
An Axiomatic Approach to Algebrization

Russell Impagliazzo∗

UC San Diego, La Jolla, CA &
Institute for Advanced Study

Princeton, NJ, USA
russell@cs.ucsd.edu

Valentine Kabanets†

Simon Fraser University
Burnaby, BC, Canada

kabanets@cs.sfu.ca

Antonina Kolokolova‡

Memorial U. of Newfoundland
St. John’s, NL, Canada

kol@cs.mun.ca

ABSTRACT
Non-relativization of complexity issues can be interpreted
as giving some evidence that these issues cannot be resolved
by“black-box” techniques. In the early 1990’s, a sequence of
important non-relativizing results was proved, mainly using
algebraic techniques. Two approaches have been proposed
to understand the power and limitations of these algebraic
techniques: (1) Fortnow [12] gives a construction of a class
of oracles which have a similar algebraic and logical struc-
ture, although they are arbitrarily powerful. He shows that
many of the non-relativizing results proved using algebraic
techniques hold for all such oracles, but he does not show,
e.g., that the outcome of the “P vs. NP” question differs
between different oracles in that class. (2) Aaronson and
Wigderson [1] give definitions of algebrizing separations and
collapses of complexity classes, by comparing classes relative
to one oracle to classes relative to an algebraic extension of
that oracle. Using these definitions, they show both that
the standard collapses and separations “algebrize” and that
many of the open questions in complexity fail to “algebrize”,
suggesting that the arithmetization technique is close to its
limits. However, it is unclear how to formalize algebrization
of more complicated complexity statements than collapses
or separations, and whether the algebrizing statements are,
e.g., closed under modus ponens; so it is conceivable that
several algebrizing premises could imply (in a relativizing
way) a non-algebrizing conclusion.

In this paper, building on the work of Arora, Impagliazzo,
and Vazirani [4], we propose an axiomatic approach to“alge-
brization”, which complements and clarifies the approaches
of [12] and [1]. We present logical theories formalizing the
notion of algebrizing techniques in the following sense: most
known complexity results proved using arithmetization are
provable within our theories, while many open questions are

∗Work partially supported by NSF grants 0835373 and
0832797 and the Ellentuck Foundation
†Work partially supported by NSERC Discovery grant
‡Work partially supported by NSERC Discovery grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

independent of the theories. So provability in the proposed
theories can serve as a surrogate for provability using the
arithmetization technique.

Our theories extend the [4] theory with a new axiom,
Arithmetic Checkability which intuitively says that all NP
languages have verifiers that are efficiently computable low-
degree polynomials (over the integers). We show the fol-
lowing: (i) Arithmetic checkability holds relative to arbi-
trarily powerful oracles (since Fortnow’s algebraic oracles
from [12] all satisfy the Arithmetic Checkability axiom). (ii)
Most of the algebrizing collapses and separations from [1],
such as IP = PSPACE, NP ⊂ ZKIP if one-way functions ex-
ist, MA-EXP 6⊂ P/poly, etc., are provable from Arithmetic
Checkability. (iii) Many of the open complexity questions
(including most of those shown to require non-algebrizing
techniques in [1]), such as “P vs. NP”, “NP vs. BPP”, etc.,
cannot be proved from Arithmetic Checkability. (iv) Arith-
metic Checkability is also insufficient to prove one known
result, NEXP = MIP (although relative to an oracle sat-
isfying Arithmetic Checkability, NEXPO restricted to poly-
length queries is contained in MIPO, mirroring a similar re-
sult from [1]).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; F.4.1 [Theory
of Computation]: Mathematical logic

General Terms
Theory

1. INTRODUCTION
Many basic questions in Complexity Theory (e.g., P vs.

NP) have so far resisted all the attacks using currently known
techniques. To understand better the limitations of the“cur-
rently known techniques”, it is natural to try to identify some
general property that these techniques share, and show what
is provable and what is not provable by any techniques sat-
isfying this property. The hope is that such classification
of techniques will guide the search for new techniques that
may potentially resolve some of the open questions.

There have been several such “meta-results” in Complex-
ity Theory. In the mid-1970’s, Baker, Gill and Solovay [7]
used relativization as a tool to argue that techniques like
simulation and diagonalization cannot, by themselves, re-
solve the “P vs. NP” question. Intuitively, a technique rela-
tivizes if it is insensitive to the presence of oracles (thus, a
result about complexity classes holds for all oracle versions

of these classes). If there are oracles giving a contradictory
resolution of a complexity question (e.g., PA = NPA, but
PB 6= NPB), then no relativizing technique can resolve this
question. This method of relativization has been brought to
bear upon many other open questions in Complexity The-
ory, for example, P vs. PSPACE [7], NP vs. EXP [11, 14, 23],
BPP vs. NEXP [17], IP vs. PSPACE [13], and a long list of
other classes.

In an informal sense, contrary relativizations of a complex-
ity theory statement have been viewed as a mini-independence
result, akin to the independence results shown in mathemat-
ical logic. But what independence is implied by contradic-
tory relativizations, and what are the proof techniques from
which this independence is implied? This was made precise
in [4]. There the authors introduced a theory RCT (which
stands for Relativized Complexity Theory) based on Cob-
ham’s axiomatization of polynomial-time computation [10].
Roughly speaking, RCT has standard axioms of arithmetic
(Peano axioms), and an axiomatic definition of the class
of functions that is supposed to correspond to the class P.
This class is defined as the closure of a class of some ba-
sic functions under composition and limited recursion (as
in Cobham’s paper [10]), plus there is an extra axiom pos-
tulating the existence of a universal function for that class.
RCT ’s view of the complexity class P is “black-box”: the ax-
ioms are satisfied not only by the class P, but also by every
relativized class PO, for every oracle O. In fact, [4] shows
that the (standard) models of RCT are exactly the classes
PO, over all oracles O.1 It follows that, for any complexity
statement S about P, this statement S is true relative to
every oracle A (i.e., S relativizes) iff S is provable in RCT .
On the other hand, a non-relativizing statement is precisely
a statement independent of RCT . Thus, e.g., the “P vs. NP”
question is independent of RCT .

[4] also shows that extending RCT with another axiom,
which captures the “local checkability” of a Turing machine
computation in the style of the Cook-Levin theorem (the
computation tableau can be checked by checking that all
2×3“windows”are correct), almost exactly characterizes the
class P in the following sense: the models for the resulting
theory, denoted by LCT (for Local Checkability) in [4], are
necessarily of the form PO with O ∈ NP∩co-NP. This makes
the theory LCT “too strong”, in the sense that resolving
most complexity questions in LCT is essentially equivalent
to resolving them in the non-relativized setting.

In the early 1990’s, a sequence of important non-relativizing
results was proved, mainly using algebraic techniques. Al-
though the techniques used to obtain these results seem sim-
ilar in flavor, it is not clear what common features they are
exploiting. It is also not clear to what extent oracle results
should be trusted as a guide to estimating the difficulty of
proving complexity statements, in light of these algebraic
techniques. Finally, it is unclear what the true power of
these techniques is. Could they resolve the longstanding
open problems in complexity, such as P vs. NP, or BPP vs.
P? To answer this question requires a formalization of the
“arithmetization technique” and its power.

Two approaches to this question have been formulated.
Fortnow [12] gives a construction of a class of oracles which
have a similar algebraic and logical structure, although they
are arbitrarily powerful. He shows that many of the non-

1Cobham [10] gets the exact characterization of P by con-
sidering the minimal model for his theory.

relativizing results proved using algebraic techniques hold
for all such oracles. While this is revealing, it is only a par-
tial characterization of the technique. For example, he does
not show that the outcome of P vs. NP differs between dif-
ferent oracles in that class. The second approach is due to
Aaronson and Wigderson [1] who give definitions of alge-
brizing separations and collapses of complexity classes, by
comparing classes relative to one oracle to classes relative to
an algebraic extension of that oracle. Using these definitions,
they show that the standard collapses “algebrize” and that
many of the open questions in complexity fail to “algebrize”,
suggesting that the arithmetization technique is close to its
limits. However, it is unclear how to formalize algebrization
of more complicated complexity statements than collapses or
separations, and it is unclear whether the algebrizing state-
ments are, e.g., closed under modus ponens. So, in particu-
lar, it is conceivable that several algebrizing premises could
imply (in a relativizing way) a non-algebrizing conclusion.

