
Complexity of Expanding a Finite Structure and Related Tasks

Antonina Kolokolova, Yongmei Liu, David Mitchell, Eugenia Ternovska

September 21, 2006

Abstract

The authors of [MT05] proposed a declarative constraint programming framework based on
classical logic extended with non-monotone inductive definitions. In the framework, a problem
instance is a finite structure, and a problem specification is a formula defining the relationship
between an instance and it’s solutions. Thus, problem solving amounts to expanding a finite
structure with new relations, to satisfy the formula.

We present here the complexities of model expansion for a number of logics, alongside those
of satisfiability and model checking. As the task is equivalent to witnessing the existential
quantifiers in ∃SO model checking, the paper is in large part of a survey of this area, together
with some new results. In particular, we describe the combined and data complexity of FO(ID),
first-order logic extended with inductive definitions [DT04] and the guarded and k-guarded
logics of [AvBN98] and [GLS01].

1 Introduction

A celebrated theorem of Fagin [Fag74] stating that existential second order logic (∃SO) exactly
captures the complexity class NP was the first result that led to the development of descriptive
complexity [Imm99], an area studying the relationship between logics and complexity classes. From
the practical point of view, descriptive complexity results provide a way for logics to be viewed as
“programming languages” for the corresponding classes. This, in turn, suggests taking the idea of
logics as programming languages as the basis for practical tools. In particular, in the framework
of [MT05], search problems are cast as model expansion (abbreviated MX), which is the task of
witnessing the (first block of) existential second order quantifiers in a SO sentence.

Although even in the case of model expansion for unrestricted first-order logic (that is, NP search
problems) this approach can be useful thanks to the strength of modern SAT solvers, a natural
question is for which logics model expansion is practical. For example, the extension of classical logic
with inductive definitions [DT04] allows for a convenient way of representing recursion, including
recursion through negation. The use of guarded and k-guarded fragments was motivated by the
need for efficient grounding (reduction to SAT).

In this paper, we summarize complexity results for the model expansion problem, and try to fill in
the gaps for the logics for which such fragments have not been studied. In particular, we analyze
complexity of model expansion for ID-logic of [DT04] and guarded logics. The following table gives
an overview of the complexity and expressibility results presented in this paper.

1

Logic Model checking Model expansion Satisfiability
Combined Data Combined Data (finite)

FO PSPACE-c
[Sto74]

≡BITAC
0

[BIS90]
NEXP -c
[Var82]

≡ NP [Fag74] undec [Tra50]

FO(LFP) EXP -c
[Var82]

=s P [Imm82,
Var82, Liv82]

NEXP -c ≡ NP undec

FO(ID) EXP -c =s P NEXP -c ≡ NP undec
FOk P -c ∈ AC0 NP -c NP -c, 6≡ NP k ≥ 3: undec

[Var95] k = 2: NEXP -c
k = 1: EXP -c

GFk P -c ∈ AC0 NEXP -c k ≥ 2: ≡ NP k ≥ 2: undec
[GO99, GLS01] k = 1: NP -c k = 1: 2EXP -c

RGFk:NP -c RGFk: NP -c, 6≡ NP [Grä99]
µGF UP ∩ co-UP ∈ P NEXP -c NP -c 2EXP -c [GW99]
GFk(ID) ∈ EXP ∈ P NEXP -c k ≥ 2: ≡ NP k ≥ 2: undec

Table 1: Complexity of model checking, model expansion and satisfiability problems for some logics

2 Preliminaries and definitions

In this section we review standard notions of “complexity” of a logic, that is, data and combined
complexity for Model Checking, Finite Satisfiability and Model Expansion problems.

