
Simulation equivalence of automata and circuits

Miklós Bartha
∗

Department of Computer Science, Memorial University of Newfoundland

Abstract

Automata over a symmetric monoidal category M are introduced, and a
multi-step simulation is defined among such automata. The collection of M -
automata is given the structure of a 2-category on the same objects as M , in
which the vertical structure is determined by groups of indistinguishable simu-
lations. Two M -automata are called simulation equivalent if they are connected
by an isomorphism of 2-cells in this 2-category. It is shown that the category of
simulation equivalent M -automata is monoidal, and it satisfies all the axioms
of traced monoidal categories, except the one that explicitly kills the delay.

1 Introduction

Simulation equivalence is a fundamental relationship between two synchronous sys-
tems. As introduced in [18], a synchronous system is a deterministic Mealy automa-
ton in which states are so called configurations – determined by the values stored
in the memory elements (registers) of the system – and the transition function is
“wired in” through certain functional elements (e.g. logical gates). By definition,
system (automaton) G can simulate system F if the following condition is satisfied.

To every sufficiently old state u of F there corresponds a state v of G
such that F and G exhibit the exact same input-output behavior when
started from states u and v, respectively.

Systems F and G are simulation equivalent if they can simulate each other. The
term “sufficiently old” in the definition above means that, starting from an arbitrary
initial state u0, F might be run for a number of steps (until state u) before setting
the simulating state v of G. The state v then depends on u0 and also on the inputs
that have arrived at F during the delay period.

As pointed out in [18], the relevance of simulation equivalence in synchronous
systems manifests itself in the ability to transform an arbitrary synchronous system
into a systolic one, in which at least one register stops data on each interconnection
between the functional elements. If the number of registers present in the system is
sufficiently large, then the systolic transformation is achieved by shifting the registers
around within the graph of the system in a suitable way. This process is called
retiming in [18]. It is then proved that retiming in synchronous systems respects
simulation equivalence. Thus, every synchronous system having a sufficiently large
number of registers can be transformed into a simulation equivalent systolic one. The
numerous advantages of dealing with a systolic, rather than an ordinary synchronous
system are well-known in computer architecture design. (See again [18] as a source
of reference.)

∗Partially supported by Natural Science and Engineering Research Council of Canada, Discovery

Grant #170493-03

1

It was later proved in [7] with a much more sophisticated formalism that retim-
ing equivalence essentially coincides with simulation equivalence, at least when the
functional elements are interpreted in the free algebra determined by them. Thus,
the semantical concept simulation equivalence can be characterized in syntactical
terms by retiming. Obviously, this result has important consequences regarding the
decidability of simulation equivalence in synchronous systems [8].

The present paper takes a much more general look at simulation equivalence.
Starting from an arbitrary monoidal category M , we first consider the category
Circ(M) constructed in [17]. The morphisms of Circ(M) represent synchronous
systems (automata, circuits, etc.). Then we define a quotient category Sim(M) of
Circ(M), which reflects simulation equivalence of systems. Finally, we prove that
Sim(M) is a category with feedback satisfying the so called circular feedback axiom,
which corresponds directly to retiming in synchronous systems.

As a motivating example, consider the monoidal category (Set,×), where ×
is product of sets. A Set-automaton A → B is a pair (U,α), where U is a set
and α : U × A → U × B is a function. Clearly, (U,α) is a standard deterministic
Mealy automaton with states U , input alphabet A, and output alphabet B. The
automaton has no final states, and it lacks a specified initial state, too. The intuitive
notion of simulation between automata (U,α) and (V, β) has been explained above.
The formal definition of simulation is a bit more complex and requires more than
the intuitive concept. Nevertheless, this simple heuristics as an underlying idea can
easily be retrieved in Definition 4.1 below.

Unfortunately, due to space constraints, we can only include the above example in
our presentation here, and ask the reader to follow the steps of the Sim construction
on this particular model. A number of relating examples can, however, be found
in [17] in connection with the Circ construction, which the reader may want to
analyze from the simulation point of view. Also for space restrictions, we must
assume familiarity with basic category theory, automata theory, and some elements
of computer hardware design.