Our results.
In this paper we provide an axiomatic framework for alge-

braic techniques in the style of [4]. We extend their theory
RCT with an axiom capturing the notion of arithmetization:
the Arithmetic Checkability axiom. Intuitively, Arithmetic
Checkability postulates that all NP languages have verifiers
that are polynomial-time computable families of low-degree
polynomials; a verifier for an NP language is a polynomial f
(say, over the integers) such that the verifier accepts a given
witness y on an input x iff f(x, y) 6= 0. Standard techniques
(the characterization of “real world” non-deterministic Tur-
ing Machines in terms of consistent tableaux, and algebraic
interpolations of Boolean functions) show that this axiom
holds for unrelativized computation.

The models for the resulting theory, which we call ACT
(for Arithmetic Checkability Theory), are, essentially, all
relativized classes PO with oracles O such that Arithmetic
Checkability holds relative to this O, i.e., all NPO languages
have PO-computable families of low-degree polynomials as
verifiers. Arithmetic Checkability is implied by, yet is strictly
weaker than Local Checkability, since ACT has models PO

for arbitrarily powerful oracles O (in particular, any oracle
from Fortnow’s [12] recursive construction). Thus, ACT is
a theory that lies between the [4] theories RCT and LCT .
Moreover, both inclusions are proper: RCT (ACT (LCT .
That is, there are statements provable in ACT that can’t be
proved in RCT , and there are statements provable in LCT
that can’t be proved in ACT .

We use the Arithmetic Checkability axiom (and the theory
ACT based on it) as an axiomatic framework to capture the
“arithmetization technique”. We show that many complexity
theorems (like the ones shown to algebrize in [1]) are provable
in ACT , and that many open complexity questions (like the
ones shown not to algebrize in [1]) are independent of ACT .
Since provable consequences of ACT are closed under de-
duction, we avoid the limitations of [1] approach. However,
there are some known complexity statements (proved using
algebraic techniques) that are also independent from ACT .

The following is a summary of our main results: (i) Fort-
now’s algebraic oracles from [12] all satisfy Arithmetic Check-
ability (so arithmetic checkability holds relative to arbitrar-
ily powerful oracles). (ii) Most of the algebrizing collapses
and separations from [1], such as IP = PSPACE, NP ⊂ ZKIP
if one-way functions exist, MA-EXP 6⊂ P/poly, etc., are prov-

able from Arithmetic Checkability. (iii) Many of the open
complexity questions (including most of those shown to re-
quire non-algebrizing techniques in [1]), such as P vs. NP,
P vs. BPP, the existence of explicit functions without small
circuits, etc., cannot be proved from Arithmetic Checkabil-
ity. (iv) Arithmetic Checkability is also insufficient to prove
one known result, NEXP = MIP (although relative to an ora-
cle satisfying Arithmetic Checkability, NEXPO restricted to
poly-length queries is contained in MIPO, mirroring a similar
result from [1]).

Finally, comparing the three notions of “algebrizing tech-
niques” of Fortnow [12], Aaronson and Wigderson [1], and
the present paper, we observe that all relativizing techniques
are contained in the [1] algebrizing techniques, which usually
coincide with our notion of algebrizing techniques, which in
turn are contained in the [12] algebrizing techniques.

Remainder of the paper. In Section 2, we define the axiom
of Arithmetic Checkability and study its properties. Sec-
tion 3 contains a number of provable consequences of ACT ,
and Section 4 a number of complexity statements indepen-
dent from ACT .

2. ARITHMETIC CHECKABILITY
Here we define the axiom of arithmetic checkability, and

prove some of its basic properties. We could view this axiom
in one of two ways. Proof-theoretically, we could add the ax-
iom to the theory RCT of [4], and view the results provable
in this theory as those provable with relativizing and alge-
brizing techniques. Somewhat simpler conceptually, for the
purposes of this paper, we take a model-theoretic viewpoint,
where we look at the class of oracles that satisfy (are consis-
tent with) the new axiom. In the model-theoretic viewpoint,
a complexity statement is algebrizing if it holds for all or-
acles that satisfy the new Arithmetic Checkability axiom.2

In this abstract, we will only consider the model-theoretic
interpretation, to avoid a long discussion of the [4] axioms.

The Arithmetic Checkability axiom intuitively says that
every easily computable function can be interpolated into an
easily computable, low-degree polynomial by adding extra
variables. While extensions of Boolean functions to polyno-
mials makes sense over many fields and rings, for simplicity,
we limit ourselves to polynomials over the integers.

Below we define two versions of the Arithmetic Checka-
bility axiom: one for checkability of nondeterministic com-
putation (where the verifier polynomial accepts a proof if
its output is any non-zero integer), and one for determin-
istic computation (where the verifier polynomial accepts a
proof if its output is 1, and, moreover, the proof is unique
and efficiently computable). We call the first version weak
ACT (or simply ACT), and the second version strong ACT
(or ACT∗). Most of our positive results (in Section 3) are
provable from the weak version of ACT, while all our in-
dependence results (in Section 4) are with respect to the
stronger theory based on ACT∗.

2It is somewhat stronger to say that a statement does alge-
brize in the proof-theoretic sense than in the model-theoretic
sense (because the statement may be true for all such ora-
cles without being provable). Contrapositively, an indepen-
dence result is stronger in the model-theoretic sense than in
the proof-theoretic sense (because we only consider standard
models). All of our positive implications hold in the proof-
theoretic sense, and all of our independence results hold in
the model-theoretic sense.

Definition 2.1. A polynomial family is a family of poly-
nomials fn : Zn → Z, where, for each n ∈ N, fn is an
n-variate polynomial over Z of total degree nO(1). It is
polynomial-time computable if the function F (n, y1, ..yn) =
fn(y1, ..yn) is in FP.

The class ALG-PF (algebraically checkable proof systems)
is the class of languages L such that there is a polynomial-
time computable polynomial family {fn} and a polynomially
bounded polynomial-time computable function m = m(n) so
that x = x1 . . . xn ∈ L iff ∃y1 . . . ym ∈ {0, 1}m such that
fn+m(x1, . . . , xn, y1, . . . , ym) 6= 0.

The (weak) Arithmetic Checkability axiom is the state-
ment NP = ALG-PF. We will denote this axiom by ACT
(for Arithmetic Checkability Theorem). The theory ACT is
defined to be RCT + ACT (i.e., the theory RCT together
with the axiom ACT). An oracle A is consistent with ACT
if NPA = ALG-PFA.

The class ALG-PF∗ is the class of languages L such that
there are a polynomially bounded polynomial-time computable
function m = m(n), a polynomial-time computable func-
tion family {gn : {0, 1}n → {0, 1}m}, and a polynomial-
time computable polynomial family {fn} so that (i) if x =
x1 . . . xn ∈ L then fn+m(x, gn(x)) = 1, (ii) if x = x1 . . . xn 6∈
L then fn+m(x, gn(x)) = 0, and (iii) for all y ∈ {0, 1}m,
y 6= gn(x) =⇒ f(x, y) = 0. The strong ACT, denoted
by ACT∗, is the statement P = ALG-PF∗; the corresponding
strong version of ACT is denoted ACT ∗. An oracle A is
consistent with ACT∗ if PA = ALG-PF∗A.

A set A of integers is self-algebrizing if there is a polyno-
mial family Ã extending A under projection, e.g.,
A[x1, . . . , xn] = Ãn+1[0, x1, . . . , xn] for Boolean x, and such

that Ã ∈ PA.

We will relate arithmetic checkability to a notion of lo-
cal checkability from [4]. The latter essentially says that
(non-deterministic) computation can be verified in terms of
a small number of conditions that each involve a small part
of an input and proof.

Definition 2.2. Let PF-CHK[poly, log] be the class of lan-
guages L so that there is a polynomial p(n) and a polynomial-
time computable verifier V x,π(1n, r) with random access to

the input x and a proof π ∈ {0, 1}p(n) so that V makes at
most O(log n) queries to the input and proof, and so that

x ∈ L iff ∃π ∈ {0, 1}p(|x|)∀r ∈ [1, . . . , p(n)] V x,π(1n, r) = 1.
The Local Checkability axiom is the statement NP =

PF-CHK[poly, log], which we also denote by LCT (for Local
Checkability Theorem). The theory LCT is RCT +LCT . An
oracle O is consistent with LCT if NPO = PF-CHK[poly, log]O.

