
Evolving Teams of Predictors

with Linear Genetic Programming

Markus Brameier Wolfgang Banzhaf

Department of Computer Science
University of Dortmund

44221 Dortmund
Germany

email: brameier,banzhaf@ls11.informatik.uni-dortmund.de

Abstract

This paper applies the evolution of GP teams to different classification and re-
gression problems and compares different methods for combining the outputs of the
team programs. These include hybrid approaches where (1) a neural network is used
to optimize the weights of programs in a team for a common decision and (2) a real-
numbered vector (the representation of evolution strategies) of weights is evolved with
each team in parallel. The cooperative team approach results in an improved training
and generalization performance compared to the standard GP method. The higher
computational overhead of team evolution is counteracted by using a fast variant of
linear GP.

1

1 Introduction

Genetic programming (GP) was formulated originally as an evolutionary method for breed-
ing programs expressed in the functional programming language LISP [6]. We employ
linear GP [9, 1], a genetic programming variant that uses sequences of instructions of
an imperative programming language, for the evolution of teams. The team approach is
applied to prediction problems including both classifications and regressions.

The linear variant of GP applied here [2] operates on genetic programs represented as
linear sequences of C instructions that operate on register variables and constants. The
linear program structure allows most of the introns, i.e. instructions that do not effect pro-
gram behavior, to be detected and removed efficiently before a genetic program is executed
during fitness calculation [2]. This does not cause any change to the individual represen-
tation in the population but results in an enormous speedup of the evolutionary process.
In particular, the elimination of the non-effective code reduces the longer processing time
caused by the evolution of teams.

Team evolution is motivated strongly by natural evolution. Many predators, e.g. lions,
have learned to hunt pray in a pack most successfully. By doing so, they have developed
cooperative behavior that offers them a much better chance to survive than single fellows.
In GP the parallel evolution of team programs is expected to solve certain tasks more
efficiently than the usual evolution of individuals. To achieve this the individual members
of a team solve the overall task in cooperation by specializing in subtasks for a certain
degree.

Team solutions require the multiple decisions of their members to be merged into a col-
lective decision. Several methods to combine the outputs of team programs are compared
in this work. The team approach not only allows the combined error to be optimized
but also an optimal composition of the programs to be found. In general the optimal
team composition is different from simply taking individual programs that are already
quite perfect predictors for themselves. Moreover, with the coevolutionary approach the
diversity of the individual decisions of a team may become an object of optimization.

This contribution also presents a combination of GP and neural networks, the weighting
of multiple team programs by a linear neural network. The neural optimization of weights
results in an improved performance compared to standard combination methods. In an-
other hybrid approach the representations of linear GP and evolution strategies (ES) [12]
are coevolved in that a vector of programs (team) and a vector of program weights form
one individual and undergo evolution and fitness calculation simultaneously.

2 Evolution of Teams

Haynes et al. [4] introduced the idea of team evolution into the field of genetic program-
ming. Since then evolution of teams has been investigated mostly in connection with
cooperating agents solving multi-agent control problems. Luke and Spector [8] tested
teamwork of homogeneous and heterogeneous agent teams in a predator/prey domain and
showed that the heterogenous approach is superior. In contrast to heterogenous teams
homogeneous teams are composed of completely identical agents and can be evolved with
the standard GP approach. Haynes et al. [5] tested a similar problem with different

2

recombination operators for heterogeneous teams. Soule [14] first applied the team ap-
proach to a non-control problem—a parity problem—by using majority voting to combine
the boolean member outputs. Recently, he [15] documented specialization in teams for a
linear regression problem and found better performance with teams when using a special
voting method but not with averaging.

In our paper the team approach is applied to three different prediction problems, two clas-
sification tasks and one approximation task. In data mining the generalization quality of
predictive models, i.e. genetic programs here, is the most important criterion. In contrast
to control tasks only heterogenous teams are of interest here, because for prediction tasks
there is nothing to be gained from the combination of the outputs of completely identical
programs (homogeneous teams).

2.1 Team Representation

In general teams of individuals can be implemented in different ways. Firstly, a certain
number of individuals can be selected randomly from the population and evaluated in
combination as a team. The problem with this approach is known as the credit assignment
problem: The combined fitness value of the team has to be shared and distributed among
the team members.

Secondly, team members can be evolved in separate subpopulations which provide a more
specialized development. In this case, the composition and the evaluation of teams might
be separated from the evolution of their members by simply taking the best individuals
from each deme in each generation and combining them. However, this raises another
problem: An optimal team is not necessarily composed of best individuals for each team
position. Specialization and coordination of the team’s individuals is not a matter of
evolution there. These phenomena might only emerge accidentally.

The third approach, favoured here, is to use an explicit team representation that is con-
sidered as one individual by the evolutionary algorithm [5]. The population is subdivided
into fixed, equal-sized groups of individuals. Each program is assigned a fixed position
index in its team (program vector). The members of a team undergo a coevolutionary
process because they are always selected, evaluated and varied simultaneously. This elim-
inates the credit assignment problem and renders the composition of teams an object of
evolution.

2
3
4

1

 Position Index

Population Team

DemeIndividual

Figure 1: Population subdivded into teams and demes.

3

Figure 1 shows the partitioning of the total population used in the experiments described
below. First, the population is subdivided into demes [16] which, in turn, are subdivided
into teams of individual programs. Exchange of genetic information between demes has
not been realized by migration of whole teams. Instead, teams (tournament winners) are
selected for recombination occasionally from different demes while their offspring inherit
code from both demes (interdemetic recombination). Demes are used because they bet-
ter preserve the diversity of a population. This, in turn, reduces the probability of the
evolutionary process to get stuck in a local minimum.

The coevolutionary approach prohibits teams of arbitrary size because the complexity of
the search space and the training time, respectively, grow exponentially with the number
of coevolved programs. On the other hand, the team size has to be large enough to
cause an improved prediction compared to the traditional approach, i.e. team size one.
Our experimental experience with this trade-off suggests that moderate numbers of team
members are often adequate (see Section 6).

2.2 Team Operators

Team representations require special genetic operators, notably for recombination. Genetic
operations on teams in general reduce to the respective operations on their members which
can be selected randomly. Haynes et al. [5] found that a moderate number of crossover
points works better than recombining either one or every team position per operation.
This is due to the trade-off between a sufficient variation, i.e. speed of the evolutionary
process, and the destructive effect of changing too many team members at the same time.

For recombination the participating individuals of the two parent teams can be chosen of
arbitrary or equal position. If recombination between team positions is forbidden com-
pletely, the members of a team evolve independently in isolated “member demes”. Luke
and Spector [8] showed for a control problem that team recombination restricted in this
way can outperform free recombination. Isolated or semi-isolated coevolution of the team
members is argued to promote specialization in behaviour.

A possible alternative to a random selection might be genetic operators that modify the
team members depending on their respective individual fitness. Members may be sorted
by error and the probability that an individual becomes a subject of mutation or crossover
depends on its error rank. By doing so, worse individuals are varied more often than better
ones on average. On the one hand, improving the fitness of worse individuals might have
a better chance to improve the overall fitness of the team. But this does not hold for all
combination methods discussed below. Beyond that, there is not necessarily a positive
correlation between better member fitness and better team fitness for each problem. On
the other hand, this technique does not allow the error of the team members to differ
much which might have a negative effect on specialization (see Section 6).