2 Feedback vs. trace and iteration

Feedback, trace, and iteration in monoidal categories are strongly related concepts,
which have been studied intensively through various models in mathematics and
computer science. While iteration [9, 13] is primarily used as a fixed-point operation
in (single-sorted) algebraic theories, feedback and trace [1, 5, 15, 17] have a more
general scope covering all symmetric (or braided) monoidal categories. If, however,
the underlying monoidal category is a theory, then iteration, feedback, and trace
have the same expressive power and they are interchangeable using simple syntactic
rules. The only significant difference between iteration theories and traced monoidal
categories over an algebraic theory is the presence of the commutative axiom [9, 10],
which is required in iteration theories, but not in traced monoidal categories. Thus,
a traced monoidal category over an algebraic theory is a Conway theory in the sense
of [9], and vice versa. This fact was essentially proved back in 1987, cf. [4, Theorem
2], where the traced monoidal category axioms were introduced on magmoids in an
algebraic context. These axioms were called scheme identities in [4], and they were
used to axiomatize flowchart schemes in the sense of Elgot [12]. The same identities,

2

with the exception of yanking (called X in [4]), were used in [5] to axiomatize
synchronous schemes. See also [14] for the connection of traced monoidal categories
and theories with a dagger (fixed-point, iteration). Connections with other areas of
mathematics (algebra, geometry) and physics can be found in [15]. Further recent
papers on this topic include [1, 2, 16, 20].

In [17], categories with feedback were defined by relaxing the traced monoidal
category axioms, and the free category with feedback Circ(M) generated by an
arbitrary symmetric strict monoidal category M was constructed from so called
circuits in M . Our concern in this paper is with monoidal categories having a
feedback operation that satisfies all of the traced monoidal category axioms, except
for yanking. This axiom is the “milestone” which separates feedback (with delay)
from trace, i.e., feedback with no delay, therefore it must not hold in our delay-
oriented models.

In our approach we shall be working with monoidal automata and simulations
among them. These concepts have their origins in [6], where automata over a single-
sorted algebraic theory T , called T -automata, and simulations of them with surjec-
tive and injective mappings were used to construct the free strong feedback theory
Fs(T) generated by T . The very same idea underlies the Circ construction of [17],
which is more general in its scope, but very restricted in the sense that simulations
in it are isomorphisms only. Reasoning in terms of Mealy automata, the Circ con-
struction does not go beyond the observation of isomorphism between automata,
so that it carries very little semantical information. Our Sim construction, on the
other hand, does have a significant semantical contents, which will be pointed out
in Sections 4 and 5.

Another novelty of our Sim construction compared to the Circ construction is
that it captures the stepwise behavior of monoidal automata and introduces a multi-
step simulation between them in the way it was originally done for synchronous
systems in [18]. The result is a monoidal 2-category, which leads to a category with
circular feedback in a natural way.

3 Monoidal categories with trace and feedback

Recall from [19] that a strict monoidal category is a category M equipped with an
associative bifunctor, called tensor, which has a unit element. In the spirit of the
author’s earlier works on the subject, composition (left-to-right) and tensor will be
denoted by · and +, respectively, and I will stand for the tensor unit object. A
symmetry in M is a family of isomorphisms πA,B : A + B → B + A, natural in A
and B, such that

πA,B · πB,A = 1A+B and (πA,B + 1C) · (1B + πA,C) = πA,B+C .

The notation πA,B for symmetries is adopted from [17]. Morphisms built up solely
from symmetries using composition and tensor in a regular fashion are called per-
mutations.

We say that a monoidal category M is single-sorted if the set of its objects is
generated by a single object 1. Such structures are also known as magmoids [3]. In
the sequel, by monoidal category we shall always mean a strict symmetric monoidal
category. This will simplify the presentation of the Sim construction a great deal,
although the construction itself works for non-strict symmetric monoidal categories

3

as well with obvious modifications. In particular, our example category (Set,×) is
not strict, but it is perhaps the best suited to help the reader’s understanding of
simulation equivalence.

The following definition of traced monoidal categories originates from [15]. Trace
in a category M will be introduced below as an operation M(U + A,U + B) →
M(A,B), rather than M(A + U,B + U) → M(A,B) as it appears in [15], to be in
accordance with the author’s earlier works. In addition, the fact that M is strict
and symmetric will also be taken into account to simplify the definition.

Definition 3.1 A trace for a monoidal category M is a natural family of functions

TrU
A,B : M(U + A,U + B) → M(A,B)

satisfying the following three axioms:
vanishing:

TrI
A,B(f) = f , T rU+V

A,B (g) = TrV
A,B(TrU

V +A,V +B(g));

superposing:

TrU
A,B(f) + g = TrU

A+C,B+D(f + g), where g : C → D;

yanking:
TrU

U,U(πU,U) = 1U .

Naturality of trace is meant in all three “variables” A,B,U . While naturality in A
and B is fairly obvious, we wish to spell out the meaning of naturality in U , because
the resulting axiom is our main concern in this paper.
sliding:

TrU
A,B((g + 1A) · f) = TrV

A,B(f · (g + 1B)), where f : V + A → U + B, g : U → V.