[4] and many others have observed that NP =
PF-CHK[poly, log] follows from the standard proof of the
Cook-Levin Theorem in terms of tableaux. [4] also observed
that all oracles O consistent with the version of LCT defined
above are in NP/poly∩ coNP/poly, and that NPO reduces to
unrelativized NP (via PO reductions). This severely lim-
its the power of such oracles, and the number of provable
independence results from LCT .

Here, we show that most (but not all) of the known com-
plexity consequences of local checkability actually follow from
the weaker statement, ACT, but that ACT (even ACT∗)
does not suffice to resolve many of the open problems in
complexity. Thus, provability in ACT is a good surrogate
for “provable with relativizing and algebrizing techniques”.

Independence from ACT suggests that not only do we need
non-black-box techniques, but also we need to go beyond
algebraic interpolation as the only non-black-box technique.

The following theorem relatesACT to LCT and the notion
of algebrizing suggested by [12].

Theorem 2.3. (1.) Any language A that is consistent
with LCT is also consistent with ACT.
(2.) For any language A, and any polynomial extension Ã,

PA ⊆ ALG-PF∗Ã and NPA ⊆ ALG-PFÃ.
(3.) Any language A that is self-algebrizing is consistent
with ACT∗ and ACT.

Proof. (1.) We claim for any A, PF-CHK[poly, log]A ⊆
ALG-PFA. If L ∈ PF-CHK[poly, log]A, let V A be a O(log n)-
query proof checker that accepts L, i.e., x ∈ L if and only
if ∃π ∈ {0, 1}nc

∀r ∈ [1, . . . , nc] MA,x,π(1n, r) = 1. For
each r computation, it is possible to compute (using oracle
A) a decision tree of queries to bits of its inputs (x, π) of
depth c log n (and hence polynomial size) that expresses ac-
ceptance along this path. (Note that we bound the number
of queries of M to x or π to O(log n), but M may make
any number of queries to A.) We can then represent this
decision tree as a degree c log n polynomial by taking the
sum over all accepting paths of the product of the corre-
sponding literals, where the negation of a variable z is rep-
resented by 1 − z. Let the resulting polynomial be called
pr(x1, . . . , xn, π1, . . . , πm). On Boolean inputs, pr will have
value 1 if MA,x,π(1n, r) accepts and 0 otherwise. Now let
p(x1, . . . , xn, π1, . . . , πm) =

Q
r pr(x1, . . . , xn, π1, . . . , πm).

Each pr and hence p can be computed in polynomial time,
and p has degree at most O(nc log n). So p is a polynomial-
time computable polynomial family. For Boolean inputs, p
is 1 if all pr are 1 and 0 otherwise, so p is 1 if and only if
MA,x,π(1n, r) = 1 for all r.

(2.) Let A be an oracle with algebraic extension Ã. Let
L ∈ PA be accepted by a machine MA. We define the proof
to be the tableau of the computation on x of the determin-
istic machine MA, together with the oracle answers given
as bits b1, . . . , bT . Since M is deterministic, such a proof is
unique. Let g be the function mapping inputs x into proofs
(i.e., tableaux of MA and oracle answers). Clearly, g(x) is

computable in FPA ⊆ FPÃ.
Without loss of generality, we can assume the time step

and length of the i’th oracle query is known in advance
(say, by clocking the maximum number of steps between
queries and by having the machine make dummy queries
of all possible lengths in order). So the i’th query will be
at a fixed li consecutive positions in the tableau. An ac-
cepting tableau is valid if each square of six is possible for
the machine, and if each bi = A[qi1 , . . . , qili

]. The first
set of conditions can each be written as a polynomial us-
ing the decision tree method above, and the second by the
polynomials 1− (bi − Ãli+1[0, qi1 , . . . , qili

])2. (Note that on

Boolean inputs starting with a 0, Ã is either 0 or 1, as is
bi. Therefore the above polynomial is either 0 or 1.) Then
the total correctness is the product of these polynomials,

which is clearly of polynomial degree, is computable in PÃ,
is Boolean-valued on Boolean inputs, and is 1 on a given
input x and a proof y iff y is the unique correct proof that

x ∈ L. Hence, L ∈ ALG-PF∗Ã.
For the case of L ∈ NPA, we define L′ ∈ PA to be the set

of those pairs (x, y) such that x ∈ L and y is a witness for

x ∈ L. By the above, we get that L′ ∈ ALG-PF∗Ã, with a
polynomial family f . It follows that x ∈ L iff there exist y
and z such that f(x, y, z) = 1, where z represents the proof
that (x, y) ∈ L′ (moreover, z is unique and efficiently com-
putable from (x, y), but we do not need this extra property

here). Thus, we get L ∈ ALG-PFÃ.
(3.) Follows from (2), since if A is self-algebrizing, then

ALG-PF∗A = ALG-PF∗Ã and ALG-PFA = ALG-PFÃ.

Part (3) essentially says that any technique that “alge-
brizes” in our sense also algebrizes in the sense of Fort-
now [12]. While we cannot prove that “being a consequence
of ACT” characterizes algebrizing techniques in the sense of
[1], part (2) is an explanation why results that algebrize
in the two senses frequently coincide. Namely, to show
NP ⊆ C2 algebrizes in both senses, it suffices to show that
ALG-PF ⊆ C2 relativizes.3

The following theorem summarizes a construction due to
Fortnow, which shows that the self-algebrizing languages
come in arbitrarily strong complexities. By Theorem 2.3, it
follows that so do oracles consistent with ACT∗ and ACT,
a property which LCT-consistent oracles do not have.

Theorem 2.4 ([12]). For each language L there is a
self-algebrizing A such that A ∈ PSPACEL and L ∈ PA.

Proof. We will give two constructions.
Fortnow’s construction [12]: Let 〈y1, . . . , yk〉 be a stan-

dard pairing function such that |〈y1, . . . , yk〉| > |y1| + · · · +
|yk|. For a language A, denote by An the restriction of A
to {0, 1}n. We define A = ∪n≥1An inductively over n as
follows. Set A1 = ∅. Suppose An is already defined for some
n ≥ 1. Let fn(x1, . . . , xn) be the unique multilinear polyno-
mial extension of An(x1, . . . , xn). We extend the definition
of A according to the following three cases.

1. For each b1 . . . bn ∈ {0, 1}n, we put 〈0, b1, . . . , bn〉 into
A iff b1 . . . bn ∈ L.

2. For each n-tuple of integers (c1, . . . , cn), we put
〈1, c1, . . . , cn〉 into A iff fn(c1, . . . , cn) > 0.

3. For each n-tuple of integers (c1, . . . , cn) and an integer
i ≥ 0, we put 〈i + 2, c1, . . . , cn〉 into A iff the ith bit of the
binary representation of the integer value fn(c1, . . . , cn) is
one.

It is easy to see that the constructed language A is self-
algebrizing, and hence, in particular, L ∈ PA. To see that
A ∈ PSPACEL, observe that for each n ≥ 1 and b1 . . . bn ∈
{0, 1}n, the value An(b1, . . . , bn) is computable either in
PLn′ for some n′ < n (in case 1 above), or in PSPACEAn′′

for some n′′ < n (in cases 2 or 3, since the multilinear ex-
tension fn′′ of An′′ can be evaluated at any given point,
using a polynomial-space algorithm with oracle access to
An′′). In other words, A is downward self-reducible, with a
polynomial-space reduction. The latter easily implies that
A ∈ PSPACEL.

Alternative construction: For a given language L, let A
be any PSPACEL-complete language (e.g., the TQBFL lan-

guage). Then the unique multilinear extension Ã is com-
putable in PSPACEA ⊆ PSPACEL ⊆ PA, where the first
inclusion is because A ∈ PSPACEL, and the second one be-
cause A is PSPACEL-hard. Finally, observe that L ∈ PA

since L ∈ PSPACEL ⊆ PA.
3More generally, for C1 ⊆ C2, give a containment for C1

from some construction over NP, and then give a relativizing
inclusion of the same construction over ALG-PF inside C2.