3 Combination of Multiple Predictors

In principle, this paper integrates two research topics, the evolution of teams discussed
above and the combination of multiple predictors, i.e. classifiers or regressors. In con-
trast to teams of agents, teams whose members solve a prediction problem require the
aggregation of the member’s output to produce a common decision.

4

In the neural network community different approaches have been investigated dealing with
the combination of multiple decisions in neural network ensembles [3, 10, 7]. Usually, neu-
ral networks are combined after training and are hence already quite perfect in solving
a classification or approximation problem on their own. The ensemble members are not
trained in combination and the composition of the ensemble does not undergo an opti-
mization process. In [18] neural networks are evolved and a subset of the final population
is combined afterwards. Different combination methods—including averaging and major-
ity voting—are compared while a genetic algorithm is used to search for a near optimal
ensemble composition.

For genetic programming Zhang et al. [19] applied a weighted majority algorithm in clas-
sification to combine the Boolean outputs of a selected subpopulation of genetic programs
after evolution. This approach resulted in an improvement in generalization performance,
i.e. robustness, compared to standard GP and simple majority voting, especially with
sparse and noisy training data.

The decisions of different types of classifiers including neural networks and genetic pro-
grams are combined by an averaging technique in [13]. As a result an improved prediction
of thyroid normal and thyroid carcinoma classes has been achieved in a medical applica-
tion.

3.1 Making Multiple Decisions Differ

In principle, all members in a team of predictors are intended to solve the same full task.
The problem is not artificially subdivided among the members and there are no subprob-
lems assigned to special team positions explicitly. In many real-world applications such
subdivision would not be possible because the problem structure is completely unknown.
We are interested in teams where specialization, i.e. a partitioning of the solution, emerges
from the evolutionary process itself.

Specialization strongly depends on the heterogeneity of the teams. Heterogeneity is
achieved by evolving members that produce slightly diverging outputs for the same input
situations. Nothing will be gained from the combination of the outputs of completely
identical predictors (homologous teams) as far as the quality of the solutions is concerned.
Note that this is in contrast to agent teams that solve a control task where each agent
program usually has side effects on the problem enviroment.

In genetic programming the inherent noise of the evolutionary algorithm already provides
a certain heterogeneity of the team members. Additionally, it can be advantagous to
restrict recombination between different team positions [8]. This is especially true if a
team member does not “see” the full problem and is facing a more-or-less completely
different subtask than the other members.

Otherwise, allowing interpositional recombination of teams allows innovative code to spread
to the other positions in the team. Moreover, this exchange of genetic information between
the “member demes” helps to better preserve the diversity of the overall team population.
We will see below that for teams of predictors interpositional recombination does not
necessarily reduce specialization potential and quality of results (see Section 6.3).

Besides restricted recombination there are more specific techniques to increase heterogene-
ity in teams and, thus, to promote the evolution of specialization:

5

One possible approach is to force the individuals of a team to disagree on decisions and to
specialize in different domains of the training data. This can be achieved by either using
different fitness functions for each member or by training each member with (slightly)
different datasets. Both techniques require the individual errors of the members to be
integrated into the fitness function (see Section 5.2). Otherwise, the effect of the different
input situations cannot be made known to the evolutionary algorithm. Note that only
member outputs of equal input situations can be used to calculate the combined error of
the team.

Different training subsets for the team members can be derived from the full dataset that
is used to determine the training error of the team. For instance, small non-overlapping
subsets may be left out as done with cross validation, a method used to improve the
generalization capabilities of neural networks over multiple runs. The subsets may be
sampled either at the beginning of run or resampled after a certain number of generations.
The latter technique (stochastic sampling) introduces some additional noise in the sampling
process. It allows smaller and more different subsets to be used for the individual members
since it guarantees that every team position over time is confronted with every training
example.

Finally, different function sets can be chosen for different team positions to promote
specialization as well. If recombination between different positions is allowed the team
crossover operator has to be adapted in a way that only individual members build from
the same function set are allowed to be recombined.

3.2 Combination Methods

Two main approaches can be distinguished concerning the combination of individual so-
lutions in genetic programming: Either the individuals (genetic programs) can be evolved
independently in different runs and combined after evolution, or a certain number of in-
dividuals can be coevolved in parallel as a team. The focus of this paper is on the second
approach. Post-evolutionary combination suffers from the drawback that successful com-
positions of programs are detected randomly only. That might require a lot of runs to
develop a sufficient number of individual solutions. Coevolution of k programs, instead,
will turn out to be more efficient in time than k independent runs (see Section 6.2).

The problem that arises with the evolution of teams is in the combination of the outputs
of the individual members during fitness evaluation of a team. Different combination
methods have been tested here. All methods compute the resulting team output from
a linear combination of its member’s outputs. Non-linear combination methods cannot
necessarily be expected to produce better aggregations of multiple predictions since the
actual problem, linear or non-linear, is already solved by the non-linear GP predictors.
Figure 2 illustrates the general principle of the approach.

Moreover, only basic combination methods are documented and compared in this con-
tribution. Even if there are hybridizations of the methods possible, e.g. EVOL/OPT
or EVOL/MV (weighted majority voting), the concurrent application of two combina-
tions is not necessarily more successful. We noticed that more complicated combination
schemes are rather difficult to handle for the evolutionary algorithm. These might be
more reasonable with post-evolutionary combinations of (independent) predictors. Most
of the methods—except WTA (see Section 3.2.6)—can be applied to parallel as well as to

6

o
2

oko
3

o

wkw1

w2
w3

o
1

oiwi

1 GP GP GP2 3 . . . k

in
. . .

Team

i1

GP

Σ

Figure 2: Linear combination of genetic programs.

sequentially evolved programs

For classification problems there exist two major possibilities to combine the outputs of
multiple predictors: Either the raw output values or the classification decisions can be
aggregated. In the latter case the team members act as full (pre-)classificators them-
selves. The downside is that the mapping of the continuous outputs to discrete class
identifiers before they are combined reduces the information content that each individual
might contribute to the common team decision. Therefore, we decided for the former and
combined raw outputs—except for majority voting (see below) that requires class decisions
implicitly.

Some of the combination methods are only applicable to classification tasks and are based
upon one of the following two classification methods:

• Classification with intervals (INT). Each output class of the problem definition
corresponds to a certain interval of the full range of the (single) program output.
In particular, for classification problems with two output classes the continuous
program output is mapped to class output 0 or 1 here—depending on a classification
threshold of 0.5.

• Winner-takes-all classification (WTA). Here for each output class exactly one
program output (output register) is necessary. The output with the highest value
determines the class decision of the individual. This method is especially interesting
for higher dimensional program outputs.

The following combination methods are introduced for problems with two output classes
while a generalization to more output classes is not complicated. Even more important is

7

to note that none of the methods presented here produces relevant extra computational
costs.