The objects A,B in TrU
A,B will usually be clear from the context, in which case they

will be omitted from the notation.
According to [17], a category with feedback is a monoidal category M equipped

with a feedback operation ↑U
A,B : M(U + A,U + B) → M(A,B), which satisfies

all the requirements for TrU
A,B in Definition 3.1, except for the yanking axiom.

Furthermore, naturality of ↑U
A,B in U is only required in a weaker form, when the

morphism g : U → V in the sliding axiom is an isomorphism. In the context of
categories with feedback we shall refer to sliding as the axiom of circular feedback,
by the name it appears first in [21] regarding the single-sorted case. A category
with circular feedback is then a category with feedback which satisfies the circular
feedback axiom.

Let M be a monoidal category, fixed for the rest of the paper. An M -automaton
A → B is a pair (U,α), where U is an object and α : U + A → U + B is a
morphism in M . Reflecting a digital circuit interpretation, the object U is called
the state component, while α is the combinational logic of (U,α). The collection of
M -automata can be given the structure of a category AutM equipped with a tensor
as follows. Objects, and tensor of them are as in M . Furthermore:

1A = (I, 1A);

(U,α) · (V, β) = (U + V, (πU,V + 1A) · (1V + α) · (πV,U + 1B) · (1U + β));

4

(U,α) + (V, β) = (U + V, (1U + πV,A + 1C) · (α + β) · (1U + πB,V + 1D)).

See Fig. 1. The category M is embedded into AutM by the functor A 7→ A, α 7→
(I, α). Feedback is defined in AutM as follows:

↑V
A,B (U,α) = (U + V, α), where α : U + V + A → U + V + B.

U V A

U V A C

B

U V C

U V B D

a

a

b

b

Figure 1: Composition and tensor in AutM

Notice that tensor is not a bifunctor in AutM , therefore this category is not
monoidal. Thus, in a strict sense, AutM – with our ↑ in it – does not qualify as a
category with feedback. Of course, this does not mean that feedback is ill-defined
in AutM , rather, the name “category with feedback” is ambiguously chosen.

Two M -automata (U,α), (V, β) : A → B are said to be isomorphic if there exists
an isomorphism γ : U → V in M such that (γ + 1A) · β = α · (γ + 1B). Isomorphism
classes of M -automata are called circuits in [17], and Circ(M) is the quotient of
AutM by this isomorphism. As it was proved in [17], tensor (of isomorphism classes
of M -automata) already makes Circ(M) a monoidal category with the symmetry
adopted from M . Moreover, Circ(M) is a category with feedback.

4 The Sim construction

In this section we present a construction which, from a given monoidal category
M , produces a category Sim(M) with circular feedback. In order to make the
construction feasible, we need to make the following assumption on the nature of
composition in M .

Virtual trace:

For αi : A → U + Ci, βi : U + Ci → B, i = 1, 2 :

(1U + α1) · (πU,U + 1C1
) · (1U + β1) = (1U + α2) · (πU,U + 1C2

) · (1U + β2)

implies α1 · β1 = α2 · β2. See Fig. 2.

a a a a

b b b b

1

11

1 2

2 2

2

U A U A

U B U B

A A

B B

C C
1 2= =

Figure 2: The virtual trace implication

Intuitively, the virtual trace implication enables the use of an imaginary trace
operation when the result is expressible in terms of composition. Indeed,

TrU ((1U + αi) · (πU,U + 1Ci
) · (1U + βi)) = αi · βi

5

is trivially satisfied in all traced monoidal categories. Therefore the virtual trace
implication simply ensures that this imaginary partial trace operation is well-defined.
Notice that virtual trace is a necessary condition for any monoidal category to have
an extension to a traced monoidal category.

The virtual trace implication is quite natural and holds in surprisingly many
monoidal categories. For example, if tensor is product or coproduct in M , then this
implication is almost straightforward. It also holds in all scheme algebras [4, 5].
In general, it holds true whenever the morphisms of M express a kind of data-flow
semantics, either explicitly or implicitly. From this point on we shall assume that
the virtual trace implication holds in our category M .

For objects A,B in M , a transition chain (chain, for short) A → B is a non-
empty sequence

s = ((si,Xi,Xi+1)| 0 ≤ i < n), (n ≥ 1), where si : Xi + A → Xi+1 + B.

Define the cascade product of s recursively as follows. (See Fig. 3.)

cas0(s) = s0;
casi(s) = (casi−1(s) + 1A) · (1Xi

+ πB,A) · (si + 1iB);
cas(s) = casn−1(s) · (1Xn + π) : X0 + nA → Xn + nB,

where for any natural number m, mB stands for the object B + . . . + B, and π :
nB → nB is the permutation that reverses the sequence of n B-blocks.