We will call the self-algebrizing language A obtained from
a given language L using Theorem 2.4 the self-algebrizing
encoding of L.

3. CONSEQUENCES OF ACT
First we show that the famous PSPACE = IP theorem [24,

27] can be proved from Arithmetic Checkability.

Theorem 3.1. Let O be any oracle consistent with ACT.
Then PSPACEO = IPO.

Proof sketch. For any O, the relativized version of
TQBF is a complete problem for PSPACEO: Given an input
x1 . . . xn ∈ {0, 1}n, decide if ∃y1 ∈ {0, 1} ∀z1 ∈ {0, 1} . . .
∃ym ∈ {0, 1} ∀zm ∈ {0, 1} P (~x, ~y, ~z), where P ∈ PO

and m is a polynomially bounded function of n. Since
P ∈ PO ⊆ NPO = ALG-PFO, we can write P (~x, ~y, ~z) as

∃w1 . . . wm′ ∈ {0, 1}m′
[fn+2m+m′(~x, ~y, ~z, ~w) 6= 0], where f

is a polynomial family computable in PO.
Fix input x, merge the w’s with y’s and z’s, and con-

sider f2; for simplicity of notation, we use 2m (rather than
2(m+m′)) for the number of variables in the resulting poly-
nomial. The problem is to decide if ∃y1 ∈ {0, 1} ∀z1 ∈
{0, 1} . . . ∃ym ∈ {0, 1} ∀zm ∈ {0, 1} [p2m(~y, ~z) 6= 0], where
p2m is an efficiently computable polynomial that is always
non-negative. We can follow the same protocol as in the
standard proof of the PSPACE = IP theorem (see, e.g., [3]),
using the fact that p2m is computable in PO.

We also get that many known circuit lower bounds (based
on the collapses like PSPACE = IP) are provable from ACT
or ACT∗. The corresponding non-relativized versions of the
lower bounds in the next theorem (items 1–3) are from [9,
29, 26], respectively; the last item is from [5].

Theorem 3.2. Let O and O∗ be any oracles consistent
with ACT and ACT∗, respectively. Then all of the following
statements hold: (1) MA-EXPO 6⊂ PO/poly; (2) For each

constant k, PPO∗
6⊂ SIZEO∗

(nk); (3) For each constant k,

promise-MAO∗
6⊂ SIZEO∗

(nk); (4) NEXPO∗[poly] ⊆ MIPO∗
.

Proof sketch. The proofs are similar to the correspond-
ing proofs in [1].

(1): Observe that for any ACT-consistent language O, if
PSPACEO ⊂ PO/poly, then PSPACEO = MAO following the
same argument as in the unrelativized case: the prover in
the IPO-protocol for PSPACEO is computable in PSPACEO,
and hence, Merlin can give to Arthur a small circuit for
this prover, and Arthur can simulate the IPO-protocol by
interacting with the circuit.

If PSPACEO 6⊂ PO/poly, then MA-EXPO 6⊂ PO/poly, and
we are done. Otherwise, we get by the argument above that
PSPACEO = MAO, which by padding yields EXPSPACEO =
MA-EXPO. Finally, by diagonalization, we conclude that
EXPSPACEO 6⊂ PO/poly.

(2): Let O∗ be any ACT∗-consistent oracle. Relative to
O∗, counting the number of accepting paths of a given NP-
machine on a given input x is reducible to the polynomial
summation problem

P
z1,...,zm∈{0,1} p(z1, . . . , zn), where p

is a polynomial family computable in FPO∗
. Indeed, let

L ∈ NPO∗
be any language decided by a nondeterministic

machine NO∗
. Let L′ ∈ PO∗

be the language consisting of
those pairs (x, y) such that x ∈ L and y describes an ac-
cepting computation of N on x. By the definition of ACT∗-

consistency, there is a polynomial-time computable polyno-
mial family f such that, for any (x, y), we have (x, y) ∈ L′ iff
there is some Boolean w such that f(x, y, w) = 1, and more-
over, such Boolean w is unique (if exists). It follows that
the number of accepting computations y on a given input x
is exactly

P
y,w∈{0,1}∗ f(x, y, w).4

We can now use the LFKN protocol [24] to argue that

#PO∗
has proof checkers. In particular, we get that if

PPO∗
⊂ PO∗

/poly, then P#PO∗
= PPO∗

= MAO∗
.

This is sufficient to prove item (2) of Theorem 3.2, arguing

as in the non-relativized case. Indeed, if PPO∗
6⊂ PO∗

/poly,
then we are done. Otherwise, we have by the above that

P#PO∗
= PPO∗

= MAO∗
, and by relativizing Toda’s theo-

rem [28], we have (Σp
2)

O∗
⊆ P#PO∗

. Finally, by relativiz-
ing Kannan’s theorem [20], we get that for every fixed con-

stant k, (Σp
2)

O∗
6⊂ SIZEO∗

(nk), and therefore, also MAO∗
6⊂

SIZEO∗
(nk). Since MA ⊆ PP (and this inclusion relativizes),

we get item (2) of Theorem 3.2.
(3): We follow the corresponding proof in [2], using the

PPO∗
-complete problem of deciding, for a given efficiently

computable low-degree polynomial, whether its sum over the
Boolean domain is at least a given integer k. The argument
is the same as that in [2].

(4): The proof of item (4) is also based on the proof of
the corresponding non-relativized result [5]. As pointed out
in [2], the tableau of a NEXP-machine remains locally check-
able even if we allow oracle access to any oracle A, provided
that the machine is only allowed to ask polynomial-length
oracle queries. Since O∗ is ACT∗-consistent, we have ac-
cess to the polynomial extensions of O∗ and it complement,
and therefore can arithmetize the local-check algorithm for
a given NEXPO∗[poly]-machine. The result of arithmetization
is a polynomial that is 1 iff the check is satisfied. By sub-
tracting 1 and squaring the result, we get a new polynomial
that is 0 iff the check is satisfied, and greater than 0 oth-
erwise. Then the problem is to verify that the sum of all
these local-check polynomials is 0. This can be done as in
the original proof of [5]; see [2] for details.

Note that Theorem 3.2 above shows that NEXPO∗
⊆ MIPO∗

is provable from ACT∗ only for the case of polynomial-length
oracle queries (the restriction assumed also in [1]). This is
unavoidable. As we show below (Theorem 4.1, item 3), it is
impossible to prove NEXP ⊆ MIP from ACT∗.

We also show that the famous GMW theorem [15] (NP ⊆
ZKIP if one-way functions exist) can be proved from ACT.
We prove that the theorem holds relative to every oracle O
consistent with ACT. A similar result for a restricted case
was also shown in [1], but they have since independently
obtained essentially the same result as we do below for their
setting [2]. (More precisely, their new result shows that if Ã
is an algebraic extension of oracle A, and there is a one-way

function with respect to Ã, then NPA ⊆ ZKIPÃ. While the
phrasing is different, their protocol is very close to ours.)

Theorem 3.3. Let O be any oracle consistent with ACT
and such that there is a one-way function in PO secure
against adversaries in BPPO. Then NPO ⊆ ZKIPO.
4This is where we use the assumption that O∗ is consistent
with the strong version of ACT. We do not know if the
weak version of ACT suffices to prove the items (2)–(4) of
Theorem 3.2, and leave it as an interesting open question.

Proof. If there are one-way functions, then there are se-
mantically secure statistically binding commitment schemes
([25, 16]; all arguments there relativize). Let C be such a
scheme. For simplicity of notation, we drop the randomness
used by C and refer to any commitment to a number a as
C(a).

The prover in our protocol will use indirect commitments.
An indirect commitment to a given value a is a pair of com-
mitments C(r) and C(a + r), where r is a randomly chosen
residue mod q, and addition is modulo q (for some q cho-
sen at random within the protocol). A general subroutine
is to prove that a certain set of indirectly committed values
satisfies a linear relationship

P
αiai = 0, where the αi’s are

publicly known and the ai’s are indirectly committed to. We
refer to this as a linear relationship test. In such a test, the
prover will have sent (in addition to the indirect commit-
ment (C(ri), C(ai + ri))) a commitment C(

P
αiri) = C(s).

The verifier then flips a coin; if heads, the prover decommits
to all ri’s and s, and the verifier checks that s =

P
αiri.