3.2.1 Averaging (AV)

There are different variants of combination possible by computing a weighted sum of
the outputs of the team programs. The simplest form is to use uniform weights for all
members, i.e. the simple average of k outputs as team output. In this way the influence
of each individual on the team decision is exactly the same. The evolutionary algorithm
has to adapt the team members to the fixed weighting only.

oteam =
k∑

i=1

1
k
oindi (1)

3.2.2 Weighting by Error (ERR)

An extended method is to use the fitness information of each team member for the com-
putation of its weight. By doing so, better individuals get a higher influence on the team
output than worse.

wi = 1/eβE(gpi). (2)

E(gpi) is the individual error explained in Equation (10). β is a positive scaling factor to
control the relation of the weight sizes. The error-based weighting gives lower weights to
worse team members and higher weights to better ones. In order to restrict their range
the weights always undergo normalization in that they are all positive and sum to one:

wi =

∥∥∥∥∥
wi

k∑
j=1

wj

∥∥∥∥∥ (3)

With this approach evolution decides over the weights of a program member by manip-
ulating its error value. In our experiments the individual weights are adjusted during
training using the fitness information. Using data different from the training data may
reduce overfitting of teams and increase their generalization performance. It has, however,
the drawback of increasing computation time.

In general, the error-based weighting approach has not been found to be always better
than the simple average of member outputs (see Section 6). The reason might be that the
quality of a single member solution must not be directly related to the fitness of the whole
team. If the combined programs had been evolved in single independent runs, deriving
the member weights from this independent fitness might be a better choice. In such a case
stronger dependencies between programs—that usually emerge during team evolution by
specialization—cannot be expected.

8

3.2.3 Coevolution of Weights (EVOL)

With this approach member weights are evolved in parallel with every team in the popula-
tion (see Figure 3). The real-valued vector of weights is selected together with the vector
of programs (team) by tournament selection. During each fitness evaluation the weight
vector is varied by a sequence of mutation operations (“macro mutation”). Only better
mutations are allowed to change the current state of weighting, a method typical for an
(1+1)ES [12]. The mutation operator updates single weight values by allowing a constant
standard deviation (mutation step size) of 0.02. The initial weights are randomly selected
from the interval [0, 1].

1w 3w2w kw

Weight Vector

. . .

Individual

Program Vector (Team)

1GP GP2 GP3 GPk. . .

Figure 3: Coevolution of program team and vector of weights as individual.

Alternatively, a complete (1+1)ES run might be initiated to optimize the weighting of
each team during fitness calculation. This, of course, increases the computational costs
significantly depending on the run length. It also might not be necessarily advantageous
since the program teams adapt to a given weighting situation concurrently. With our
approach optimization of the weighting is happening in coevolution with the members, not
during each team evaluation. Thus, the coevolutionary aspect that allows team solutions
to adapt to different weighting situations is the most important point here. Even if the
diversity of the population decreases at the end of a GP run there are still improvements
possible by changing the influences of the single team members.

3.2.4 Majority Voting (MV)

A special form of linear combination is majority voting which operates on class outputs.
In other words, the continuous outputs of team programs are transformed into discrete
class decisions before they are combined.

Let us assume that there are exactly two output classes, 0 and 1. Let Oc denote the subset
of team members that predict class c:

O0 := {i|oindi = 0, i = 1, .., k} (4)

O1 := {i|oindi = 1, i = 1, .., k} (5)

The class which most of the individuals predict for a given example is selected as team
output:

9

oteam =

{
0 : |O1| < |O0|
1 : |O1| ≥ |O0| (6)

Note that clear team decisions are forced for two output classes if an uneven number of
members participates. Majority voting also works with an even number of members as
long as the team decision is defined for equality (class 1 here).

3.2.5 Weighted Voting (WV)

Another voting method, weighted voting, is introduced here for the winner-takes-all classi-
fication (see above) where each team program returns exactly one output value for each of
m output classes. For all classes c these values are summed to form the respective outputs
of the team:

oteam,c =
k∑

i=1

oindi,c∀c ∈ {0, .., m} (7)

The class with the highest output value defines the response class of the team as illustrated
in figure 4.

i1

o 11 o 1m

GP1 GP GP GP2 3 . . . k

i n. . .

. . .

Team

Σ Σ Σ

o o o1 2 m. . .MAX() = o

Figure 4: Combination of genetic programs by weighted voting.

With this combination method each team individual contributes a continuous “weight”
for each class instead of a clear class decision as in Section 3.2.4. If discrete (class)
outputs would be used the method corresponds to majority voting. Here the weighting
comes from the member programs themselves. When using interval classification instead
of WTA classification each program might compute its own weight in a separate (second)
output variable.

10

3.2.6 Winner-Takes-All (WTA)

Two different winner-takes-all combination methods are presented in this contribution:

The first WTA combination variant selects the individual with the clearest class decision
to determine the output of a team. With interval classification the member output that
is closest to one of the class numbers (0 or 1) is identified as the clearest decision. The
winner may also be seen as the individual with the highest confidence in its decision.
Specialization may emerge if different members of the team win this contest for different
fitness cases.

oteam = owin (8)

If seperate outputs are used instead of output intervals (WTA classification) the clearest
decision might be defined as the biggest difference between the highest output and the
second highest output of a team member.

The second and simplest WTA combination (WTA2) just chooses the minimum output as
team output. (Note that this is by definition and could be the maximum output as well.)
This selection happens before the continuous outputs are transformed into class decisions
and is valid for interval classification. For WTA classification the member with the lowest
sum of outputs could be choosen. This combination variant is also possible for regression
problems.

Of course, it is not a feasible alternative to select the member with the best fitness. Then
a decision on unkown data is only possible if the right outputs are known in advance and
is not made by the team itself.

3.2.7 Weight Optimization (OPT)

The final approach tested here uses a linear neural network in form of a perceptron without
hidden nodes to find an optimal weighting of the team individuals. The learning method
applied is RPROP [11], a backpropagation variant about as fast as Quickprop but with
less adjustments of the parameters necessary. With this approach data is processed first
by the team programs before the neural network combines their results (see also Figure
2). Actually, only a single neuron weights the connections to the genetic programs whose
outputs represent the input layer of the linear neural network here. The outputs of the
programs are, of course, only computed once for all data inputs before the neural weighting
starts. In general, a predictor is trained using the outputs of multiple other predictors as
inputs [17].

Like with the other approaches the neural weighting might be done each time the fitness
of a team is calculated. Obviously, this has the drawback of an exponential increase in
runtime even with a small neural network and a relatively low number of epochs trained.
A much less time-consuming variant, that has been practised here, is to apply weighting
by average (AV) and to use the neural network only for optimizing the weights of the
currently best team (outside of the population). By doing so, the process of finding an
optimum weighting for the members is decoupled from the contrary process of breeding
team individuals with a more balanced share in cooperation. By applying the neural

11

weighting to all teams during evolution, instead, worse members may easily be “weighted
out” of a team just by assigning them very low weights.

We compare only linear combination methods in this paper for the following reasons:
First, non-linear combination of already non-linear predictors (genetic programs) will not
necessarily result in better performance. Second, a non-linear combinator might solve too
much of the prediction problem itself. The linear network structure assures that there is
only a weighting of program outputs possible by the neural network and that the actual,
non-linear problem is solved exclusively by the genetic programs. The combinator has
been applied here for optimization because weighting is an inherent property of neural
networks. Actually, using a non-linear (multi-layer) perceptron for the combination of the
team programs instead did not produce significantly different results here than the linear
aggregation. Moreover, the genetic programs stayed quite small (only a few effective
instructions) and could hardly be regarded as a standalone team of predictors evolved by
genetic programming.