X A A A

X

X

X B B B

s

s

s

0

1

2

2

3

0

1

Figure 3: Cascade product of a chain with 3 links

Chains s = ((si,Xi,Xi+1)| 0 ≤ i < n) and t = ((tj , Yj, Yj+1)| 0 ≤ j < m) A → B
are said to be linkable if Xn = Y0. Clearly, in this case, the concatenation s ‖ t of
the two chains is also a chain A → B. With a slight ambiguity, if the sequence s or
t in s ‖ t has a single item, that item will be identified with the sequence itself.

Definition 4.1 An n-step simulation (n ≥ 1) (U,α) → (V, β) in AutM (A,B) is a
chain s = ((si,Xi,Xi+1)| 0 ≤ i < n) A → B such that:

(i) X0 = U and Xn = V ;
(ii) cas(s ‖ β) = cas(α ‖ s).

An immediate (0-step) simulation (U,α) → (V, β) is just a morphism δ : U → V
such that (δ + 1A) · β = α · (δ + 1B).

Lemma 4.2 Let s = ((si,Xi,Xi+1)| 0 ≤ i < n) and t = ((tj , Yj , Yj+1)| 0 ≤ j < m)
be linkable chains A → B with V = Xn = Y0. Then

cas(s ‖ t) · πnB,mB = (cas(s) + 1mA) · (1V + πnB,mA) · (cas(t) + 1nB).

6

Corollary 4.3 If s : (U,α) → (V, β) and t : (V, β) → (W,γ) are non-immediate
simulations in AutM (A,B), then s ‖ t is a simulation (U,α) → (W,γ).

Corollary 4.4 If s : (U,α) → (V, β) is a non-immediate simulation, then so is
s ‖ β.

Both Corollaries 4.3 and 4.4 can be generalized to all simulations by adopting the
following natural rules regarding the operation ‖. Let δ and δ′ be immediate simu-
lations and s be a non-immediate one between appropriate M -automata.

(i) δ ‖ s and s ‖ δ are formed by melting δ into the first link (respectively, last
link) of s using composition in M , i.e., by replacing s0 : V + A → X1 + B with
(δ + 1A) · s0 (respectively, sn−1 : Xn−1 + A → V + B with sn−1 · (δ + 1B)).

(ii) δ ‖ δ′ = δ · δ′.
Concerning cascade products, define cas(δ) = δ.

Proposition 4.5 Simulations as morphisms define a category on AutM (A,B) as
objects.

Proof. Identities in AutM (A,B) are the identity morphisms 1U in M as immediate
simulations. Composition of simulations is ‖. 2

Intuitively, Corollary 4.4 says that simulations s and s ‖ β are essentially the
same between the automata (U,α) and (V, β). For the very same reason, s and α ‖ s
are the same, too. The only difference between s and s ‖ β is that s ‖ β “realizes”
the simulation one step later, even though it has already been established by s. We
shall say that s and s ‖ β are indistinguishable. In order to put this relation as a
proper equivalence between simulations, we introduce the following notation. For an
n-step simulation s : (U,α) → (V, β) and integer m ≥ n, φn,m(s) is the simulation
s ‖ βm−n (i.e., s ‖ (β, . . . , β)).

Definition 4.6 Simulations s, s′ : (U,α) → (V, β), where s and s′ are n-step and
n′-step, respectively, are indistinguishable if there exists l ≥ max(n, n′) such that
cas(φn,l(s)) = cas(φn′,l(s

′)).

We shall use the symbol ≡ to denote indistinguishability of simulations.

Proposition 4.7 If s ≡ s′ : (U,α) → (V, β) and t ≡ t′ : (V, β) → (W,γ), then
s ‖ t ≡ s′ ‖ t′ : (U,α) → (W,γ).

By virtue of Proposition 4.7 we redefine our vertical categories AutM (A,B), so
that its morphisms be groups of indistinguishable simulations between automata.
For simplicity, however, we shall keep working with representatives rather than
equivalence groups of simulations.

We now turn to defining a horizontal composition on simulations of M -automata.
Let s = ((si,Xi,Xi+1)| 0 ≤ i < n) and t = ((ti, Yi, Yi+1)| 0 ≤ i < n) be chains A →
B and B → C, respectively. (See Fig. 4.) Define s • t = ((ui, Zi, Zi+1)| 0 ≤ i < n)
to be the chain A → C in which Zi = Xi + Yi, and

ui = (1Xi
+ πYi,A) · (si + 1Yi

) · (1Xi+1
+ πB,Yi

· ti).

Equivalently, by the help of the (postfix) virtual trace operation ⇑ in M :

ui = ((1Xi
+ πYi,A + 1B) · (si + ti) · (1Xi+1

+ πB,Yi+1+C)) ⇑B .