Since the ri’s are random, and s really is this sum, this re-
veals no information. Alternatively, if the coin is tails, the
prover decommits to s and all (ai + ri)’s and the verifier
does the same check that s =

P
(αi(ai + ri)). Again, these

are random numbers and a predefined linear combination of
them, so this reveals no information about the ai’s. Note
that both checks work for the same value of s if and only ifP

αiai = 0.
Let L ∈ NPO. Then there is a polynomial-time (with

respect to O) computable polynomial family {fk} such that
x = x1 . . . xn ∈ L iff ∃y1, . . . , ym ∈ {0, 1}m fn+m(~x, ~y) 6= 0.
For the rest of the proof, we fix x, and think of f as a
polynomial in the variables yi only. To simplify the notation,
we will denote this new polynomial by f(y1, . . . , ym). We
denote by d the degree of f (as a polynomial in the yi’s).

First, the prover selects ~y = (y1, . . . , ym) such that f(~y) 6=
0, and the verifier selects a moderately sized random prime
q. With high probability f(~y) 6= 0 mod q. (The prime
q should be sufficiently larger than d, and in fact could be
larger than the possible values of f on m-bit inputs, in which
case f(~y) 6= 0 mod q is certainly true.)

Next, the prover picks a random bit b, and directly com-
mits to b. If b = 0, the prover indirectly commits to yi,
i = 1, . . . , m, and then to (1 − yi), i = 1, . . . , m. If b = 1,
the prover does these indirect commitments in reverse, i.e.,
indirectly commits to the (1− yi)’s and then to the yi’s.

The prover also picks a random non-zero vector
~s = (s1, . . . , sm) ∈ Zm

q and indirectly commits to the fol-
lowing values: (a) each sj , for j = 1, . . . , m, (b) each coor-
dinate of z(t) = ~y + t~s for each t = 1, 2, . . . , d + 1, (c) the
value vt = f(z(t)) for each t = 0, 1, . . . , d + 1, and (d) the
coefficients c0, ...cd of the univariate polynomial f(~y+t~s) (in
the variable t).

Note that the values vt can be computed easily by the
prover since f is in PO. Using these values, the prover can
also compute the coefficients c0, . . . , cd by interpolation.

Finally, let r0 be the random number used in the indirect
commitment (C(r0), C(v0 + r0)) to v0. The prover picks
values a, b at random (with a 6= 0), and directly commits to
a, b, ar0 + b, and a(r0 + v0) + b. The prover does similarly
for the random numbers used in the indirect commitments
to the sj ’s, for 1 ≤ j ≤ m.

The verifier chooses one of the following tests at random:
Test for Booleanness. The verifier picks a random i and the

prover reveals the two bits corresponding to yi and 1 − yi

(but does not reveal b.) If the prover follows protocol, these
bits are just 0 and 1 in a random order. If the verifier does
not choose this test, b is revealed.
Non-zeroness test. The verifier views one of the three possi-
bilities: a, b, r0, ar0 + b (checking that the last really is com-
puted correctly from the first three); a, b, (r0 + v0), a(r0 +
v0) + b, (similarly checking); or, ar0 + b and a(r0 + v0) + b,
checking that these two are distinct (hence v0 6= 0, if they
are correctly computed).
Non-degeneracy test. The verifier picks a random 1 ≤ j ≤
m, and performs the non-zeroness test on sj , as described
above.
Test of polynomial values. The verifier picks a random t
and tests that vt =

Pd
i=0 cit

i, i.e., that the committed poly-
nomial really has value vt at this point. This is a linear
relationship test, handled as described above (without actu-
ally revealing vt or any of the coefficients).
Test of linearity of the z(t)’s. The verifier picks a ran-
dom t 6= 0 and a coordinate 1 ≤ j ≤ m, and verifies that
yj + tsj = z(t)j . Again, this is a linear relationship test.
Test of consistency with f . The verifier picks a random t 6= 0
and tests that vt = f(z(t)). For this, the prover completely
reveals z(t) and vt. If the prover follows the protocol, z(t)
is a random vector independent of y, and vt is the (easily
computable) value above, so the revealed information can
be simulated by the verifier.

It is easy to see that any of the tests performed by the ver-
ifier reveals no information that the verifier could not simu-
late by himself; so the described protocol is zero-knowledge.
Completeness of the protocol is obvious. For soundness, sup-
pose that the committed values pass all of the above tests,
then it follows that: There is an indirectly committed vector
~y that is Boolean, and a non-zero value v0, and a polynomial
c(t) of degree d with c(t) = vt for each t. There are points
z(t) = ~y + t~s for some non-zero vector ~s. And f(~y + t~s) = vt

for d + 1 non-zero values of t. Since c and the restriction of
f to this line both have degree d and agree on d + 1 points,
they must be equal polynomials. Therefore they have the
same value on t = 0, so f(~y) = c(0) = v0 6= 0. Therefore,
x ∈ L.

4. INDEPENDENCE RESULTS
Using Fortnow’s construction of Theorem 2.4, we get a

rich family of oracles consistent with ACT∗, which we can
use to prove a number of complexity statements indepen-
dent from ACT ∗, including the known true statement that
NEXP ⊆ MIP [5]. The following theorem (the last item)
shows that even the weaker statement E ⊆ MIP is not prov-
able in ACT ∗.

Theorem 4.1. ACT ∗ does not imply any of the follow-
ing: (1) P 6= PSPACE (and hence, also P 6= NP); (2)

E ⊆ io-SIZE(2n/4)5; (3) E ⊆ MIP.

Proof. (1): Let L be a language complete for PSPACE,
and let A be its self-algebrizing encoding (obtained using
Theorem 2.4). We get that A is consistent with ACT∗, and
L ∈ PA and A ∈ PSPACEL. Then PSPACEA ⊆ PSPACEL =
PL ⊆ PA ⊆ PSPACEA. In particular, PA = PSPACEA.

(2): For L and A as in the previous item, we have PSPACEA

= PA. By padding (which relativizes), we get SPACEA(2O(n))

5See also Theorem 4.2, item (1), for a stronger result.

= EA. By counting, SPACEA(2O(n)) 6⊂ io-SIZEA(2n/4). Hence,

EA 6⊂ io-SIZEA(2n/4).
(3): Since both PSPACEL and MIPL only depend on strings

in L of polynomial-size, it is easy to diagonalize to construct

an oracle L so that EL 6⊂ MIPPSPACEL

. Now let A be the
self-algebrizing encoding of this L, and so A is consistent

with ACT∗. We get MIPA ⊆ MIPPSPACEL

and EL ⊆ EA, so
EA 6⊆ MIPA.

Using Fortnow’s construction of Theorem 2.4 together with
communication complexity lower bounds, we get the fol-
lowing independence results, which show that many of the
complexity frontier questions (non-determinism, derandom-
ization, quantum computing, circuit lower bounds) are not
resolvable within ACT ∗. Note that item (2) of the theorem
below is an example of a more complicated statement than
just a single inclusion, or a single separation statement.

Theorem 4.2. ACT ∗ does not imply any of the follow-
ing: (1) NP ⊆ io-SIZE(2n/4) (which, with the previous the-
orem, implies independence for NP = P and NP ⊆ BPP);

(2) BPP 6= P or P = NP; (3) BPP ⊆ DTIME(2o(n)); (4)
EXP 6⊆ io-P/poly; (5) coNP ⊆ MA; (6) NP ⊆ BQP; (7)
BQP ⊆ BPP; (8) QMA ⊆ MA.

Similarly to [1], we prove these non-algebrization results
by reduction to communication complexity. However, our
reduction is a bit more indirect than theirs. We now sketch
the reduction to communication complexity. The proof of
Theorem 4.2 is given in Section 4.1 below.

For any two languages A0 and A1, let A0 + A1 = {(b, x) |
x ∈ Ab} be their disjoint union. We show that for any two
languages A0 and A1 consistent with ACT∗, A0 +A1 is also
ACT∗-consistent (see Lemma 4.3 below).

Let L1 and L2 be arbitrary oracles, which we think of as
two inputs to a communication protocol, such as for set dis-
jointness (e.g., we are trying to see if there is an x of length
n so that x ∈ L1 ∩ L2). Using Theorem 2.4, we can con-
struct from each oracle Li its self-algebrizing encoding Ai,
which is consistent with ACT∗. Then Li is reducible to Ai,
and Ai ∈ PSPACELi . (For the communication-complexity
setting we will consider, we actually won’t even need any
upper bound on the complexity of Ai.)

