
1

Review: Transport Layer 1

Transport Layer
Issues

Mobile Ad Hoc Networking

Review: Transport Layer 2

Transport Layer Issues
Contents:
r overview principles

behind transport layer
services:
m multiplexing/demultiple

xing
m reliable data transfer
m flow control
m congestion control

r TCP Performance analysis

2

Review: Transport Layer 3

But first,
a general overview of networks (and the Internet)

Telecommunication
networks

Circuit-switched
networks

FDM TDM

Packet-switched
networks

Networks
with VCs

Datagram
Networks

Review: Transport Layer 4

What Is the Internet?
r A network of networks, joining many government, university

and private computers together and providing an
infrastructure for the use of E-mail, bulletin boards, file
archives, hypertext documents, databases and other
computational resources

r The vast collection of computer networks which form and
act as a single huge network for transport of data and
messages across distances which can be anywhere from the
same office to anywhere in the world.

Written by William F. Slater, III
1996
President of the Chicago Chapter of the Internet Society

Copyright 2002, William F. Slater, III, Chicago, IL, USA

3

Review: Transport Layer 5

What is the Internet?

r The largest network of networks in the world.
r Uses TCP/IP protocols and packet switching .
r Runs on any communications substrate.

From Dr. Vinton Cerf,
Co-Creator of TCP/IP

Review: Transport Layer 6

Brief History of the Internet

r 1968 - DARPA (Defense Advanced Research Projects Agency)
contracts with BBN (Bolt, Beranek & Newman) to create ARPAnet

r 1970 - First five nodes:
m UCLA
m Stanford
m UC Santa Barbara
m U of Utah, and
m BBN

r 1974 - TCP specification by Vint Cerf
r 1984 – On January 1, the Internet with its 1000 hosts

converts en masse to using TCP/IP for its messaging

4

Review: Transport Layer 7

*** Internet History ***

Review: Transport Layer 8

A Brief Summary of the
Evolution of the Internet

1945 1995

Memex
Conceived

1945

WWW
Created

1989

Mosaic
Created

1993

Mathematical
Theory of

Communication
1948

Packet
Switching
Invented

1964

Silicon
Chip
1958

First Vast
Computer
Network

Envisioned
1962

ARPANET
1969

TCP/IP
Created

1972

Internet
Named

and
Goes

TCP/IP
1984

Hypertext
Invented

1965

Age of
eCommerce

Begins
1995

Copyright 2002, William F. Slater, III, Chicago, IL, USA

5

Review: Transport Layer 9

From Simple, But Significant Ideas Bigger Ones
Grow 1940s to 1969

1945 1969

We can access
information using

electronic computers

We do it reliably with “bits”,
sending and receiving data

We can do it cheaply by using
Digital circuits etched in silicon.

We can accomplish a lot by having a
vast network of computers to use for

accessing information and exchanging ideas

We will prove that packet switching
works over a WAN.

Packet switching can be used to
send digitized data though

computer networks

Hypertext can be used to allow
rapid access to text data

Copyright 2002, William F. Slater, III, Chicago, IL, USA

Review: Transport Layer 10

From Simple, But Significant Ideas Bigger Ones
Grow 1970s to 1995

1970 1995

Ideas from
1940s to 1969

We need a protocol for Efficient
and Reliable transmission of
Packets over a WAN: TCP/IP

The ARPANET needs to convert to
a standard protocol and be renamed to

The Internet

Computers connected via the Internet can be used
more easily if hypertext links are enabled using HTML

and URLs: it’s called World Wide Web

The World Wide Web is easier to use if we have a browser that
To browser web pages, running in a graphical user interface context.

Great efficiencies can be accomplished if we use
The Internet and the World Wide Web to conduct business.