7

X

X Y A

B

X Y A

B

X Y

B

B

Y C

i+1i+1

i+1i+1

ii

ii

s

s

t

t
ii

i

i

C

Figure 4: Horizontal composition of transition chains

Proposition 4.8 For simulations s : (U,α) → (V, β) and t : (U ′, α′) → (V ′, β′)
between M -automata A → B and B → C, where s and t are chains as above with
X0 = U , Xn = V , Y0 = U ′, Yn = V ′, s • t : (U,α) · (U ′, α′) → (V, β) · (V ′, β′) is a
simulation. Moreover, for every m ≥ n, φn,m(s) • φn,m(t) = φn,m(s • t).

Proof. For simplicity, we only show a diagram that proves the first statement for
1-step simulations. The proof itself is highlighted by dotted lines in the diagram
of Fig. 5. Notice that the virtual trace implication need not be used in this proof,
although it clarifies the situation a great deal. 2

U UA AA AU' U'

V VV' V'

B BB B

C CC CB BB B

=

s

s t

t a

b b'

a'

Figure 5: The proof of Proposition 4.8

The simulation s • t is called the horizontal composite of s and t. Using Corol-
lary 4.4 it becomes possible to define the horizontal composite of two simulations
even when they take different number of steps. Thus, by the second statement of
Proposition 4.8, horizontal composition is properly established on groups of indistin-
guishable simulations. It is routine to check that • is associative, and the identities
for this composition are determined by the morphism 1I of M as an immediate sim-
ulation (I, 1A) → (I, 1A) for each object A. Furthermore, the horizontal composite
of two vertical identities is itself a vertical identity, which is obvious.

Theorem 4.9 Groups of indistinguishable simulations as 2-cells extend AutM to a
2-category.

Proof. All components of this 2-category have been checked earlier, hence we need
only show the interchange law

(s ‖ s′) • (t ‖ t′) ≡ (s • t) ‖ (s′ • t′)

for all appropriate simulations s, t, s′, t′. We leave this as an easy exercise. 2

The next step in our construction is to show that in AutM , simulations are
compatible with tensor and feedback. Let s = ((si,Xi,Xi+1)| 0 ≤ i < n) and

8

t = ((ti, Yi, Yi+1)| 0 ≤ i < n) be chains A1 → B1 and A2 → B2, respectively, and
define s2t = ((ui, Zi, Zi+1)| 0 ≤ i < n) to be the chain A1 + A2 → B1 + B2 in which
Zi = Xi + Yi and

ui = (1Xi
+ πYi,A1

+ 1A2
) · (si + ti) · (1Xi+1

+ πB1,Yi+1
+ 1B2

).

Proposition 4.10 For simulations s : (U1, α1) → (V1, β1) and t : (U2, α2) →
(V2, β2) between M -automata A1 → B1 and A2 → B2, where s and t are as
above with X0 = U1, Xn = V1, Y0 = U2, and Yn = V2, s2t is a simulation.
For every m ≥ n, φn,m(s)2φn,m(t) = φn,m(s2t). Moreover, the interchange law
(s ‖ s′)2(t ‖ t′) ≡ (s2t) ‖ (s′2t′) holds for all appropriate simulations s, t, s′, t′.

Now let s = ((si,Xi,Xi+1)| 0 ≤ i < n) be a chain U + A → U + B, and define
↑U s = ((si,Xi + U,Xi+1 + U)| 0 ≤ i < n) as a chain A → B.

U U

A A

B B

U UV

W U U

A A

B B

U UV

W

W V

s

s

a

b

=

Figure 6: The proof of Proposition 4.11

Proposition 4.11 If s : (V, α) → (W,β) is a simulation between M -automata,
where s is a chain U + A → U + B as above with X0 = V and Xn = W , then
↑U s : (V +U,α) → (W +U, β) is a simulation. Moreover, s ≡ s′ implies ↑U s ≡↑U s′,
and the interchange law ↑U (s ‖ t) = (↑U s) ‖ (↑U t) holds for all appropriate
simulations s, t.

Proof. Again, we restrict the proof to the case n = 1, and provide a diagram
for justification. The dotted feedback line in the digram of Fig. 6 indicates the
main point of the proof. Observe that the virtual trace implication does play a
crucial role in this argument. Indeed, the U-to-U cross-connection in the diagram,
although expressible in terms of composition in M , cannot be made legal without
this implication, for another V-to-V (or W-to-W) connection already exists between
the same two boxes, which connection has been established by composition. 2

Definition 4.12 Automata (U,α) and (V, β) in AutM (A,B) are simulation equiv-
alent, in notation (U,α) ∼ (V, β), if they are isomorphic according to the vertical
structure of the 2-category AutM . The category of simulation equivalent M -automata
is defined as Sim(M) = AutM/ ∼.