Consider the communication complexity problem relative
to the oracle A1 + A2. Set disjointness is easily solved in
coNPL1+L2 , and hence also in coNPA1+A2 . We will argue
that it can’t always be solved in PA1+A2 , since otherwise
we would get a deterministic communication protocol for
set disjointness on N = 2n-bit input strings of communica-
tion complexity only polynomial in n, which is impossible by
the well-known Ω(N) lower bounds for set disjointness (see,
e.g., [22]). The idea is that queries to A1 + A2 are either
to A1, which depends only on L1, or to A2, which depends
only on A2. Thus, any algorithm with such an oracle can
be simulated by two players, Alice and Bob, where Alice
knows L1 and Bob knows L2. The overall communication
complexity of the resulting protocol is exactly the number
of oracle queries. The same reasoning holds for almost any
other model of communication complexity, e.g., probabilis-
tic, quantum, and non-deterministic communication com-
plexities. We’ll use stronger distributional lower bounds for
the direct product of many set disjointness problems of [8]
to extend this to a strong circuit lower bound.

This strategy can be used to prove all parts except (2) and
(4). However, (2) and (4) follow directly from (1) and (3),
and the fact that the hardness-randomness tradeoffs from
[18, 6] relativize. We provide more details in the next sub-
section.

4.1 Proof of theorem 4.2
First we prove that the class of ACT∗-consistent oracles

is closed under disjoint union.

Lemma 4.3. If A0 and A1 are consistent with ACT∗, then
A0 + A1 is also consistent with ACT∗.

The proof will depend on the following.

Lemma 4.4. PA = ALG-PF∗A if and only if A ∈
ALG-PF∗A ∩ coALG-PF∗A.

Proof. It is obviously necessary. For the other direc-
tion, let p1 be a PA-computable polynomial family for A,
and let p0 be a PA-computable polynomial family for Ā (the
complement of A). Let g0 and g1 be the corresponding FPA-
computable functions that compute proofs for membership
in A and Ā, respectively. We will show that for every lan-
guage L ∈ PA, there is a PA-computable polynomial family
showing that L ∈ ALG-PF∗A, and a FPA-computable func-
tion g mapping inputs to proofs.

Let L ∈ PA be decided by a PA machine MA. This ma-
chine accepts input x = x1 . . . xn ∈ {0, 1}n iff there is an
accepting tableau w = w1 . . . wT of the machine on x, with
bits b1 . . . bt representing answers to oracle queries q1, . . . , qt,
and z1, . . . , zt being witnesses corresponding to the queries
(where zi’s are provided by the function g0 or g1, depend-
ing on bi being 0 or 1), so that (1) w is a correct accepting
tableau, assuming that all oracle answers are correct (i.e.,
assuming that bi = A(qi) for all 1 ≤ i ≤ t), and (2) all
oracle answers are correct.

Observe that this tableau, oracle queries qi, oracle answers
bi, and oracle witnesses zi (i.e., a proof that x ∈ L) are
all computable in FPA. We let g be the FPA-computable
function mapping inputs x to such proofs. Also, without
loss of generality, we may assume that for each query qi

the dimension of the witness zi is the same for both p0 and
p1. Indeed, suppose that the dimension of witness for p0

is m0, which is less than the dimension m1 of the witness
for p1. Let ` = m1 − m0. Define g̃0 : {0, 1}n → {0, 1}m1

by g̃0(x) = g0(x)1` (i.e., g0(x) followed by ` ones). Define
p̃0(~x, y1, . . . , ym1) = p0(~x, y1, . . . , ym0)·

Qm1
i=m0+1 yi. Clearly,

the defined p̃0 and g̃0 also show that Ā ∈ ALG-PF∗A. (The
case of m1 < m0 is similar.)

The first condition above can be expressed by a low-degree
polynomial (in the variables x, w, b, q) in a standard way (as
the product, over all 2× 3 “windows” of the tableau, of the
polynomials expressing the correctness of the window). The
second condition can also be expressed as the product, over
1 ≤ i ≤ t, of the following low-degree polynomial p on the
variables qi, bi, zi: p(qi, bi, zi) = bi · p1(qi, zi) + (1 − bi) ·
p0(qi, zi), which is 1 (for Boolean-valued bi) iff [bi = 1 and
zi is a witness that qi ∈ A] or [bi = 0 and zi is a witness
that qi 6∈ A]. Finally, the product of the polynomials for
these two conditions yields a polynomial family computable
in FPA, showing that L ∈ ALG-PF∗A.

Proof of Lemma 4.3. By the easy direction of
Lemma 4.4, we get that A0 and its complement are in

ALG-PF∗A0 , and similarly, A1 and its complement are in
ALG-PF∗A1 . Let R0 and R1 be polynomial families for A0

and A1. Let g0, g1 be the corresponding witness-computing
functions for R0 and R1. Suppose that g0 : {0, 1}n →
{0, 1}m0 and g1 : {0, 1}n → {0, 1}m1 . As before, we may
assume without loss of generality that m0 = m1 = m.

The polynomial families for A0 are computable in FPA0 ,
and those for A1 in FPA1 . Define the polynomial family
R for A0 + A1 by R((b, x), y) = b · R1(x, y) + (1 − b) ·
R0(x, y), where x = x1, . . . , xn and y = y1, . . . , ym. De-
fine the witness-computing function g for R on Boolean in-
puts (b, x) equal to gb(x). These R and g are computable in
FPA0+A1 . It follows that A0 + A1 ∈ ALG-PF∗A0+A1 .

Similarly, we can argue that the complement of A0 + A1

is also in ALG-PF∗A0+A1 . So by Lemma 4.4, A0 + A1 is
consistent with ACT∗.

Next we prove the items of Theorem 4.2. We show the
existence of ACT∗-consistent oracles for which the negations
of the corresponding statements in Theorem 4.2 hold. Each
of these oracles will have the form of a disjoint union of two
ACT∗-consistent oracles, and hence, by Lemma 4.3, these
oracles are also ACT∗-consistent, as required. We give the
details next.

4.1.1 NP 6⊆ io-SIZE(2n/4)

We’ll use the following result from [8, Cor. 4.12, page 27].

Theorem 4.5 ([8]). There is a constant c so that, if N

and k are integers with k ≤ 2c
√

N , then the following holds:
Consider the distribution on sets S ⊆ N where each ele-
ment is independently added to S with probability 1/

√
N . Let

S1, . . . , Sk independently chosen sets from this distribution
be the input to player 1, and similarly independently cho-
sen such sets T1, . . . , Tk be the input to player 2. Then any
communication protocol to determine, for each 1 ≤ i ≤ k,
whether Si ∩ Ti = ∅, with o(k

√
N) bits of communication,

has at most 2−Ω(k) probability of success.

Lemma 4.6. There exist languages L1 and L2 with the
corresponding self-algebrizing encodings A1 and A2 such that
NPA1+A2 6⊆ io-SIZEA1+A2(2n/4).

Proof. Let L1 and L2 be chosen at random so that
queries of the form (x, y), where |x| = |y| = 2n, are in Lb in-
dependently with probability 2−n, and no other queries are
in Lb, for b = 1, 2. Let M(L1, L2) = {x|∃y, (x, y) ∈ L1∩L2}.
For every L1, L2, M(L1, L2) is in NPL1+L2 ⊆ NPA1+A2 . We
claim that the probability, for each even length 2n, that
there is a circuit with oracle A1 + A2 of sub-exponential
size for M(L1, L2) is doubly exponentially small in n. It
follows that there is a non-zero probability that the circuit
complexity is exponentially large for all but finitely many n.

To see this, fix n, let K = 22n, and let N = 22n. Condition
on all elements of L1 and L2 not of the form (x, y) where
|x| = |y| = 2n (up to size, say 22n, so that conditioning is
finite).