4 Linear Genetic Programming

In the experiments described below we use linear GP, a genetic programming approach
with a linear representation of individuals that has been introduced by Nordin and Banzhaf
[9, 1]. Its main characteristic is that programs of an imperative programming language
(like C or machine code) are evolved. In tree-based GP programs are expressions of a
functional programming language (like LISP) by comparison.

In the linear GP system used for our experiments [2] an individual program is represented
as a variable length sequence of simple C instructions. All instructions operate on one or
two indexed variables vi, called registers, or on constants c from a predefined range and
assign the result to a destination variable vj , e.g. vj = vi + c. The operation set used for
the experiments in this contribution includes addition, subtraction, multiplication, division
and exponentiation.

4.1 Removing Non-effective Code

Non-effective code in a genetic program specifies instructions without any influence on
the calculation of the output for all possible inputs. These so-called introns are believed
to act as redundant code segments that protect advantageous building-blocks from being
destroyed by crossover.

The program structure in linear GP allows non-effective code to be detected and eliminated
efficiently. The intron removal algorithm presented in [2] achieves this in linear runtime
O(n), with n is the maximum length of the linear programs. Prior to fitness evaluation
the effective instructions are copied to a temporary program buffer which is executed
subsequently. By doing so, the representation of individuals in the population remains
unchanged while the computation time for non-effective code is saved (see figure 5).

By skipping the execution of the non-effective code during program interpretation the
evolutionary process is accelerated by a factor 1

1−p , with p denotes the average percentage
of redundant program part. In most experiments documented below, up to five times more
intron instructions than effective instructions have been observed resulting in a speedup

12

��
��
��
��

��
��

�
�
�
�

�
�
�
�

Individual

effective Program

Fitness
CalculationElimination

Intron
Population

Figure 5: Intron elimination in linear GP.

factor of about five. In this way, the computational costs of both, individual and team
evolution are reduced significantly through the elimination of non-effective code.

5 Experimental Setup

We examine the team approach with different combination methods discussed earlier using
two classification problems and one regression problem. First of all, the structure of the
data that represents the respective problems is documented in further detail.

5.1 Structure of Experimental Data

The heart dataset is composed of four datasets from the UCI Machine Learning Repository
(Cleveland, Hungary, and Switzerland) and includes 720 examples altogether. The input
dimension is 13 while two output classes (1 or 0) indicate the diagnosis (ill or not ill).
The heart problem incorporates noise because inputs—including continuous and discrete
values—are missing and have been completed with 0. The diagnosis task of the problem
is to predict whether the diameter of at least one of four major heart vessel is reduced by
more than 50% or not.

Two chains denotes a popular machine learning problem where two chained rings that
represent two different classes—of about 400 data points each—have to be seperated. The
two rings in Figure 6 “touch” each other at two regions without intersection.

The regression problem three functions tests the ability of teams to approximate three
different functions at the same time which consist of a sine, a logarithm and a half circle
(see Figure 7). Of course, these functions are not already part of the instruction set
(see Section 5.3). 200 data examples were sampled for each function within input range
[0, 2π]. A function index has to be passed to the genetic programs as an additional input
to distinguish the three functions.

The data examples of each problem were subdivided randomly into three sets: training
set (50%), validation set (25%) and test set (25%). Each time a new best team emerges
its error is calculated using the validation set in order to check its generalization ability
during training. From all these best teams emerging over a run the one with minimum
validation error is tested on the test set once after the training is over.

13

-1.5
-1

-0.5
0

0.5
1

1.5
2 -1.5

-1
-0.5

0
0.5

1
1.5

2

-0.4

-0.2

0

0.2

0.4

Figure 6: Two chains problem.

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6

sin(x)
log(x)

cos(asin((x - pi) / pi)) * pi

Figure 7: Three functions problem.

14

5.2 Team and Member Fitness

The fitness F of a team might integrate two major goals: the overall error of the team
E(team) and (optionally) the errors of its program members E(gpj) can be minimized.

F (team) = E(team) + δ
1
m

m∑
j=1

E(gpj) (9)

In our experiments the combined team error and the member errors are both calculated
for the complete training data. Provided that the outputs of the team members are saved
the member errors are computed with almost no additional overhead.

The influence of the average member error on team fitness is controlled by a multiplicative
parameter δ. Including the individual errors as a second fitness objective (by choosing
δ = 1) has not been observed to produce better results (see Section 6.3). If one wants
to use different training sets for the different team positions (see Section 3.1), however,
fitness shares of members are absolutely necessary. Note that the combined output of the
team is computed for equal member inputs.

In Equation (9) E denotes the error of a predictor p that is computed as the sum of square
distances between the predicted output p(~ik) and the desired output ~ok over n examples
(~ik, ~ok):

E(p) =
n∑

k=1

(p(~ik) − ~ok)2 + αCE (10)

The classification error (CE) is calculated as the number of incorrectly classified exam-
ples in Equation (10). The influence of the classification error is controlled by a weight
parameter α. For classification problems α has been set constantly to 2 in order to favour
classification quality (0 otherwise).

5.3 Parameter Settings

Parameter Setting
Number of generations 1000
Number of teams (population size) 3000
Number of team members 4
Number of varied team members 1-2
Number of demes 6
Interdemetic crossover 3%
Crossover probability 100%
Mutation probability 100%
Mutation step size for constants 5
Instruction set {+,−,×, /, pow}
Set of (integer) constants {0,..,100}
Maximum individual length (in instructions) 128

Table 1: General parameter settings.

15

Table 1 lists the parameter settings of our linear GP system used for all experiments and
problem definitions described above. The population size is 3000 teams while each team is
composed of the same number of individual members. The population has been choosen
sufficiently large to conserve diversity of the more complex team solutions. The total
number of members per team and the number of members that are varied during crossover
and mutation are the most important parameters when investigating the evolution of
teams. Different settings of these parameters are reported in further detail in the next
section.

The number of generations is limited to 1000, both for GP teams and the standard GP
approach. Note that a single individual is varied much less—one or two member per team
recombination only— than an individual during a standard GP run. While this reduces
the progress speed of single team members it does not necessarily hold for the fitness
progress of the whole team as we will see below.

A team is always varied simultaneously by crossover and mutation in our configuration.
Mutations are only applied to member positions that have been changed during recombi-
nation. In general, high mutation rates have been experienced to produce good results in
linear GP. One reason may be the relatively high rate of non-effective code by what many
mutations will stay neutral in terms of a fitness change.

A single program is not allowed to become longer than 128 instructions in our experiments.
For all tested problems this has been experienced to be a sufficient length for representing
powerful solutions. Longer programs cannot always be expected to produce better results.
The effective part of best solutions usually depends strongly on the problem and the
provided function set and does not vary much in size between runs [2]. Thus, the longer a
program becomes the more non-effective code it has to maintain. Note that an individual
program of maximum length can still vary in size of its effective code.