Example. Let A = {0, 1}, and consider the Set-automaton ∇A =↑A πA,A together
with one of its variants over the set of states A′ = {0, 0′, 1} in Fig. 7. As we
shall see in Section 5, these two automata are simulation equivalent. On the other

9

hand, the trivial one-state automaton 1I is not simulation equivalent with the two-
state automaton the transition diagram of which consists of two identical copies of
1I . These automata can simulate each other, but Definition 4.12 would require an
isomorphism between I and a two-element set in Set.

0/0

1/1

0

1

0/11/0

0/0 0/00’ 0

1/1

1

0/1 1/0

1/0

Figure 7: The automaton ∇{0,1} and its variant

Theorem 4.13 Sim(M) is a category with circular feedback.

Proof. By the interchange laws (Theorem 4.9 and Propositions 4.10, 4.11) simulation
equivalence of M -automata is compatible with composition, tensor, and feedback.
Also, Sim(M) is a quotient of Circ(M). Indeed, what makes two M -automata
equivalent as circuits in Circ(M) is, in our language, an immediate simulation that
is also an isomorphism in M . Thus, Sim(M) is a category with feedback, so ∼ can
also be considered as a congruence in Circ(M). As to the circular feedback axiom,
let f = (Wf , α) : V +A → U+B and g = (Wg, β) : U → V be M -automata. We need
to show that the morphisms ↑V (f · (g + 1B)) and ↑U ((g + 1A) · f) are simulation
equivalent in AutM (A,B). An immediate simulation s :↑U ((g + 1A) · f) →↑V

(f · (g + 1B)) is easy to find:

s = (πWg,Wf
+ 1U) · (1Wf

+ β).

W

WWW

WW

V

V A

B

U

U

f

f

gg

g

g

a

b

b

f

f

g

g

gg

a

b

b

W

WW

WWW

U

U A

B

V

V

=

Figure 8: Circularity of feedback

For a justification, see the diagram of Fig. 8. A similar diagram shows that

t = (πWf ,Wg + 1V + 1A) · (1Wg + α)

is a one-step simulation ↑V (f · (g + 1B)) →↑U ((g + 1A) · f). A simple computation
shows that s • t is exactly the combinational logic of ↑U ((g + 1A) · f) and t • s is
that of ↑V (f · (g +1B)). The result now follows from Corollary 4.4 by the definition
of indistinguishability. 2

10

α 1

α 2

α

α

U

U V

V

UV

A

B

1

1

A A A

B B B

1 2

221

2

=

1

2

Figure 9: The retiming identity

5 Universality of the Sim construction

We start out by a generalization of the circular feedback axiom. This generalization,
called the retiming identity, was first considered in [11] for synchronous systems.
The axiom, shown in Fig. 9, is the equation appearing in Lemma 5.1 below. The
notation ∇A =↑A πA,A is adopted from [5], and it identifies a register of sort A.
For convenience, we also generalize our cascade product cas so that it applies for
sequences of morphisms si : Xi+Ai → Xi+1+Bi without the restriction that Ai = A
and Bi = B for fixed objects A,B.

Lemma 5.1 For any morphisms α1 : U + A1 → V + B1 and α2 : V + A2 → U + B2

in a category with circular feedback,

(∇A1
+ 1A2

)· ↑U cas(α1 ‖ α2) = πA1,A2
· (↑V cas(α2 ‖ α1)) · πB2,B1

· (∇B1
+ 1B2

).

Proof. We present a proof covering the special case U = V = I and α2 = 1I only,
which already features the trick of pulling a register through a box. The reader can
follow the steps of this simple proof on Fig. 10. 2

== =

=

= = =

Figure 10: The proof of Lemma 5.1.

The point of retiming in general is indeed shifting a layer of registers from one side
of a “box” to the other, as introduced originally in [18] for synchronous systems.
In Fig. 9, register ∇A1

is shifted explicitly from the input side of box α1 to the
output side, whereas the register ∇U is part of the U -feedback connection coming
from box α2 and is turned into a register ∇V on the V -feedback connection from
α1 to α2. Lemma 5.1 simply says that the retiming identity is a consequence of
the circular feedback identity in monoidal categories with feedback. For this reason,
the congruence relation induced by the circular feedback identity in any monoidal
category with feedback will be called retiming equivalence; denoted ∼r.