For a given logic L, we consider complexity of three problems.
1. Model Checking (MC): given (A, φ), where φ is a sentence in L and A is a finite structure for
vocab(φ), does A � φ?
2. Model Expansion (MX): given (A, φ), where φ is a sentence in L, A is a finite σ − structure
where σ ⊂ vocab(φ), Is there A′ for vocab(φ) which expands A and A′ � φ?
3. Finite Model Existence (satisfiability in finite): given a sentence φ in L, is there a finite A for
vocab(φ) such that A � φ?
The first and the last of these problems have been studied for a long time. We focus our attention
on the Model Expansion problem.

Example: Let A be a graph G = (V ;E), and let φ be ∀x∀y [(Clique(x) ∧ Clique(y)) ⊃ (x =
y ∨ E(x, y))]. Let B be an expansion of A to vocab(φ). Then B |= φ iff CliqueB is a set of vertices
that forms a clique in B.

For each of the problems (except satisfiability) we consider two notions of complexity (introduced
by [Var82]; here we are following [Lib04] presentation). Let enc() denote some standard encoding
of structures and formulae by binary strings.

Definition 2.1. Let K be a complexity class and L a logic.

• The data complexity of L is K if for every sentence φ of L the language {enc(A)|A |= φ}
belongs to K. The combined complexity of L is K if the language {(enc(A), enc(φ))|A |= φ}
belongs to K.

• Let C be a class of finite structures. L captures K on C (L ≡C K) if data complexity of L
is K and for every property of P of structures from C that can be tested with complexity K
there is a sentence φP of L such that A |= φP iff A has property P , for every A ∈ C. We say
that MX for a logic L captures a complexity class K if K is captured by ∃SO(L).

2

Notice that the complexity of MX is trivially between complexities of MC and satisfiability, since
in that case, a part of the input structure is given. E.g. in the case of FO, we avoid undecidability
by fixing the universe.

3 Complexity of MX for first-order logic

Complexity of model checking and satisfiability for first-order logic were determined several decades
ago. The combined complexity of model checking for FO is PSPACE-complete by reduction to
QBF [Sto74]. The data complexity of FO is complete for AC0; moreover, FO captures AC0 over
structures with BIT predicate (or arithmetic structures) [BIS90].

A host of complexity results for MX problems can be obtained from the fact that complexity of
MX for a logic L is equivalent to the complexity of model checking for ∃SO(L). That is, there
exists an expansion of a structure A if there exist interpretations for the expansion predicates,
or, equivalently, if A satisfies the original formula of L preceded by existential quantifiers for all
expansion predicates.

Theorem 3.1. The combined complexity of MX problem for first-order logic is NEXP -complete
and data complexity is NP -complete. Moreover, every property in NP is expressible as an MX
problem for some first-order sentence.

Proof. The NEXP -completeness for MX of FO is implicit in the proof of expression complexity
of ∃SO from [Var82] (a different proof is presented in [MT05].) NP -completeness follows immedi-
ately from Fagin’s theorem (NP -completeness of ∃SO) [Fag74], since MX problem for a logic L is
equivalent to model checking for ∃SOL by existentially quantifying all expansion predicates.

This also allows us to capture levels of polytime hierarchy: complexity of MX for Πi is Σi+1.

Remark 3.2. In some cases, the only information about the model that is given as an instance
for the model expansion is the size of the model (i.e., the instance vocabulary σ is empty). In that
case, it is reasonable to give the size of a model as a number in binary notation. This leads to an
exponential increase in complexity (since the structure itself is exponential in the size of the input).

Although data complexity of model expansion for full first-order logic is NP -complete, there are
fragments of FO for which model expansion is feasible. In particular, the results of [Grä92] translate
into the following result.

Definition 3.3. A universal Horn formula is a first-order formula consisting of a conjunction of
Horn clauses, preceded by universal first-order quantifiers. Here, a clause is Horn if it contains
at most one positive occurrence of an expansion predicate. A universal Krom formula is defined
similarly, except that the restriction is at most two occurrences of expansion predicates per clause.

Theorem 3.4. The data complexity of the MX problem for universal Horn and Krom formulae is,
respectively, P -complete and NL-complete. Moreover, MX for universal Horn and Krom captures
P and NL, respectively, over successor structures.