In genetic programming the difficulty of a test problem strongly depends on the power
the provided function set. The selected standard set of instructions—including addition,
subtraction, multiplication, protected division, and the protected power function—should
be powerful enough for not producing too restrictive solutions for the three test problems.

6 Results

We now document the results obtained by applying the different team approaches de-
scribed in 3.2 to the three problems of Section 5.1. Prediction accuracies and code sizes
are compared for the team configurations and a standard GP approach.

The team approach, in general, has been found to produce better results than the stan-
dard GP approach for all three prediction tasks. Mainly problems profit from GP teams
whose solution can at least be divided partly into subsolutions and distributed to different
problem solvers (team members). This advantage is particularly clear for data with lin-
early separable subsets. Moreover, team solutions can be expected to be less brittle and
more general in the presence of noise due to their collective decision making. If nearly
optimal solutions already emerge with the standard approach teams cannot be expected
to be benefical. In this case the additional computational overhead of the more complex
team solutions outweighs the advantages.

16

6.1 Prediction Accuracy

Table 2 summarizes the different configurations of the team approaches tested in this
contribution (see Section 3.2). The outputs of the team members are continuous except for
majority voting (MV) where the raw outputs have to be mapped on discrete class identifiers
first. Only our weighted voting approach (WV) is based on the WTA classification method.
All other methods use interval classification.

Method ID Combination Classification Outputs
GP GP — INT cont
TeamGP AV AVeraging (standard) INT cont
TeamGP OPT weight OPTimization INT cont
TeamGP ERR weighting by ERRor INT cont
TeamGP EVOL coEVOLution of weights INT cont
TeamGP MV Majority Voting INT class
TeamGP WV Weighted Voting WTA cont
TeamGP WTA Winner-Takes-All INT cont
TeamGP WTA2 Winner-Takes-All INT cont

Table 2: Configuration of the different team approaches.

The following tables compare best results of standard GP and the different team ap-
proaches for the three test problems introduced in Section 5. Minimum training error and
minimum validation error are determined among best solutions (concerning fitness) of a
run. The solution with minimum validation error is applied to unknown data at the end
of a run to compute the test error. All figures given in this paper denote average results
from series of 60 test runs. In order to avoid unfair initial conditions and to give more
reliable results each test series (configuration) has been performed with the same set of 60
random seeds.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)
GP 3.67 (0.25) 3.7 (0.25) 5.07 (0.30) 5.69 (0.37)
AV 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)
OPT 0.36 (0.07) 32.1 (0.71) 0.69 (0.09) 1.96 (0.15)
ERR 1.31 (0.15) 20.9 (1.49) 1.91 (0.20) 2.73 (0.18)
EVOL 0.33 (0.07) 28.0 (2.09) 0.71 (0.16) 2.00 (0.17)
MV 0.37 (0.08) 25.7 (1.51) 1.48 (0.17) 2.17 (0.19)
WV 0.39 (0.09) 27.7 (1.98) 0.76 (0.14) 1.91 (0.18)
WTA 0.02 (0.01) 59.2 (2.27) 0.00 (0.00) 0.33 (0.18)
WTA2 0.00 (0.00) 64.3 (1.53) 0.00 (0.00) 0.65 (0.29)

Table 3: Two chains: Classification error (CE) in percent, averaged over 60 runs. Statisti-
cal standard error in parentheses. Best results highlighted. Note that team with minimum
validation error is tested on unknown data.

Considering the classification rates for the two chains problem in Table 3 already the stan-
dard team approach (AV) reaches approximately an eight times better training performance
than standard GP. Most interesting are the results of the winner-takes-all combination that
select a single member program to decide for the team on a certain input situation. Both
team variants (WTA and WTA2) nearly always found the optimum (0% CE) for training

17

data and validation data. With standard GP the optimum solution has not even emerged
once during 60 trials here. This is a strong indication of a high specialization of the team
members. It demonstrates clearly that highly coordinated behaviour emerges from the
parallel evolution of programs. This cannot be achieved by a combination of standard GP
programs which have been evolved independently. Team evolution is much more sophisti-
cated than just testing random compositions of programs. In fact, the different members
in a team have adapted strongly to each other during the coevolutionary process.

Among the “real” team approaches which combine outputs of several individual members
WV turned out to be about as successful as OPT and EVOL. This is remarkable because
the WV method requires twice as many output values—two instead of one output per
member—to be coordinated. Furthermore, the optimization of weights is coming from the
member programs themselves within this variant.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)
GP 13.6 (0.16) 13.6 (0.16) 14.5 (0.17) 19.0 (0.36)
AV 11.5 (0.15) 28.1 (2.18) 13.4 (0.18) 18.2 (0.30)
OPT 11.5 (0.17) 32.0 (2.03) 12.8 (0.18) 17.5 (0.26)
ERR 11.9 (0.12) 28.6 (1.79) 12.9 (0.13) 18.0 (0.25)
EVOL 11.4 (0.13) 32.9 (2.39) 12.7 (0.13) 18.1 (0.28)
MV 10.9 (0.13) 24.6 (1.34) 13.6 (0.16) 17.5 (0.23)
WV 11.5 (0.11) 32.4 (2.41) 12.9 (0.15) 17.9 (0.24)
WTA 11.9 (0.17) 60.5 (2.44) 14.5 (0.22) 18.5 (0.31)
WTA2 12.9 (0.16) 61.5 (2.27) 14.9 (0.26) 19.2 (0.32)

Table 4: Heart: Classification error (CE) in percent, averaged over 60 runs. Statistical
standard error in parentheses. Best results highlighted. Note that team with minimum
validation error is tested on unknown data.

Table 4 shows the prediction results for the heart problem. This application demonstrates
not only the ability of teams in real data-mining but also in noisy problem enviroments
since many data attributes are missing or are unknown. The difference in prediction error
between GP and TeamGP is about 2% which is significant in the respective real problem
domain. The problem structure does not offer many possibilities for specialization, espe-
cially in case of the winner-takes-all approaches which do not generalize significantly better
here than the standard approach. The main benefit of the other combination methods
seems to be that they improve fitness and generalization quality for the noisy data by a
collective decision making of more than one team program.

Method Training MSE Member MSE Validation MSE Test MSE
GP 16.9 (0.90) 16.9 (0.9) 16.2 (0.98) 16.6 (0.99)
AV 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)
OPT 4.4 (0.30) 913 (69) 3.7 (0.27) 3.8 (0.27)
ERR 4.6 (0.33) 6340838 (4030041) 3.9 (0.30) 4.0 (0.30)
EVOL 3.2 (0.27) 33135 (11041) 2.6 (0.22) 2.7 (0.24)
WTA2 11.0 (0.68) 154762629 (9025326) 9.8 (0.68) 10.1 (0.68)

Table 5: Three functions: Mean square error (MSE × 100), averaged over 60 runs. Sta-
tistical standard error in parentheses. Best results highlighted. Note that team with
minimum validation error is tested on unknown data.

18

Experimental results for the three functions problem are given in Table 5. Note that
not all team variants are applicable to a regression problem. The regression task at
hand has been solved most successfully by EVOL teams. This combination variant allows
different weighting situations to be coevolved with the program teams and results in
smaller prediction errors compared to uniform weights (AV). The standard team approach
is found to be about four times better in training and generalization than the standard
GP approach. Note that the average member error can become extremely high compared
to the respective team error with this problem.