Now we introduce two new axioms, which are aimed at capturing the sequential
behavior of the feedback operation (with delay). Let α : U + A → U + B and
β : V + A → V + B be morphisms in M , and for every n ≥ 1 construct the chains
αn = (α, . . . , α) and βn = (β, . . . , β) A → B. The sequential feedback axioms are
the following two implications in Circ(M).

11

Speed-up:

If ↑U cas(αn) ∼r↑
V cas(βn) for every sufficiently large n, then ↑U α ∼r↑

V β.

Delay:

If ∇A· ↑
U α ∼r ∇A· ↑

V β, then ↑U α ∼r↑
V β.

The rationale for the speed-up axiom is the following. Let f = (U,α) and
g = (V, β) be the M -automata associated with α and β, respectively. Then fn =
(U, cas(αn)) is essentially the same as f , except that it performs n steps of f in one
clock cycle. In other words, fn is the n-speed-up of f . Hence, if fn and gn are
retiming equivalent for all sufficiently large n, then it is natural to expect that f
and g be retiming equivalent as well.

Concerning the delay axiom, our philosophy is as follows. We know that the
input-output channels are not retimable in synchronous systems (see [7, 8]). There-
fore it does not matter if we put an extra register (morphism ∇A) on the inter-
connections starting from the input channels, retimability of f to g should not be
affected.

Theorem 5.2 If Circ(M) satisfies the sequential feedback axioms, then Sim(M) is
the free monoidal category with circular feedback generated by M .

Proof. We show that ∼⊆∼r holds in Circ(M), provided that feedback is sequen-
tial in that category. This statement, together with Theorem 4.13, implies that
∼=∼r. Given that Circ(M) is freely generated by M as a category with feedback,
Sim(M) = Circ(M)/ ∼ will also be free as a category with circular feedback.

Let f = (U,α) and g = (V, β) be M -automata A → B such that f ∼ g. By
definition, there exist simulations s : f → g and t : g → f such that s · t ≡ 1f and
t · s ≡ 1g. Spelling this out, we have:

(i) cas(s ‖ β) = cas(α ‖ s) and cas(t ‖ α) = cas(β ‖ t);
(ii) cas(αk ‖ s ‖ t) = cas(αk+n+m) and cas(t ‖ s ‖ βk) = cas(βm+n+k),

where n and m denote the length of s and t, respectively, and k is any sufficiently
large integer. Using Lemma 5.1, a short computation shows that

(∇mA + 1(n+k)A) ↑V cas(βm+n+k) = π1 ↑U cas(αk+n+m) · π2 · (∇mB + 1(n+k)B),

where π1 = πmA,(n+k)A and π2 = π(n+k)B,mB . See Fig. 11 for the case n = m = k =
1. On the other hand, directly by Lemma 5.1,

(∇mA + 1(n+k)A) ↑U cas(αm+n+k) ∼r π1 ↑
U cas(αn+k+m) · π2 · (∇mB + 1(n+k)B).

Thus,

(∇mA + 1(n+k)A) ↑V cas(βm+n+k) ∼r (∇mA + 1(n+k)A) ↑U cas(αm+n+k), so that

∇(m+n+k)A ↑V cas(βm+n+k) ∼r ∇(m+n+k)A ↑U cas(αm+n+k).

The statement now follows from the sequential feedback axioms. 2

Returning to our Example, we show that the two automata appearing in Fig. 7
are retiming equivalent, and therefore they are simulation equivalent as well. Let
δ : A × A → A × A be the transition function (with the output component) of
automaton ∇A on the left, and δ′ : A′ × A → A′ × A be that of its variant on the
right. (Remember that A = {0, 1} and A′ = {0, 0′, 1}.) Define α : A × A → A′ × A
and κ : A′ → A by α(i, j) = δ′(i, j), κ(i) = i, and κ(0′) = 0 for every i, j ∈ {0, 1}.
Then, clearly, δ = α · (κ × 1A) and δ′ = (κ × 1A) · α.

12

V

t

s

β

V

V

U

s

β

t

U

U

U

α

t

s

U

U

U

α

α

α

U

U

V

β

β

β

V

V

~r= = =

Figure 11: The proof of Theorem 5.2

In general, a state s of a finite state Mealy automaton f is called run-out if
no sufficiently long input can take f to s; otherwise s is called permanent. Denote
by P (f) the restriction of f to its permanent states, and let δ be the transition
function of P (f). Two states s and s′ of P (f) are said to be simulation equivalent
(in notation s ∼ s′) if s and s′ are bisimulation equivalent in the usual sense, and,
furthermore, for every sufficiently long input string w, δ(s,w) = δ(s′, w). (See again
the transition diagram on the right-hand side of Fig. 7 to verify that states 0 and
0′ are simulation equivalent.) The equivalence ∼ gives rise to a minimal automaton
P (f)/∼, in terms of which retiming equivalence of finite state Mealy automata can
be characterized in the following way.