For each oracle circuit C of size 2n/4, describable using 2αn

bits of advice for some suitable constant α, we can define a
communication protocol for the direct product of K random
set intersection problems as follows: Let S1, . . . , SK be the
inputs to player 1, T1, . . . , TK to player 2. Player 1 adds to
L1 all queries (i, y) where y ∈ Si and computes A1 (note that
A1 only depends on the part of L1 of strictly smaller length,

so the part of A1 up to length 2n is defined by the part of L1

up to length 2n). Similarly, player 2 computes L2 and A2

from T1, . . . , TK . The players then simulate CA1+A2 on all
inputs x of length 2n (in an arbitrary order). Whenever a
query is made to A1, player 1 gives the value, and similarly
for A2. They output the tuple of outputs for C on all such
x’s. Since for each x, the number of queries C makes is at
most 2n/4, the total number of bits communicated is at most
22n ·2n/4 = K ·2n/4 = o(K

√
N). Therefore, by Theorem 4.5,

the probability of success is at most 2−Ω(K) = 2−Ω(22n).
Note that if the protocol fails, then CA1+A2 fails to compute
M(L1, L2) for length 2n inputs. Taking a union bound over

all 22αn

such circuits, the probability (over random L1 and

L2) that there is an oracle circuit of size 2n/4 that correctly
decides the language M(L1, L2) on 2n-bit inputs is doubly
exponentially small for any α < 2.

Since the sum of these probabilities over all n converges,
there is an n0 so that there is a non-zero chance (over the
choice of L1 and L2) of an exponential circuit-size lower
bound for all n > n0.

4.1.2 BPP = P and P 6= NP

Corollary 4.7. There exist languages L1 and L2 with
the corresponding self-algebrizing encodings A1 and A2 such
that BPPA1+A2 = PA1+A2 and NPA1+A2 6= PA1+A2 .

Proof. The language M(L1, L2) defined in the proof of
Lemma 4.6 is always in E. By relativizing [18], it follows that
BPPA1+A2 = PA1+A2 for the same choice of A1 and A2. At
the same time, that language M(L1, L2) is in NPA1+A2 \
PA1+A2 .

4.1.3 RP 6⊆ DTIME(2o(n))

Lemma 4.8. There exist languages L1 and L2 with the
corresponding self-algebrizing encodings A1 and A2 such that
RPA1+A2 6⊆ DTIMEA1+A2(2o(n)).

Proof. We use the separation for deterministic and prob-
abilistic communication complexities. Let ni be a sequence
of integers with ni+1 > 2ni .

Think of L1 and L2 as inputs to the inequality prob-
lem. More precisely, let B(L1, L2) = {1n|∃x, |x| = n, x ∈
L1∆L2}, where ∆ denotes symmetric difference. Relative
to any A1 + A2, B(L1, L2) is always in RPA1+A2 . This is
because A1 and A2 are self-algebrizing and extend L1 and
L2, and hence can be used to compute polynomial exten-
sions L̃1 and L̃2 of L1 and L2, respectively. Observe that
L1 = L2 on length n inputs if and only if the same is true
for L̃1 and L̃2 on dimension n inputs. If L1 6= L2 on inputs
of length n, then L̃1 and L̃2 will differ with high probabil-
ity on a random input of dimension n. This gives the RP
algorithm.

We construct L1 and L2 so that there is no subexponential-
time machine M deciding the inequality problem for all large
enough inputs. We pick L1 and L2 to only contain strings of
length ni (and be empty elsewhere). Consider an enumera-

tion of clocked 2n/2-time oracle machines M1, M2, Note
that the oracle machine Mi(1

ni) cannot ask oracle queries
of length ni+1.

We will construct the languages L1 and L2 so that they are
empty everywhere outside the input lengths ni’s. Suppose
that after stage i, both L1 and L2 are defined for inputs of

length up to ni (and empty elsewhere). Also suppose that
each of the first i oracle machines M1, . . . , Mi incorrectly
solves the inequality problem for L1 and L2 for some length
less than ni, when given oracle access to A1 and A2 which
are the self-algebrizing encodings of the languages L1 and
L2 (defined after stage i; as before, for each b = 1, 2, the set
Ab up to length ni+1 is determined by Lb up to length ni,
since there are no elements of Lb of lengths between ni and
ni+1).

Observe that for any extensions L′
1 and L′

2 of L1 and
L2 obtained in later stages, and for the corresponding self-
algebrizing encodings A′

1 and A′
2, each of the first i machines

will make the same mistakes solving inequality, even though
the oracles have been modified. The reason is simple: the
modifications of L′

1 and L′
2 are at the lengths that are beyond

the reach of any such oracle machine, and the portions of
the self-algebrizing encodings before the length ni+1 depend
only on the portions of L′

1 and L′
2 before the length ni, which

stay the same.
Thus we are free to diagonalize against the oracle machine

M = Mi+1 at some length n = nj for j > i. We will argue
that there exist some strings X1 and X2 of lengths N = 2n,
so that if we extend L1 and L2 by setting their nth slices

equal to X1 and X2, respectively, MA′
1+A′

2(1n) is wrong
on the inequality problem, where A′

i is the self-algebrizing
encoding of the updated language Lb, for b = 1, 2. Clearly,
this will conclude the proof of the lemma.

For contradiction, suppose no such strings X1 and X2 ex-
ist. Then M can be used to deterministically solve the in-
equality problem on all N = 2n-bit strings X1 and X2, with
only 2n/2-bit communication complexity. Indeed, let X1 be
given to Alice, and X2 to Bob. They will simulate the ma-

chine MA′
1+A′

2 on input 1n (for A′
b the self-algebrizing en-

coding of Lb ∪Xb, for b = 1, 2). This machine queries either
A′

1 or A′
2. Alice can answer queries to A′

1, since she knows
X1 (and the earlier part of L1 , which is fixed for all inputs
to Alice). Similarly, Bob can answer queries to A′

2. So the

two players can simulate MA′
1+A′

2 on input 1n by communi-
cating to each other the one-bit answers to the oracle queries
made by M . Hence, the total communication complexity of
this protocol is exactly the number of oracle queries made
by M , which is at most 2n/2. This is a contradiction since
the deterministic communication complexity for inequality
on N = 2n-bit strings is at least N .

4.1.4 EXP ⊂ io-P/poly

Corollary 4.9. There exist languages L1 and L2 with
the corresponding self-algebrizing encodings A1 and A2 such
that EXPA1+A2 ⊂ io-PA1+A2/poly.

Proof. Let L1, L2, A1, A2 be as in Lemma 4.8. Relative
to A1 + A2, we have that RP 6⊆ DTIME(2o(n)). By relativiz-
ing the hardness-randomness tradeoff of [6], this implies that
EXP ⊂ io-P/poly, relative to the same oracle A1 + A2.

4.1.5 Items (5)–(8) of Theorem 4.2
As in [1], the other items are proved using analogs of

Lemma 4.6 for other complexity classes where we know
communication-complexity separations; we skip the details.

We conclude this section by pointing out that although we
are able to re-prove most of the results from [1] for our notion
of algebrization, we do not know how to construct an ACT-
consistent oracle O so that NEXPO ⊆ PO/poly. We state

the following much weaker result for the case where oracle
access is restricted to polynomial-length queries only; how-
ever, such a restriction is very unsatisfactory, and it would
be interesting to remove it.

Theorem 4.10. There is an oracle A consistent with ACT∗

such that NEXPA[poly] ⊆ PA/poly.

Proof. Let L be an oracle such that NEXPL ⊆
PL/poly [30]. Let A be the self-algebrizing encoding of L.

Then we have NEXPA[poly] ⊆ NEXPPSPACEL[poly] ⊆ NEXPL[poly]

⊆ PL/poly ⊆ PA/poly.

5. CONCLUSIONS
The theory RCT of [4] explains why relativizing tech-

niques are insufficient for resolving the big open questions
about the class P: these techniques have a very limited,
“black-box” view of the class P. On the other hand, LCT
knows everything there is to know about P (by having the
Local Checkability axiom), and so everything that can be
proved about P is provable in LCT . However, it is one thing
to have all the properties of P that one can use, and a com-
pletely different thing to know how to use them for proving
theorems about P.