Finally, some general conclusions can be drawn from the three applications:

Teams of predictors have proven to give superior results for known data as well as un-
known data. The improved generalization performance of teams results from the increased
robustness of team solutions against noise in the data space. This, in turn, is mainly due
to the combination of multiple predictions that absorb (“smooth”) larger errors or wrong
decisions made by single members.

Comparing the different team configurations among each other further shows that different
combination methods dominate for different problems. A general ranking of the methods
cannot be produced. It is worth trying several variants when dealing with the evolution
of multiple predictors.

Some methods that allow various weighting situations outperformed the standard team
approach using uniform weights (AV). Among those methods the parallel evolution of
weights together with the team programs (EVOL) turned out to be most successful. Opti-
mizing the weights by using a neural network (OPT), instead, is done independently from
evolution here (see Section 3.2.7). Because the individuals in best teams are already quite
adapted to a fixed (uniform) weighting, optimization can not be expected to lead to the
same significant improvements.

For all three examples the average member error was highest with winner-takes-all com-
binations. This is not suprising since only one member is selected to make a final decision
for the whole team while outputs of the other team individuals could be arbitrarily worse
(WTA) or higher (WTA2) respectively. Obviously, specialization potential is highest with
this combinations. In general, the member performance in teams is significantly worse
than the performance of stand-alone GP individuals.

6.2 Code Size

The computational costs of team evolution (as compared to individual evolution) can be
paid, at least in part, by the savings obtained from the following features of linear GP
when applied to teams:

1. Only the effective code is executed.

2. The average effective code size of team members is significantly smaller than the
effective size of standalone individual solutions.

The non-effective intron code (see Section 4) does not cause any computational costs no
matter how complex it might become during the evolutionary process. Nevertheless, non-
effective code and absolute size are important for protecting the effective program parts
and for genetic diversity.

19

The second effect is demonstrated in this section by comparing effective code sizes (in
number of instructions) for different team configurations and standard GP. Only the effec-
tive program code has an influence on the fitness. If no parsimony pressure is used there is
no selection pressure on the non-effective part of code. As a result, the absolute program
size may grow almost unbounded and is limited only by the maximum size (number of
members × 128 instructions).

For the three example cases Tables 7, 6, and 8 show the effective and absolute code size of
the best solutions. All teams hold the same number (four) of members. WV combination
that is based on winner-takes-all classification produces the largest teams. Obviously,
the multiple outputs calculated by WV members increase their complexity. WTA teams
are found to be smallest in code size. Actually, they are not much bigger than a single
standard individual in effective size and might even become smaller (see Table 6). This
might be seen as another indication for the high specialization potential of the members in
those teams. Among the other variants teams with non-uniform weights, like EVOL, are
often found smaller than standard teams (AV). In general, concerning effective size teams
become only about twice as big as standard individuals. For the heart problem they are
not even 50% bigger. That means that, on average, a single member solution is definitely
smaller than an individual solution.

Because the rates of non-effective code are comparably high for all team approaches the
differences in absolute size become less significant. Note that bigger effective code requires
relatively more introns for the same protection effect. The intron rates of individual GP
solutions are lower mostly because of a relatively higher restriction by the maximum size
limit.

The average team sizes in the population (not documented) have developed quite similar
to the sizes of best teams (averaged over multiple runs). Only for the two chains problem
is the average size of WTA teams bigger. Note again that only the difference in average
effective size of teams corresponds directly to the increase in run time, when using intron
elimination in linear GP (see Section 4.1).

Method Code Size Effective Size Introns (%)
GP 128 45 64.8
AV 347 86 75.2
OPT 332 76 77.1
ERR 320 78 75.6
EVOL 294 67 77.2
MV 451 99 78.0
WW 448 124 72.3
WTA 92 33 64.1
WTA2 98 33 66.3

Table 6: Two chains: Absolute and effective code size of teams with 4 members and
standard GP in instructions. Effective code of teams is about twice as big as standard
individuals on average. WTA solutions are smaller than standard individuals. Smallest
effective length highlighted.

One reason for the reduced growth of the (effective) team members could be seen in
the lower variation probability compared to standard GP individuals. We will see in the
following Section 6.3 that it is not recommended to vary too many members concurrently

20

Method Code Size Effective Size Introns (%)
GP 128 38 70.3
AV 488 56 88.5
OPT 485 48 90.1
ERR 479 46 90.3
EVOL 481 44 90.9
MV 497 56 88.7
WV 504 68 86.5
WTA 479 57 88.1
WTA2 405 48 88.1

Table 7: Heart: Absolute and effective code size of teams with 4 members and standard GP
in instructions. Effective code of teams is not even 50% bigger than standard individuals
on average. Smallest effective length highlighted.

Method Code Size Effective Size Introns (%)
GP 128 58 54.7
AV 435 131 69.9
OPT 432 125 71.1
ERR 465 136 70.8
EVOL 456 123 73.0
WTA2 354 76 78.5

Table 8: Three function: Absolute and effective code size of teams with 4 members and
standard GP in instructions. Smallest effective length highlighted.

during a team operation. Best team prediction is obtained by varying about one member
only. If only one team member is changed the probability for crossover at a certain team
position is reduced by a factor equal to the number of members. One might conclude
that member programs grow faster the more members are varied. That this is not true is
demonstrated in the experiments documented in Table 11 and 12 further below. Members
with the best prediction accuracy and the biggest effective length emerge with the lowest
variation rate.

As a result, there must be another reason than variation speed for the relatively small
(effective) size of teams. We have already seen in the last section that teams perform better
than standard individuals after a sufficient number of generations. In order to make team
solutions more efficient there must be cooperations occuring between the members that
specialize to solve certain subtasks. These subtasks can be expected to be less difficult than
the main problem wherefore the respective subsolutions are more likely less complex in
effective size than a full one-program solution. Conclusively, a positive correlation between
smaller (effective) member size and higher degree of specialisation might be supposed.

6.3 Parameter Analysis

In this section we analyze the influence of the most relevant parameters when dealing with
the evolution of program teams. First of all, those are the number of team members (team
size) and the number of members that are selected from a team during a genetic operation.
Both prediction errors and code sizes are compared for various settings of these parameters.

21

Beyond that, two further parameters are under consideration that are of interest in this
context: the influence of free recombination between member positions and the individual
member errors on the fitness. In the preceding experiments recombination was restricted
to equal positions exclusively while the individual errors were not regarded (see Section
5.2).

It would be beyond the scope of this paper to give a detailed analysis for each team
variant and each test problem. Instead, we restrict our experiments to the standard team
approach (AV). Combination by simple average has the advantage that each member
solution has exactly the same influence on the team decision. This makes teams with
a single dominating member less likely. Even if experiments are not documented for all
problems very similar results have been observed with the other prediction tasks.

Number of Team Members

Each team member is varied by crossover or mutation with a probabilty of 50% in order
to guarantee a comparison as fair as possible. Modifying only one member at a time, for
instance, would be unfair since then the variation speed of members reduces directly with
their number. But, on the other hand, the more members are varied at the same time the
more difficult it becomes to make small improvments to the combined team output.