3

4 Complexity of MX for guarded fragments of FO

The guarded fragment GF of FO was introduced by Andréka et al. [AvBN98], and has recently
received considerable attention. Here any existentially quantified subformula φ must be conjoined
with a guard, i.e., an atomic formula over all free variables of φ. Gottlob et al. [GLS01] extended
GF to the k-guarded fragment GFk where the conjunction of up to k atoms may act as a guard.

The combined complexity of MC for GFk is P -complete [GO99, GLS01]. In particular, MC for GFk

can be done in time O(lnk), where l is the size of the formula, and n is the size of the structure
[LL03]. The finite satisfiability problem for GF is 2EXP -complete [Grä99].

In this section, we discuss complexity of MX for GFk: we show that the combined complexity of
MX for GFk, k ≥ 1, is the same as that for FO, and MX for GFk, k ≥ 2, captures NP just as
MX for FO does. We also identify a fragment of GFk, which we denote by RGFk, such that the
combined complexity of MX for RGFk is NP -complete. Although the data complexity of MX for
RGFk is NP -complete, we show that it does not capture NP . As a corollary of our main results,
we show that finite satisfiability for GF2 is undecidable.

Formally, GFk is defined as follows:

Definition 4.1. The k-guarded fragment GFk of FO is the smallest set of formulas such that
1. GFk contains atomic formulas;
2. GFk is closed under Boolean operations;
3. GFk contains ∃x̄(G1 ∧ . . . ∧ Gm ∧ φ), if the Gi are atomic formulas, m ≤ k, φ ∈ GFk, and the
free variables of φ appear in the Gi. Here G1 ∧ . . . ∧Gm is called the guard of φ.

A fragment of GFk that is of particular interest to MX is RGFk, which we use to denote sentences
from GFk in which all guards are given by the instance structure (i.e., no expansion predicates
appear in guards). Let FOk denote FO formulas that use at most k distinct variables. Then it is
easy to see that any FOk formula can be rewritten in linear time into an equivalent one in RGFk,
by using atoms of the form x = x as parts of the guards when necessary. For example, the formula
∃x∃y[R(x) ∧ E(x, y)] can be rewritten into ∃x∃y[R(x) ∧ y = y ∧ E(x, y)], where R is an instance
predicate, and E is an expansion predicate.

Lemma 4.2. There is a polynomial-time algorithm that, given an arbitrary ∃SO sentence, con-
structs an equivalent ∃SO sentence whose first-order part is in GF2.

Proof. Suppose φ is a ∃SO sentence ∃X1 . . .∃Xm ϕ, where ϕ is an FO formula. Let l be the size
of φ, and let k be the width of ϕ, that is, the maximum number of free variables in any subformula
of ϕ. We introduce k new predicates U1, . . ., Uk such that the arity of Ui is i, 1 ≤ i ≤ k. Let ϕ′ be
the formula obtained from ϕ by replacing any subformula ∃x̄ ψ(x̄) with ∃x̄(Ui(x̄) ∧ ψ(x̄)) and any
subformula ∀x̄ ψ(x̄) with ∀x̄(Ui(x̄) ⊃ ψ(x̄)), where i is the length of x̄. Let η be the formula

k−1∧
i=0

∀x1 . . .∀xi+1(x1 = x1 ∧ Ui(x2 . . . xi+1) ⊃ Ui+1(x1 . . . xi+1)).

It is easy to see that any model of η interprets Ui as the i-ary universal relation, 1 ≤ i ≤ k. Now let
φ′ be the ∃SO sentence ∃X1 . . .∃Xm∃U1 . . .∃Uk (ϕ′ ∧ η). Clearly, ϕ∧ η ∈ GF2, and φ′ is equivalent
to φ. Also, both ϕ′ and η are of size O(l2), and hence φ′ is of size O(l2).

