cut(G,e). One of e, and e, will have two external endpoints,
contradicting the fact that these edges are inherently incompatible. Thus, G has no
external vertices.

Let v € V(G) be arbitrary. By assumption, there exists an edge e incident with v in
G. In cut(G,e€), let e; and e; be the two new external edges, so that e; be incident with
v. Furthermore, let M be a perfect internal matching of cut(G,e) such that e; € M and
ez ¢ M. Then M — ¢, is a perfect matching of G — v.

Only if. As noted in Section 2, G has no external vertices. Supposing that G is not
a single isolated vertex, let e € E(G) be arbitrary. Let v; and v; be the two endpoints
of e and denote by e, and e, the two external edges of cut(G,e) incident with v, and
vy, Tespectively. Reversing the argument in the second paragraph of the If part of the
proof shows that cut(G,e) has a perfect internal matching. Assume indirectly that e
and e, are not inherently incompatible. Since G itself does not have a perfect (internal)
matching, one of e, and e, must be forbidden. Say e; is such. Then G — v, cannot have a
perfect matching. Indeed, if M were a perfect matching of G — v;, then M Ue; would be
a perfect internal matching of cut(G,e), contradicting the fact that e; is forbidden. o

Note that the graph consisting of a single isolated vertex is the only factor-critical
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graph which has a perfect internal matching. We say that a graph G : A is internally
factor-critical if G — A is factor-critical.

The rephrasing of Theorem 2.1 in terms of the algebra G is the following.

Theorem 4.2 IfG : A is a graph, then there ezist graphs C(G) : AUP, A(G) : PUQ and
D(G) : Q for some sets P,Q € U such that G = C(G) - A(G) - D(G) and, furthermore:
(a) D(G) = Dy+...4 Dy for some internally factor-critical graphs D; : Q; with Ui, Q; =
Q;
() A(G) = (n1)Rr, + ...+ (nm)R,, is the sum of constant graphs such that n; > 2 for
each j € [m] and UL\ R; = PUQ;
(c) For every nonempty B C [m], |{l € [k] | (UjeR; N Q1) # O} > || B}
(d) C(G)- Y pep fp has a perfect internal matching.
The decomposition C(G)- A(G)- D(G) is unique up to an allowable relabeling of its com-

ponents.

Proof. We derive the desired decomposition of G from the Gallai-Edmonds decomposi-
tion of V(G) by Theorem 2.1. The graphs D(G), A(G) and C(G) are obtained essentially
by cutting G at those internal edges that join the subgraphs induced by D(G), A(G)
and C(G) to each other. In addition, we also cut G at every edge connecting two (not
necessarily distinct) vertices of A(G). For each such edge, the created two external edges
will then be remerged by a constant 1¢, C € P when the composition C(G) - A(G) is
performed. The constants 1¢ must be placed as extra components in C (G).

Since the edges spanned by A(G), as well as those joining A(G) to C(G), are forbidden
in G, the composite C(G) - Y ,ep fp will have a perfect internal matching. Statement (c)
is equivalent to (iii) of Theorem 2.1. To prove the uniqueness of the decomposition, one
must observe that if G = C(G) - A(G) - D(G) with C(G), A(G) and D(Q) satisfying (a)-
(d) in the assertion of the theorem, then the internal vertices of D(G) are the only ones
that can be left uncovered by any maximum internal matching of G. Thus, the internal
vertices of D(G) are exactly the vertices contained in D(G). The rest of the proof is

obvious. [

The graph C (G) - Lpep £ occurring in (d) of Theorem 4.2 will play an important role
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in the sequel, therefore we introduce the notation h(G) for this graph. Clearly, h(G) does
not depend on the choice of the labeling set P and its sort is the same as that of G. Note
that A(G) = G iff G has a perfect internal matching.

Now we turn to defining the U-sorted algebra S, which we call the Gallai-Edmonds
algebra of graphs. The underlying set of S corresponding to sort A € U is the set of
graphs G : A having a perfect internal matching. The algebra S has the same operations
and constants as G with the following interpretation.

(i) For each constant symbol ng4, (n4)s = (n4)g.

Note that the number of perfect internal matchings of ng isnif n > 2 and 2ifn=1.

(ii) If G : A and H : B are graphs having a perfect internal matching, then
(G- H)s = h((G- H)g). (3)

For simplicity, we shall omit the subscript G referring to interpretation by the algebra
G in graph expressions. In other words, G is the “default” interpretation. It is easy to

derive from (3) that for graphs G and H of appropriate sorts,
(G+ H)s = h(G) + h(H) (4)

and
(Is G)s = (I8 G). (5)
Our goal is to prove that A : ¢ — S is a homomorphism. To this end we need the

following theorem.