Theorem 5.3 Two finite state Mealy automata f and g are retiming equivalent iff
the automata P (f)/∼ and P (g)/∼ are isomorphic.

The proof of Theorem 5.3 will be presented in a forthcoming paper.

Using the above characterization, one can prove that feedback is sequential in
Circ(Setf), where Setf is the restriction of Set to finite sets and functions. Thus,
by Theorem 5.2, we have the following important result.

Corollary 5.4 Sim(Setf) is freely generated by Setf as a category with circular
feedback.

At present we do not know if Corollary 5.4 holds for infinite state Mealy automata or
not. Nor do we know if, in general, the sequential feedback axioms are necessary for
∼r to coincide with ∼, or if any condition at all is needed to ensure this coincidence.
We conjecture, however, that ∼r=∼ holds in Circ(M) for all monoidal categories
M in which tensor is product or coproduct.

References

[1] S. Abramsky, Retracing some paths in process algebras, CONCUR’96, U. Mon-
tanari and V. Sassone, eds., Springer-Verlag, Lecture Notes in Comput. Sci.
1119 (1996) 1–17.

[2] S. Abramsky, Abstract scalars, loops, and free traced and strongly compact
closed categories, CALCO 2005, J. Fiadeiro, N. Harman, M. Roggenbach, and
J. Rutten, eds., Springer-Verlag, Lecture Notes in Comp. Sci. 3629 (2005) 1–29.

[3] A. Arnold, M. Dauchet, Théorie des magmöıdes, RAIRO Inform. Théor. 12

(1978), 235–257 and 13 (1979), 135–154.

13

[4] M. Bartha, A finite axiomatization of flowchart schemes, Acta Cybernet. 2

(1987), 203–217.

[5] M. Bartha, An equational axiomatization of systolic systems, Theoret. Comput.
Sci. 55 (1987), 265–289.

[6] M. Bartha, An algebraic model of synchronous systems, Information and Com-
putation 97 (1992), 97–131.

[7] M. Bartha, B. Čirovič, On some equivalence notions of synchronous systems,
Proceedings, 11th International Conference on Automata and Formal Lan-
guages, Dogogókő, Hungary (Z. Ésik and Z. Fülöp, eds.), 2005.

[8] M. Bartha Strong retiming equivalence of synchronous systems, Proceedings of
the International Conference CIAA’05, Sophia Antipolis, France, Lecture Notes
in Computer Science Vol. 3845/2006, pp. 66–77.

[9] S. L. Bloom, Z. Ésik, Iteration Theories: The Equational Logic of Iterative
Processes, Springer Verlag, Berlin, 1993.

[10] S. L. Bloom, Z. Ésik, Axiomatizing schemes and their behaviors, J. Comput.
System Sci. 31 (1985), 375–393.

[11] B. Čirovič, Equivalence relations of synchronous systems, Ph.D. Dissertation,
Memorial University of Newfoundland, 2000.

[12] C. C. Elgot, Monadic computations and iterative algebraic theories, in: H.E.
Rose, ed.,Logic Colloquium 73 (North-Holland, Amsterdam, 1975) 175–230.

[13] C. C. Elgot, Selected Papers (S. L. Bloom, ed.), Springer Verlag, New York,
1982.

[14] M. Hasegawa, Models of Sharing Graphs: A categorical semantics of let and
letrec, Ph.D. Thesis, Edinburgh (1997), Springer (1999).

[15] A. Joyal, R. Street, and D. Verity, Traced monoidal categories, Math. Proc.
Camb. Phil. Soc. 119 (1996), 447–468.

[16] P. Katis, N. Sabadini, and R. F. C. Walters, Bicategories of processes, J. Pure
Appl. Algebra 115 (1997) 141–178.

[17] P. Katis, N. Sabadini, and R. F. C. Walters, Feedback, trace, and fixed-point
semantics, Theoret. Informatics Appl. 36 (2002), 181–194.

[18] C. E. Leiserson, J. B. Saxe, Optimizing synchronous systems, J. VLSI Comput.
Systems 1 (1983), 41–67.

[19] S. MacLane, Categories for the Working Mathematician, Springer Verlag,
Berlin, 1971.

[20] A. Simpson and G. Plotkin, Complete axioms for categorical fixed-point oper-
ators, in Proc. 15th LICS (2000) 30–41.

[21] Gh. Ştefănescu, “Feedback Theories (A Calculus for Isomorphism Classes of
Flowchart Schemes),” Research Report 24, National Institute for Scientific and
Technical Creation, Bucharest, 1986.

14