4

Lemma 4.3. There exists a polynomial-time algorithm that, given a structure M and an ∃SO
sentence φ, constructs a structure M ′ and an ∃SO sentence φM such that the first-order part of
φM is in GF1, and M |= φ iff M ′ |= φM .

Proof. Suppose M is a structure, and φ is an ∃SO sentence. Let n be the size of M , and let l be
the size of φ. For each domain element a of M , we introduce a new constant symbol ca. Let M ′ be
the structure that expands M by interpreting ca as a. Let φ′ be the ∃SO sentence constructed from
φ as in the proof of the above lemma. Now let φM be the sentence obtained from φ′ by replacing
each subformula ∀x1 . . .∀xi+1(x1 = x1 ∧ Ui(x2 . . . xi+1) ⊃ Ui+1(x1 . . . xi+1)) with∧

a∈dom(M)

∀x2 . . .∀xi+1(Ui(x2 . . . xi+1) ⊃ Ui+1(cax2 . . . xi+1)).

Clearly, the first-order part of φM is in GF1, M |= φ iff M ′ |= φM , and the size of φM is O(l2n).

Theorem 4.4. (1) The combined complexity of MX for GFk, k ≥ 1 is NEXP-complete. (2) MX
for GFk, k ≥ 2 captures NP.

Proof. (1) follows from Lemma 4.3 and that the combined complexity of MX for FO is in NEXP.
(2) follows from Lemma 4.2 and that MX for FO captures NP.

Lemma 4.5 ([MT05]). 3-SAT can be reduced to MX for a formula φ ∈ RGF1.

Proof. Suppose Γ = {C1, . . . , Cm} is a set of 3-clauses. Let A be the structure with universe
{a,¬a | a ∈ atoms(Γ)} such that A interprets Clause as the set of clauses in Γ and interprets
Complements as the set of complementary literals. Let φ be

∀x∀y∀z(Clause(x, y, z) ⊃ True(x) ∨ True(y) ∨ True(z))
∧ ∀x∀y(Complements(x, y) ⊃ (True(x) ≡ ¬True(y))).

Clearly, φ ∈ RGF1, and Γ is satisfiable iff A can be expanded to a model of φ.

We quote the following result concerning polynomial-time grounding of RGFk sentences:

Lemma 4.6 ([PLTG06]). There exists an algorithm that, given a structure A and a RGFk sen-
tence φ, constructs in O(l2nk) time a propositional formula ψ such that A can be expanded to a
model of φ iff ψ is satisfiable, where l is the size of φ, and n is the size of A.

Theorem 4.7. (1) The combined complexity of MX for RGFk is NP-complete. (2) The data
complexity of MX for GF1 and RGFk is NP-complete. (3) MX for RGFk and hence also FOk does
not capture NP .

Proof. (1) follows from Lemmas 4.6 and 4.5. (2) follows from Lemma 4.5 and that the data
complexity of MX for FO is in NP. (3): Since SAT can be decided in nondeterministic O(n2) time,
by Lemma 4.6, MX for RGFk can be decided in nondeterministic O(n2k) time. By Cook’s NTIME
hierarchy theorem [Coo73], for any i > 2k, there is a problem that can be solved in nondeterministic
O(ni) time but not nondeterministic O(ni−1) time. Thus there are infinitely many problems in NP
that cannot be expressed by MX for RGFk.

Theorem 4.8. The finite satisfiability problem for GFk, k ≥ 2 is undecidable.

Proof. By the proof of Lemma 4.2, finite satisfiability for FO can be reduced to that for GF2.

5

5 Complexity of ID-logic

One disadvantage of first-order logic as a programming language is its lack of mechanism for re-
cursion and induction. Therefore, a natural way to extend first-order logic is by adding inductive
definitions. One such approach, called ID-logic, is presented in [DT04]. ID-logic is an extention of
classical logic in which (non-monotone) definitions can appear as atomic formulae.