Theorem 4.3 If G : AU B is a graph for some A € U and two-element set B € U
disjoint from A, then
k(1 G) = k(1B A(G)).

Proof. Assume that h(G) = C(G) - Y pep fp as described in Theorem 4.2. For each
p € P, let vo(p) denote the vertex of h(G) that supports the loop of f,. Furthermore, let
v1(p) # vo(p) be the vertex adjacent to vo(p) in h(G), and let va(p) and vc(p) be those
vertices in A(G) and C(G), respectively, that are adjacent to the external vertex p in
A(G) and C(@), see Fig. 6. In Fig. 6, dotted lines indicate those edges of h(G) that are
not present in the original graph G. The dashed edge e on the top of the figure comes
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Figure 6: An illustration of Theorem 4.3

from merging the edges e, and e, incident with the two external vertices b, and b; in B.
Let Go =15 h(G). We have to prove that h(Ip G) = h(Go). Two cases are possible.
Case 1. Gy still has a perfect internal matching.
In this case it is clear that D(Ig G) = D(G), hence by Theorem 4.2,

C(1s G) =18 C(G).!

Consequently,

r1sG) = C1sG)- L f=01sC0G) 21

pe€P peP
= 15 (C(G)- L f,) =15 h(G)

peP
= Gozh(Go)

IStrictly speaking, the graphs on the two sides of this equation differ only in the labeling of those
external vertices that do not belong to A.
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Note that 7(G) = (] G), i.e. the internal deficiency does not increase switching from
Gtols G.

Case 2. Gy does not have a perfect internal matching.

Now n(ls G) = n(G) — 1. For, let M be any maximum internal matching of G.
Then one of the edges e;,e; must be in M while the other must stay out, otherwise
Gy would have a perfect internal matching. Say e; € M. Leaving out e; from M, we
obtain a matching of {p G covering n(G) — 1 internal vertices. On the other hand, it is
impossible for any matching M of g G to cover (G) or more internal vertices because
in this case the successive opening and reclosing of the “gate” e in [p G would produce a
perfect internal matching in Gg by (iv) of Theorem 2.1. For the same reason, the internal
deficiency of Gy is 1.

Consider the Gallai-Edmonds decomposition of V(Gy) concentrating on the vertices

{vo(p), v1(p),va(p),vc(p) | p € P}

Our aim is to show that every maximum internal matching of g G is derivable from a
suitable maximum internal matching of Gy in one of the two ways described below. Let:
M, be a maximum internal matching of Gs.

Pattern 1. If My covers all of {vy(p) | p € P}, then we can associate with My a group
of maximum internal matchings of {p G by leaving out the edges {(vo(p), v1(p)) | p € P},
adding a near-perfect matching of each component of D(G) and by matching all vertices
of A(G) with vertices in distinct components of D(G) as described in (iv) of Theorem 2.1.
See again Fig. 6.

Pattern 2. If My does not cover vy(p) for some p € P, then p is unique and M, covers
all the internal vertices of g G not contained in A(G) U D(G). (Remember that the
internal deficiency of Gy is 1.) In this case, too, it is possible to extend M, to a group
of maximum internal matchings of g G through the following steps: (1) leave out the
edges {(vo(q),v1(q)) | ¢ € P — p}, (2) add a near-perfect matching of each component of
D(G), (3) match all vertices of A(G) — v4(p) with distinct components of D(G) and (4)
substitute the edge (v;(p),vc(p)) by the edge (vo(p),va(p)). Step (3) is enabeled by (iii)
of Theorem 2.1. Note that the edge (v,(p), ve(p)) is in My, since the only internal vertex
of Gy not covered by My is vo(p). ‘
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We claim that all maximum internal matchings of {g G can be obtained as an appli-
cation of one of the above two extension patterns. For, let M; be a maximum internal
matching of {5 G. Clearly, every vertex of A(G) must be covered by M, and there exists
at most one exceptional vertex in A(G) which is matched with a vertex not in D(G). In-
deed, the assumption that there are two such vertices would imply by (iii) of Theorem 2.1
that n(Js G) < 7(G) — 2, which is a contradiction. Now, if there is no exceptional vertex
in A(G), then the first pattern applies, otherwise the second.