Table 9 compares the classification errors (CE) for the two chains problem and different
numbers of team members ranging from one (standard GP) to eight. Using teams with
more individuals might be rather computationally unacceptable even though only effective
instructions are executed in our GP system. Both prediction performance and generaliza-
tion performance increase with the number of members. But from a team size of about
four members significant improvements do not occur any more.

#Members Training CE (%) Member CE (%) Validation CE (%) Test CE (%)
1 3.33 (0.31) 3.3 (0.31) 4.70 (0.35) 5.59 (0.39)
2 1.33 (0.21) 16.5 (1.23) 2.34 (0.33) 3.31 (0.31)
3 0.89 (0.17) 23.1 (1.89) 1.59 (0.27) 2.64 (0.28)
4 0.37 (0.06) 27.4 (1.91) 0.69 (0.12) 1.84 (0.20)
5 0.36 (0.08) 32.8 (1.53) 0.47 (0.12) 1.90 (0.17)
6 0.38 (0.08) 32.6 (2.01) 0.58 (0.11) 1.76 (0.16)
7 0.30 (0.06) 30.2 (2.35) 0.48 (0.10) 1.78 (0.16)
8 0.39 (0.09) 34.1 (2.32) 0.48 (0.09) 1.76 (0.11)

Table 9: Two chains: Classification error (CE) in percent for different number of team
members, averaged over 60 runs. Statistical standard error in parentheses. Half of the
team members are varied.

The correlation between the number of members and the average code size of a member (in
number of instructions) is shown in Table 10. The maximum code size of each member is
restricted to 128 instructions. The absolute size and the effective size per member decrease
up to a certain team size (four here). Beyond that, both sizes stay almost the same. This
corresponds directly to the development in prediction quality from Table 9. Note that the
amount of genetic material of the whole team still increases with the number of members.

The reason for the reduction in effective member size can be seen in a distribution of the
problem task among the team individuals whereby the subtask each member has to fulfill

22

#Members Member Size Effective Size Introns (%)
1 128 46 64.0
2 126 36 71.4
3 98 25 74.5
4 94 20 78.7
5 82 19 76.8
6 85 21 75.3
7 75 18 76.0
8 73 18 75.3

Table 10: Two chains: Average member size in instructions for different numbers of team
members. Half of the team members are varied.

gets smaller and easier. A second indication for that might be the average member error
that has been calculated for the full training set here. As shown in Table 9 the error
increases respectively. Obviously, beyond a certain number of individuals the task can not
be split more efficiently so that some members must fulfill more-or-less the same. As a
result, members keep to a certain effective size and prediction quality.

The intron rate is not affected significantly even though genetic operators change more
members (always 50%) simultaneously in bigger teams. Only with very few members
is the rate lower. But this is due to the maximum size limit that restricts mainly the
growth of the intron code. The otherwise rather constant rate of non-effective code (and
effective code respectively) can be explained by the influence of each member on the team
output that decreases with the total number of members—especially if uniform member
weights are used. As a result, the intervention of crossover should be almost the same for
all configurations (in contrast to Table 11) and higher protection by more introns is not
needed. Moreover, this is also an explanation of why team errors in Table 9 do not get
worse again from a certain number of individuals.

Number of Varied Members

As stated above best results occur when only a moderate number of team members, i.e.
one or two, is varied simultaneously by crossover or mutation. This is demonstrated in
Table 11 where the number of varied members ranges from one to a maximum of four
while the team size stays fixed. Prediction and generalization performance are found best
if only one individual is varied at a time.

#Varied Members Training MSE Member MSE Validation MSE Test MSE
1 4.1 (0.37) 903 (92) 3.4 (0.30) 3.7 (0.36)
2 5.4 (0.47) 730 (73) 4.8 (0.45) 4.9 (0.47)
3 6.5 (0.44) 538 (50) 5.5 (0.38) 6.3 (0.48)
4 8.3 (0.66) 421 (53) 7.1 (0.61) 7.6 (0.70)

Table 11: Three functions: Mean square error (MSE × 100) with different numbers of
varied members, averaged over 60 runs. Statistical standard error in parentheses. Number
of team members is 4.

Table 12 demonstrates the correlation between the number of varied team members and

23

the code size of teams. Interestingly, effective and absolute code size reduce with the
variation strength. Although the variation probability per member is lowest if only one
member is varied during a team operation the (effective) code is biggest. Concurrently, the
overall prediction accuracy of team increases while the (average) member error is highest
with the lowest level of variation in Table 11. Some reasons can be found to explain these
phenomena:

#Varied Members Code Size Effective Size Introns (%)
1 440 148 66.4
2 424 125 70.5
3 388 113 70.9
4 320 99 69.1

Table 12: Three functions: Code size of team in instructions for different numbers of varied
members. Number of team members is 4.

The main reason might be the fact that, in general, smaller steps in variation allow more
directed improvements of a solution than bigger steps. In particular, single team individ-
uals may specialize stronger within the collective. By doing so, their errors in relation to
a solution of the overall task as well as their complexity increase. As already observed in
Section 6.1 higher member errors correspond to a higher degree in specialization again.

On the other hand, the effect of variation on a team becomes more destructive the more
members participate in it. Then it might be easier for smaller (effective) team solutions to
survive during evolution. The intron rate is not affected significantly, i.e. the proportion
of effective and non-effective code stays rather constant.

Interpositional Recombination

It has been argued in Section 3.1 that in teams of multiple predictors—where by definition
each member solves the same problem—allowing recombination between different member
positions might be more successful than restricting it to equal positions only (intraposi-
tional recombination). Only by interpositional recombination member code can be moved
from one position to another in the team.

Tables 13 and 14 show results for restricted and non-restricted recombination when using
combination by simple average (AV). Actually, free recombination performs slightly better
than restricted recombination with the tested problems. At least, it does not seem to have
any negative influence here. Thus, intrapositional recombination might be less relevant
when dealing with teams of predictors. Experiments with other combination methods
produced comparable results.

Recombination Training MSE Member MSE Validation MSE Test MSE
free 0.34 (0.05) 25.7 (1.42) 0.65 (0.10) 1.82 (0.11)
restricted 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)

Table 13: Two chains: Classification error (CE) in percent, averaged over 60 runs, with
restricted (reprinted from Table 3) and non-restricted recombination. Statistical standard
error in parentheses.

24

Recombination Training MSE Member MSE Validation MSE Test MSE
free 4.4 (0.27) 682 (44) 3.7 (0.23) 3.8 (0.23)
restricted 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)

Table 14: Three functions: Mean square error (MSE × 100), averaged over 60 runs, with
restricted (reprinted from Table 5) and non-restricted recombination. Statistical standard
error in parentheses.

Member Fitness

Finally, we investigate the effect of including (δ = 1) or not including (δ = 0) the average
member error in the fitness function (Equation 9). Results documented in Tables 15 and
16 for weighting by average have been found to be representative for other combination
methods, too. The average fitness of team members becomes significantly better. Actually,
this reduces the specialization potential of members because the cooperating individuals
are restricted to be good predictors on their own. As a result, the quality of team prediction
decreases significantly if individual errors are included.