Definition 5.1. An inductive definition ∆ is a set of rules of the form ∀x̄(X(t̄)← φ) where X is
a predicate symbol (constant or variable) of arity r, x̄ is a tuple of object variables, t̄ a tuple of
object variables of length r, φ is an arbitrary first-order formula.

The semantics of the logic is defined by the standard truth recursion of classical logic, augmented
with one additional rule saying that a valuation I satifies a definition D if it is the 2-valued well-
founded model of this definition, as defined in the context of logic programming.

Example 5.1. Consider formula ∆even(E) ∧ ∀x(E(x) ∨O(s(x))), where

∆even ≡
{

E(x) ← x = 0
E(s(s(x))) ← E(x) ∧ ¬E(s(x))

}
.

This formula states that every number is either even or odd. Definition ∆even is one of possible
definitions of even numbers, which is total on natural numbers, but not on integers.

Remark 5.2. Note that in the model-checking context all predicates mentioned in a formula of
ID-logic such as those defined in the definition are provided as part of the structure. That is, a
formula is true on exactly those structures that provide interpretations for defined predicates that
satisfy the definitions; this amounts to value-checking problem rather than value existence.

5.1 Equivalence of model checking for FO(ID) and FO(LFP)

In this section we show that first-order logic with inductive definitions, FO(ID) can be simulated by
first-order logic with least fixed point operator, FO(LFP) and vice versa (using additional relational
variables). This allows us to transfer known complexity results for FO(LFP) to FO(ID) logic.
Here we only talk about first-order logic with inductive definitions; therefore, we will use FO(ID)
and ID-logic interchangeably.

Lemma 5.3. Model checking for ID-logic can be simulated by model checking for FO(LFP) on the
same structure.

Proof. Since interpretations of all predicates are provided by the instance structure, each definition
can be evaluated independently. Therefore, it is sufficient to show how to encode a single definition
∆ (which can have multiple defined predicates) by a FO(LFP) formula. If a definition is not total
on I0, we need to ensure that there is no model for the whole theory. Then we can use evaluated
definitions to construct a FO(LFP) formula corresponding to the original formula of ID-logic.

A definition ∆ for a given initialization of open predicates from I0 is evaluated as follows.

Replace in ∆ all occurrences of Xi by X ′
i for new variables X ′

i. For example, a rule ∀x̄(Xi(t̄(x̄))←
¬Xj(t̄′(x̄))) becomes replaced with ∀x̄(Xi(t̄(x̄))← ¬X ′

j(t̄
′(x̄))) Let φ be a formula encoding ∆ after

this substitution.

6

Computing one (double) step of the evaluation (a step corresponding to evaluating φ with I and
then J giving the values for negated literals) becomes

ψ ≡ LFPx̄,X̄φ([LFPx̄,X̄φ]j/X ′
j), (*)

by semantics of ID-logic. Here fixpoints are simultaneous on all Xi and the notation [LFPx̄,X̄φ]j/X ′
j

means replacing the occurrences of X ′
j in φ with the fixpoint of Xj in the simultaneous least fixed

point of φ over all X̄.

To simplify the presentation assume, using the fact that simultaneous LFP is equivalent to LFP,
that a variable X encodes all variables Xi. Then, the simultaneous LFPs from ψ become just LFPs.

Let Y be a variable encoding the fixpoint of X after the double step (∗). This variable is used
to initialize X ′

i before the next double step. Since after each step ψ the variable Y contains the
partial truth assignments on structure I after ith (double) step of the evaluation procedure, Y is
monotone. Therefore, there exists a fixpoint of Y defined by ψ, and it is the least fixed point.
Therefore, the formula

Ψ∆(ū) ≡ [LFPȳ,Y ψ(Y)]ū

computes the values of the defined predicates in φ whenever the fixpoint exists. This is also true
when Y is treated as a list of predicates X1 . . . Xk being defined in ∆, in which case LFP in Ψ∆ is
a simultaneous fixed point.