The arithmetization technique suggests one possible way
to use local checkability, which has been quite fruitful in
complexity theory. The theory ACT defined in the present
paper seems like a useful intermediate theory for captur-
ing some of what algebraic techniques add to relativizing
complexity theory. Unlike the Aaronson-Wigderson [1] ap-
proach, it is clear that the provable consequences of ACT
are closed under deduction. However, we do not have some
of the results they could prove for their notion of algebriza-
tion; e.g., we do not know how to get an oracle O consistent
with ACT so that EXPO ⊆ PO/poly (although we do have
this inclusion infinitely often.) Also there are known results,
proved using algebraic techniques, which do not follow from
ACT ; e.g., ACT cannot prove NEXP = MIP. One way to
interpret this is that, although the proof of NEXP = MIP
certainly uses algebraic interpolation, it also uses other non-
black-box arguments. Thus, while a statement failing to
algebrize shows a broad range of techniques that will fail
to resolve it, it certainly does not mean that it is beyond
the scope of all current techniques in complexity. We should
use algebrization as a tool for homing in on the correct proof
techniques to solve open problems, not as an alibi for failing
to solve them.

One way to make further progress is to use algebraic tech-
niques in a non-algebrizing way. ACT treats the way we
interpolate relations as polynomials as a black box. How-
ever, as observed in [2] (footnote, p. 46), the particular in-
terpolant we choose often has other nice properties besides
being low degree. In a standard application of arithmeti-
zation, one takes a small 3-cnf formula φ(x1, . . . , xn) on m
clauses c1, . . . , cm, and produces its arithmetized version as
the product of the polynomials p1, . . . , pm, where each poly-
nomial pi is a multilinear polynomial that depends only on
3 variables (occurring in clause ci), is Boolean-valued on
Boolean inputs, and is 1 on a Boolean input iff that input
satisfies clause ci. The distinguishing feature of this polyno-
mial obtained from φ is that it can be completely factored
into 3-variate polynomials. In contrast, polynomials we get
for NPO, with ACT-consistent oracles O, do not necessarily
have this feature.

Can a BPP algorithm distinguish between a polynomial
p(x1, . . . , xn) obtained by arithmetizing some 3cnf
φ(x1, . . . , xn) (as described above) and a random low-degree
polynomial q(x1, . . . , xn), when given oracle access to the
polynomials?6 We observe that the answer is yes. The idea
is that a BPP algorithm with oracle access to the polyno-
mial p can learn p (and also φ) by factoring p. Namely, one
can use the BPP algorithm of [19] to get a list of algorithms
(each with oracle access to p) that compute all factors of
p. Since each factor of p depends on at most 3 variables 7,
we can learn a small arithmetic formula for each such fac-
tor (doing Polynomial Identity Tests to figure out which one
is the right formula). Thus we can recover a small arith-
metic formula for the entire polynomial p. In particular,
this means that we can verify that p has small arithmetic
complexity (and actually learn a small arithmetic formula
for p). On the other hand, a random low-degree polynomial
q is most likely of very high arithmetic circuit complexity,
and so, when given oracle access to q, our algorithm will
not be able to find any small arithmetic formula that com-
putes q. Thus our BPP algorithm will distinguish between
polynomials p and q.

Interestingly, the property of the polynomial p we have
exploited in the above algorithm is very similar to the “lo-
cality of computation” property (Local Checkability) which
was used as the basis for the theory LCT : the reason p has
a factorization into 3-variate polynomials is that we use a
3-cnf formula to describe a computation of a nondetermin-
istic polynomial-time machine. So perhaps, the arithmeti-
zation technique can be pushed further, if we learn how to
exploit this additional “locality”property of the polynomials
obtained by arithmetization.

Another avenue to explore in future work are variants of
ACT and their consequences. As mentioned before, interpo-
lation of easily computable functions is possible over a large
variety of algebraic structures, not just the integers. How do
variants of ACT for different algebraic domains compare?

There are many questions one can ask about the power of
ACT . Here are just a few. Is there an ACT-consistent oracle
O relative to which there exist one-way functions in PO se-
cure against BPPO? Is there an ACT-consistent (nonempty)
oracle relative to which NEXP = MIP? Can ACT prove the
implication EXP ⊂ P/poly → EXP = MA [5], or the simpler
implication EXP ⊂ P/poly → EXP = Σp

2 [21]?
Acknowledgments. We want to thank Scott Aaronson,

Lance Fortnow, and the anonymous referees for their com-
ments.

6. REFERENCES
[1] S. Aaronson and A. Wigderson. Algebrization: A new

barrier in complexity theory. In STOC, pages 731–740,
2008.

[2] S. Aaronson and A. Wigderson. Algebrization: A new
barrier in complexity theory. ACM Trans. Comp. Theory,
2008.

[3] S. Arora and B. Barak. Complexity theory: a modern
approach. 2009.

[4] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing
versus nonrelativizing techniques: The role of local
checkability. Manuscript, 1992.

6This was an open question in [1], but has been resolved in
[2], independently of our work.
7It is also easy to handle the case of k-cnf formulas on n
variables for any k ∈ O(log n).

[5] L. Babai, L. Fortnow, and C. Lund. Non-deterministic
exponential time has two-prover interactive protocols.
Comp. Complex., 1:3–40, 1991.

[6] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP
has subexponential time simulations unless EXPTIME has
publishable proofs. Comp. Complex., 3:307–318, 1993.

[7] T. Baker, J. Gill, and R. Solovay. Relativizations of the
P=?NP question. SICOMP, 4(4):431–442, 1975.

[8] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A
strong direct product theorem for corruption and the
multiparty communication complexity of disjointness.
Comp. Complex., 15(4):391–432, 2006.

[9] H. Buhrman, L. Fortnow, and L. Thierauf. Nonrelativizing
separations. In CCC, pages 8–12, 1998.

[10] A. Cobham. The intrinsic computational difficulty of
functions. In Y. Bar-Hillel, editor, Proc 1964 Int’l Congress
for Logic, Methodology, and Philosophy of Science, pages
24–30. 1964.

[11] M. Dekhtiar. On the impossibility of eliminating exhaustive
search in computing a function relative to its graph. Soviet
Math. Dokl., 14:1146–1148, 1969.

[12] L. Fortnow. The role of relativization in complexity theory.
BEATCS, 52:229–244, February 1994.

[13] L. Fortnow and M. Sipser. Are there interactive protocols
for co-NP Languages? IPL, 28:249 –251, 1988.

[14] I. Gasarch and S. Homer. Relativizations comparing NP
and EXP. Inf. and Contr., 58:88–100, 1983.

[15] O. Goldreich, S. Micali, and A. Wigderson. Proofs that
yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. JACM, 38:691–729, 1991.

[16] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A
pseudorandom generator from any one-way function.
SICOMP, 28:1364–1396, 1999.

[17] H. Heller. On relativized exponential and probabilistic
complexity classes. Inf. and Comp., 71(3):231 –243, 1986.

[18] R. Impagliazzo and A. Wigderson. P=BPP if E requires
exponential circuits: Derandomizing the XOR Lemma. In
STOC, pages 220–229, 1997.

[19] E. Kaltofen and B. Trager. Computing with polynomials
given by black boxes for their evaluations: Greatest
common divisors, factorization, separation of numerators
and denominators. JSC, 9(3):301–320, 1990.

[20] R. Kannan. Circuit-size lower bounds and non-reducibility
to sparse sets. Inf. and Contr., 55:40–56, 1982.

[21] R.M. Karp and R.J. Lipton. Turing machines that take
advice. L’Ens. Math., 28(3-4):191–209, 1982.

[22] E. Kushilevitz and N. Nisan. Communication Complexity.
1997.

[23] G. Lischke. Relationships between relativizations of
P, NP, EL, NEL, EP and NEP. Z. fur Math. Logik und
Grundlagen der Math., 2:257 –270, 1986.

[24] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic
methods for interactive proof systems. JACM,
39(4):859–868, 1992.

[25] M. Naor. Bit commitment using pseudorandomness. J.
Cryptology, 4:151–158, 1991.

[26] R. Santhanam. Circuit lower bounds for Merlin-Arthur
classes. In STOC, pages 275–283, 2007.

[27] A. Shamir. IP=PSPACE. JACM, 39(4):869–877, 1992.
[28] S. Toda. PP is as hard as the polynomial-time hierarchy.

SICOMP, 20(5):865–877, 1991.
[29] N.V. Vinodchandran. A note on the circuit complexity of

PP. TCS, 347(1-2):415–418, 2005.
[30] C.B. Wilson. Relativized circuit complexity. JCSS,

31:169–181, 1985.