If, on the other hand, individual errors are not included in the fitness function there is no
direct relation between fitness of a single member and the quality of the common team
solution. This allows the errors of members to differ quite strongly within a team and to
be significantly larger than the team error.

δ Training MSE Member MSE Validation MSE Test MSE
0 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)
1 1.91 (0.21) 12.4 (0.61) 3.00 (0.25) 3.92 (0.28)

Table 15: Two chains: Classification error (CE) in percent, averaged over 60 runs, with
and without including member fitness in Equation (9). Statistical standard error in paren-
theses.

δ Training MSE Member MSE Validation MSE Test MSE
0 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)
1 19.4 (0.49) 34.6 (1.6) 18.0 (0.49) 18.1 (0.51)

Table 16: Three functions: Mean square error (MSE × 100), averaged over 60 runs, with
and without including member fitness. Statistical standard error in parentheses.

7 Future Research and Discussion

First of all, it is interesting to determine problem classes for which the team approach
is suitable in general or for which it cannot produce better results than the standard
approach.

The exchange of information between the individuals of a team might help to evolve a
better coordinated behaviour. One possiblity in linear GP is, for instance, to share some
calculation variables between team members that together implement a collective memory.
Values can be assigned to these variables by one individual and used by others that are

25

executed later on. Note that with using a shared memory the evaluation order of the
team members has to be observed. Another possible form of information sharing is the
coevolution of submodules (ADFs) with each team that can be used by all its members in
common (shared submodules).

Moreover, an implicit form of shared registers could be realized with linear GP if single
program solutions themselves make multiple predictions in more than one output. These
outputs can be combined by using the same methods as proposed for team solutions. If
enough registers are provided complementary subsolutions may be computed in more-or-
less independent sets of registers within the same program. As a result, the effective code
can be expected longer than in solutions with a single output only.

Teams offer the possibility for an alternative parallelization approach in genetic program-
ming that is different from distributing subpopulations of individuals to multiple pro-
cessors. The member programs of a team can be executed in parallel by assigning each
member to its own processing unit. If all members of the same position index (“member
deme”) belong to the same unit and interpositional recombination is not applied then
migration of program code between processing nodes is not necessary. The only commu-
nication overhead between the units would be the exchange of team identifier and team
outputs.

Further research might be done to investigate the numerous alternatives in more detail
that have been given in the text.

A downside of team solutions could be that they are probably more difficult to analyze
than single genetic programs. But because already single solutions are often quite difficult
to understand this might be a rather negligible disadvantage. Moreover, a combination of
subsolutions can be more simple than a one-program solution as well.

8 Conclusion

The team approach has been applied successfully to several prediction problems and has
been found to improve both the training fitness and the generalization performance signif-
icantly. Different methods for combining multiple decisions of team members turned out
to be the most successful ones. The effective complexity of teams was found to be small
compared to individual solutions in linear GP. Thus, the evolution of GP teams becomes
efficient because non-effective instructions are removed from the linear genetic programs
before execution.

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG), collabora-
tive research center SFB 531, project B2.

References

[1] W. Banzhaf, P. Nordin, R. Keller and F. Francone, Genetic Programming — An
Introduction. On the automatic Evolution of Computer Programs and its Application.

26

dpunkt/Morgan Kaufmann, Heidelberg/San Francisco, 1998.

[2] M. Brameier and W. Banzhaf, A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining. IEEE Transactions on Evolutionary Com-
putation, 5(1):17–26, 2001.

[3] L.K. Hansen and P. Salamon, Neural network ensembles. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[4] T. Haynes, S. Sen, D. Schoenefeld, and R. Wainwright, Evolving a team. In Working
Notes for the AAAI Symposium on Genetic Programming, MIT Press, Cambridge,
MA, 1995.

[5] T. Haynes and S. Sen, Crossover operators for evolving a team. In In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick
L. Riolo (eds.) Genetic Programming 1997: Proceedings of the Second Annual Con-
ference, 162–167, Morgan Kaufmann, San Francisco, CA, 1997.

[6] J. Koza, Genetic Programming. MIT Press, Cambridge, MA, 1992.

[7] A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active
learning. In G. Tesauro, D.S. Touretzky and T.K. Leen (eds.) Advances in Neural
Information Processing Systems, 7:231–238, MIT Press, Cambridge, MA, 1995.

[8] S. Luke and L. Spector, Evolving teamwork and coordination with genetic program-
ming. In J.R. Koza, D.E. Goldberg, David B. Fogel, and Rick L. Riolo (eds.) Genetic
Programming 1996: Proceedings of the First Annual Conference, 150–156, MIT Press,
Cambridge, MA, 1996.

[9] P. Nordin, A Compiling Genetic Programming System that Directly Manipulates the
Machine-Code. In K.E. Kinnear (ed.) Advances in Genetic Programming, 311–331,
MIT Press, Cambridge, MA, 1994.

[10] M.P. Perrone and L.N. Cooper, When networks disagree: Ensemble methods for neural
networks. In R.J. Mammone (ed.) Neural Network for Speech and Image Processing,
126–142, Chapman-Hall, London, 1993.

[11] M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In Proceedings of the IEEE International Conference
on Neural Networks, 586–591, San Francisco, CA, 1993.

[12] H.-P. Schwefel, Evolution and Optimum Seeking. Wiley, New York, 1995.

[13] R.L. Somorjai, A.E. Nikulin, N. Pizzi, D. Jackson, G. Scarth, B. Dolenko, H. Gordon,
P. Russell, C.L. Lean, L. Delbridge, C.E. Mountford and I.C.P. Smith, Computerized
Consensus Diagnosis — A Classification Strategy for the Robust Analysis of MR
Spectra. 1. Application to H-1 Spectra of Thyroid Neoplasma. Magnetic Resonance in
Medicine, 33:257–263, 1995.

[14] T. Soule, Voting Teams: A cooperative approach to non-typical problems using genetic
programming. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M.
Jakiela and R.E. Smith (eds.) Proceedings of the International Conference on Genetic
and Evolutionary Computation, 916–922, Morgan Kaufmann, San Francisco, CA,
1999.

27

[15] T. Soule, Heterogeneity and Specialization in Evolving Teams. In Darrell Whitley,
David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer
(eds.) Proceedings of the Second International Conference on Genetic and Evolution-
ary Computation, 778–785, Morgan Kaufmann, San Francisco, CA, 2000.

[16] W.A. Tackett, Recombination, Selection and the Genetic Construction of computer
programs. Ph.D. thesis, University of Southern California, Department of Electrical
Engineering Systems, 1994.

[17] D.H. Wolpert, Stacked Generalization. Neural Networks, 5(2):241–260, 1992.

[18] X. Yao and Y. Liu, Making use of population information in evolutionary artificial
neural networks. IEEE Transactions on Systems, Man and Cybernetics, 28B(3):417–
425, 1998.

[19] B.-T. Zhang and J.-G. Joung, Enhancing Robustness of Genetic Programming at the
Species Level. In J.R. Koza, D.E. Goldberg, David B. Fogel, and Rick L. Riolo (eds.)
Genetic Programming 1996: Proceedings of the First Annual Conference, 336–342,
MIT Press, Cambridge, MA, 1996.

28