It is possible, though, that the value computed using the upper bound estimation (the innermost
LFP of the double step (∗)) is different from the outer LFP in the double step. If this is the case,
then the following formula is false:

CONS∆ ≡ ∀z̄([LFPȳ,Y ψ(Y)]z̄ ↔ LFPx̄,X̄ψ(x̄, LFPȳ,Y ψ(Y)/X ′
i))[z̄] (1)

Suppose now that the theory of ID-logic is defined by a formula with multiple definitions. Let
φ′ be a first-order formula with occurrences of definitions ∆1 . . .∆m for some m. To simplify the
presentation, view each definition as defining one predicate Pi. If the fixpoint of ∆i exists, then
∀x̄Pi(x̄)↔ Ψ∆i(x̄), so occurrences of Pi in φ′ can be treated as occurrences of Ψ∆i . From the point
of view of evaluation, it is more efficient to compute Pi ≡ Ψ∆i and then refer just to Pi.

Finally, φ′ is converted to a formula

Φ ≡
m∧

i=1

CONS∆i ∧ φ′((∀x̄(Pi(x̄)↔ Ψ∆i(x̄)))/∆i)

That is, Φ is a conjunction of two parts: the conjunction of consistency formulas ensures that all
definitions were total, and φ′, which is the same as the original formula except all definitions are
replaced by the FO(LFP) formulas computing them.

The resulting formula is in FO(LFP), which completes this direction of the proof.

Example 5.2. Recall the formula from example 5.1 stating that every number is either even or odd.
The following describes a construction of an equivalent FO(LFP) formula.

A formula corresponding to ∆even becomes, after replacing ¬E with ¬E′,

{(φE(x,E,E′) ≡ (∃y(x = y ∧ y = 0)) ∨ (∃y(x = s(s(y)) ∧ E(y) ∧ ¬E′(s(y))))}.

7

Define ψE(z,E′) ≡ [LFPx,EφE(x,E,LFPE,xφE(x,E,E′)))]z. This computes one iteration of the
stable operator ST 2

∆.

Now, Ψ∆ ≡ LFPz,E′ψE(z,E′). Consistency is checked by ∀uΨ∆(u) ↔ [LFPx,EψE(x,E,Ψ∆)]u.
Now, the final formula becomes

(∀uΨ∆(u)↔ [LFPx,EψE(x,E,Ψ∆)]u) ∧ (∀x(P (x)↔ Ψ∆(x)) ∧ (P (x) ∨O(s(X))).

Here, the first conjunct checks that the definition “makes sense”, otherwise the formula does not
have a model, the second part is a syntactic sugar defining a particular variable P (x) to represent
the defined E, and the last part uses P outside of the definition ∆E .

Lemma 5.4. For every formula φ of FO(LFP) and a structure A there is a formula φ′ of ID-logic
such that φ holds on A iff φ′ holds on A extended by the relational variables interpreted as the
names for the fixponts.

Proof. By [EF95] theorem 9.4.2, every FO(LFP) formula is equivalent to one of the form ∀u[LFPz̄,Zψ]ũ,
where ψ ∈ ∆2. This can be written as an ID-logic formula {Z(z̄)← ψ} ∧ ∀uZ(ũ). Now, whenever
a structure A is a model of an FO(LFP) formula φ, a structure A+ is a model of the equivalent
formula φ′ of ID-logic. Here, A+ is A together with a relation variable Z of the arity |z̄|, and A+

interprets Z to be the LFPz̄,Zψ.

Therefore, the following theorem holds:

Theorem 5.5. The complexity of model checking of ID-logic and FO(LFP) coincide over finite
structures.

Proof. The direction from ID-logic to FO(LFP) follows immediately from lemma 5.3. For the other
direction, to check a FO(LFP) formula φ on a structure A, use the ID-logic evaluation algorithm
on φ′ to compute the (unique, if it exists) value of Z, then evaluate φ′ on A+ with this Z.