We have thus proved that an internal vertex v of Jp G can be left uncovered by a
maximum internal matching of this graph iff v € D(G) or v € D(Go). In other words,
since v;(p) € D(Go) for any p € P,

D(lp G) = D(G) U D(Go) — {w(p) | p € P}.
It follows that

Al G) = A(G)UA(Go) —{w(p)|pe P},
C(ls G) = C(Go) —{vo(p),ui(p) | p € F}. (6)

Let Go = C(Go) - A(Go) - D(Go) be the decomposition of G according to Theorem 4.2
such that C(Go) : AU Py. If P’ = {p € P | vo(p) ¢ D(Go)}, then C(Go) can be written
in the form C - S pep £, for some graph C: AU P,U P'. Equations (6) imply that, up to
a relabeling of the external vertices P, U P’ in C, ¢ =C(1s G). Thus,

h(Go) = C(Go)- S f,=C- > f,

pEPs pEF,UP’

é(IB G)‘ E fp

pEPyUP!
= ks G) O

Corollary 4.4 The mapping h is a homomorphism of G onto S.

Proof. It is sufficient to prove that h preserves the operations sum and merge. For sum,
this statement is equivalent to equation (4) above. Concerning merge, let G: AU B be a
graph for some A € U and two-element set B disjoint from A. Then by T heorem 4.3 and
by equation (5),

k(15 G) = h(ls h(@)) = (15 h(G))s. O
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5. Conclusion

We have introduced a many-sorted algebraic structure G on graphs with labeled external
vertices. Rephrasing the Gallai-Edmonds Structure Theorem in terms of the algebra
G, we have seen that the operation composition reflects the decomposition feature of
that theorem in a natural way. As the main result of the paper we have shown that
graphs having a perfect internal matching can also be equipped with the operations and
constants of G so that the resulting algebra S becomes a homomorphic image of G. The
homomorphism & : G — S is again characteristic of the Gallai-Edmonds Theorem.

We believe that the Gallai-Edmonds algebra S is a basic tool in the study of soliton
automata described in the Introduction. Not only does it specify perfect soliton graphs
as syntactical objects representing soliton automata, but it also provides an operation to
build up any perfect soliton graph from the constant star graphs. The right choice of the
operation composition in the algebras G and S is crucial. Were we not able to establish
h as a homomorphism, the algebras G and S would be of little interest from the point of
view of perfect soliton graphs. Moreover, to really justify our approach we still have to
prove that soliton automata, i.e. the semantics of soliton graphs, can also be given the
structure of an algebra which is a homomorphic image of S. This rather complex issue
will be dealt with in a forthcoming paper.

Another interesting problem is the axiomatization of the algebras describing the syntax
and semantics of soliton automata. Here we would only like to provide a short overview
of this problem without going into formal proofs. The reader is referred to [12] for the
algebraic terminology used.

The identities A1-A3 below axiomatize the algebra G.
Al: G-H = H -G for all graphs G : A, H : B;
A2: G-(H-L) = (G-H)-L for all graphs G : A, H : Band L : C such that ANBNC = 0;
A3: naus - 1{ap) = nauws for every constant nua such that a # b and {a,b} N A=0.

For the moment we do not know if § can be axiomatized in the same equational way,
in other words, if the homomorphism h is fully invariant or not. Concerning semantics,
however, there are a couple of identities that are easy to observe. These identities are the

following.
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Bl: 2¢.2) - 203 = a3y

B2: 34,23 ¢ fs = 2023

B3: 3123 M3 = fi + 15

B4: G, = G4, where G, and G, are the two graphs of sort {1,2,3,4} in Fig. 1.

Perhaps the most interesting identity is B4 above. The hidden meaning of B4 is that
the graphs G, and G, are both equivalent to the 4-star 41534} For soliton automata,
this fact interprets as follows. There exist isomorphisms ¢;, ¢ = 1,2 mapping the set of
all perfect internal matchings (states) of 4(1 23,4y onto the set of states of G;. The isomor-
phisms ¢;, ¢ = 1,2 have the property that if there is an alternating path w connecting two
external vertices in 4(; 5,3 4) With respect to state M, then there is a unique alternating
path ¢;(w) connecting the same external vertices in G; with respect to é:(M). Moreover,
the state transition induced by w in state M of 4 23, is the same as that induced by
#;(w) in state ¢;(M) of G;.

Applying the above heuristic argument iteratively, we find that every n-star has a set
of equivalent alternative graphs, each alternative consisting only of vertices of degree at
most 3. Furthermore, by the help of axiom Bl it becomes possible to eliminate multiple
and loop edges by subdividing them twice. Conversely, we can as well introduce such
edges if they offer more convenience for syntactical considerations.

Regarding soliton automata, axioms B1-B4 mean that not only is the semantics driven
by the syntax, but semantics, too, has an impact back on syntax. Really, in the light of
the previous paragraph, if the identities B1-B4 are in effect, then we can generalize the
syntax of soliton automata from soliton graphs to arbitrary graphs without having to
worry about generalizing the semantics at the same time. With this assumption the

syntax becomes much more flexible to handle.
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