Corollary 5.6. Combined complexity of the model checking for FO(ID) is complete for EXP -c.
Expression complexity for FO(ID) is complete for P .

5.2 Complexity of MX for FO(ID)

Intuitively, adding polynomial-time computable predicates to an NP predicate should not add any
extra power. That allows us to suggest that both combined and data complexity of FO(ID) (or,
equivalently, FO(LFP)) coincides with the corresponding complexity for the MX of FO without
inductive definitions or fixed-point computations.

Theorem 5.7. Combined complexity of MX for FO(ID) is NEXP -complete. Data complexity
for MX of FO(ID) is NP -complete, and NP is captured by existential second-order with inductive
definitions ∃SO(ID).

Proof. We know from Theorem 3.1 that data complexity of MX problem is hard for NP and
combined complexity for NEXP . Therefore, it is sufficient to show that MX problem can be
solved within these classes.

The evaluation algorithm proceeds as follows. Use non-determinism to guess the expansion pred-
icates. Now the problem is reduced to evaluating FO(ID) formula on an expanded structure.

8

This can be done in polynomial time of the size of the structure when formula is fixed (by
[Imm82, Var82, Liv82]) and in exponential time when the formula is a part of the input by [Var82].
In the second case, the size of the expansion predicates can be exponential in the size of the structure
(since their arity is not constant), but in NEXP we can guess exponential-size certificates.

5.2.1 Fragments of FO(ID) with polytime MX

Recall that MX for universal Horn formulae was P -complete. We would like to add inductive
definitions to such formulae so that the complexity of the resulting logic is still in P . The following
example shows that allowing unrestricted use of expansion predicates in the inductive definitions
makes it possible to encode NP -complete problems

Example 5.3. The classical example of 3-colourability is representable as a formula with three
expansion predicates R,B,G, encoding colours:

∀v, w(R(v) ∨B(v) ∨G(v)) ∧
∧

Q∈R,G,B

(¬Q(v) ∨ ¬Q(w) ∨ ¬E(v, w)).

The only part of this formula which is not Horn is the first disjunction. It can be replaced by
the inductive definition with a rule X(i) ← Q(i) for every colour Q. Now, the first disjunction
is equivalent to ∀vX(v). Note that the definition of ID-logic requires that such X were minimal,
therefore, this does not introduce spurious positives.

However, if we disallow any occurrences of the expansion predicates inductive definitions, P -
completeness is preserved.

Lemma 5.8. Adding inductive definitions to universal Horn formulae defined on page 3 preserves
data complexity of MX problem to be P -complete, when expansion predicates do not occur in in-
ductive definitions.

Proof. By theorem 3.4, data complexity of MX problem for universal Horn formulae is P -complete.
Therefore, a polytime algorithm for MX of universal Horn formulae can first evaluate all inductive
definitions, and then run Grädel’s algorithm for evaluating existential second-order Horn formulae
replacing all defined predicates by their computed values.

We can also add expansion predicates in a restricted fashion. First, all expansion predicates oc-
curring in definitions have to be defined (i.e, occur in a head of a rule of some definition). Second,
such predicates cannot be defined in terms of each other unless they are in the same definition.
Third, the definitions can only occur as conjunction to the rest of the formula. Intuitively, in this
case, if expansion predicates in the body of a definition are either given values already, or are being
defined in that definition, then the definition can be evaluated. The intuition here is similar to the
intuition of RGFk.

Definition 5.9. Let {X̄1, . . . , X̄k} be all expansion predicates occurring in a first-order formula φ.
Then φ is in RFO(ID) if (1) for each X̄i there is a definition ∆i defining all predicates in X̄i, and
∆i is conjuncted with the rest of the formula. (2) The only expansion predicates allowed in the
body of ∆i are among X̄1, . . . , X̄i−1; the body of ∆1 contains no expansion predicates.
More generally, φ is in RuHorn(ID) if there are also expansion predicates P̄ which do not occur in
the definitions and with all definitions removed, φ is universal Horn with respect to P̄

9

Theorem 5.10. MX problem for RFO(ID) is P -complete.

Corollary 5.11. MX problem for RuHorn(ID) is P -complete.

6 Conclusion and open problems

In this paper, we give a survey of complexity results related to the model expansion framework.
Model expansion is a very new approach. Many problems are still unsolved, both theoretical and
practical. From the theoretical point of view, it would be interesting to extend complexity results
to richer vocabularies (e.g., dealing with function symbols, arithmetic,etc), as well as looking at
the model expansion versions of other commonly used logic. Also, we know that GF (ID) (guarded
logic with inductive definitions) coincides with µGF on total structures; however, the question is
still open whether they coincide everywhere, like FO(ID) and FO(LFP). There, the problem lies
in a different treatment of inductive definitions that are not total.

References

[AvBN98] H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of predicate
logic. J. Phil. Logic, 49(3):217–274, 1998.

[BIS90] D. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of
Computer and System Sciences, 41(3):274 – 306, 1990.

[Coo73] S. A. Cook. A hierarchy for nondeterministic time complexity. Journal of Computer and System
Sciences, 7(4):343–353, 1973.

[DT04] Marc Denecker and Eugenia Ternovska. A logic of non-monotone inductive definitions. ACM
transactions on computational logic, V(N):1–50, 2004.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer Verlag, 1995.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity of
computation, SIAM-AMC proceedings, 7:43–73, 1974.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width. In PODS ’01: Proceedings of the
twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
195–206, 2001.

[GO99] E. Grädel and M. Otto. On logics with two variables. Theoretical Computer Science, 224:73–113,
1999.

[Grä92] E. Grädel. Capturing Complexity Classes by Fragments of Second Order Logic. Theoretical
Computer Science, 101:35–57, 1992.

[Grä99] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719–1742, 1999.

[GW99] Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In LICS’99, pages 45–55, 1999.

[Imm82] N. Immerman. Relational queries computable in polytime. In 14th ACM Symp.on Theory of
Computing, Springer Verlag, pages 147 –152, 1982.

[Imm99] N. Immerman. Descriptive complexity. Springer Verlag, New York, 1999.

[Lib04] L. Libkin. Elements of Finite Model Theory. Springer Verlag, 2004.

10

[Liv82] A.B. Livchak. Languages for polynomial-time queries. In Computer-based modeling and optimiza-
tion of heat-power and electrochemical objects, page 41, 1982.

[LL03] Y. Liu and H. J. Levesque. A tractability result for reasoning with incomplete first-order knowl-
edge bases. In Proc. of the 18th Int. Joint Conf. on Artif. Intell. (IJCAI), pages 83–88, 2003.

[MT05] David Mitchell and Eugenia Ternovska. A framework for representing and solving NP search
problems. In Proc. of the 20th National Conf. on Artif. Intell. (AAAI), pages 430–435, 2005.

[PLTG06] Murray Patterson, Yongmei Liu, Eugenia Ternovska, and Arvind Gupta. Grounding for model
expansion in k-guarded formulas, 2006. Short presentation at 21st IEEE Symposium on Logic in
Computer Science (LICS).

[Sto74] L. Stockmeyer. The Complexity of Decision Problems in Automata Theory. PhD thesis, MIT,
1974.

[Tra50] B. Trahtenbrot. The impossibility of an algorithm for the decision problem for finite domains.
Doklady Academii Nauk SSSR, 70:569–572, 1950. In Russian.

[Var82] Moshe Y. Vardi. The complexity of relational query language. In 14th ACM Symp.on Theory of
Computing, Springer Verlag (Heidelberg, FRG and NewYork NY, USA)-Verlag, 1982.

[Var95] Moshe Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the Fourteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 22-25,
1995, San Jose, California, pages 266–276. ACM Press, 1995.

11