Copyright 2002, William F. Slater, III, Chicago, IL, USA

6

Review: Transport Layer 11

The Creation of the Internet

r The creation of the Internet solved the following challenges:
m Basically inventing digital networking as we know it
m Survivability of an infrastructure to send / receive high-speed

electronic messages
m Reliability of computer messaging

Copyright 2002, William F. Slater, III, Chicago, IL, USA

Review: Transport Layer 12

Internet Pioneers

Mark Andreesen
(Mosaic/Netscape)

Tim Berners-Lee
(WWW)

Robert Kahn
(TCP/IP)

Vinton Cerf
(TCP/IP)

Lawrence Roberts
(APARNet)

Ted Nelson
(Hypertext)

Leonard Kleinrock
(Pakcet switching)

Paul Baran
(Pakcet switching)

Claude Shannon
(Information theory)

Vannevar Bush
(APARNet)

7

Review: Transport Layer 13

Growth of Internet Hosts *
Sept. 1969 - Sept. 2002

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

9/6
9

01
/71

01
/73

01
/74

01
/76

01
/79

08
/81

08
/83

10

/85
11

/86

07
/88

01
/89

10
/89

01
/91

10
/91

04
/92

10
/92

04
/93

10
/93

07
/94

01
/95

01
/96

01
/97

01
/98

01
/99

01
/01

08
/02

Time Period

N
o

. o
f H

o
st

s

The Internet was not known as "The Internet" until January 1984, at which time
there were 1000 hosts that were all converted over to using TCP/IP.

Chart by William F. Slater, III

Sept. 1, 2002

Dot-Com Burst Begins

Copyright 2002, William F. Slater, III, Chicago, IL, USA

Review: Transport Layer 14

ISO 7-layer reference model

application

presentation

session

application

transport

network

link

physical

8

Review: Transport Layer 15

Internet protocol stack
r application: supporting network

applications
m FTP, SMTP, HTTP

r transport: host-host data transfer
m TCP, UDP

r network: routing of datagrams from
source to destination
m IP, routing protocols e.g. OSPF, BGP

r link: data transfer between
neighboring network elements
m PPP, Ethernet

r physical: bits “on the wire”

application

transport

network

link

physical

Review: Transport Layer 16

Internet Standardization Process

r All standards of the Internet are published as RFC
(Request for Comments)
m but not all RFCs are Internet Standards !
m available: http://www.ietf.org
m Till now: RFC4333

r A typical (but not the only) way of standardization:
m Internet draft
m RFC
m Proposed standard
m Draft standard (requires 2 working implementations)
m Internet standard (declared by Internet Architecture

Board)

9

Review: Transport Layer 17

Outline

r 1. Transport-layer
services

r 2. Multiplexing and
demultiplexing

r 3. Connectionless
transport: UDP

r 4. Principles of reliable
data transfer

r 5. Connection-oriented
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay

performance

Review: Transport Layer 18

Transport layer – the other side of the door

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

r API: (1) choose transport protocol; (2) set parameters

10

Review: Transport Layer 19

Transport services and protocols
r provide logical

communication between
app processes running on
different hosts

r transport protocols run
in end systems
m send side: breaks app

messages into
segments, passes to
network layer

m rcv side: reassembles
segments into
messages, passes to
app layer

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end
-end transport

Review: Transport Layer 20

Transport vs. network layer

r network layer: logical communication between hosts
m Point-to-point

r transport layer: logical communication between
processes
m relies on and enhances, network layer services
m also called “End-to-End”

J. Saltzer , D. Reed, and D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems, 2(4):277--288, 1984.

11

Review: Transport Layer 21

Outline

r 1. Transport-layer
services

r 2. Multiplexing and
demultiplexing

r 3. Connectionless
transport: UDP

r 4. Principles of reliable
data transfer

r 5. Connection-oriented
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay

performance

Review: Transport Layer 22

How demultiplexing works
r host receives IP datagrams

m each datagram has source
IP address, destination IP
address

m each datagram carries 1
transport-layer segment

m each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

r host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

12

Review: Transport Layer 23

Connection-oriented demux

r TCP socket identified by 4-tuple:
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four values to direct
segment to appropriate socket

Review: Transport Layer 24

Connection-oriented demux

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 80
DP: 9157

SP: 9157
DP: 80

SP: 80
DP: 5775

SP: 5775
DP: 80

P4

13

Review: Transport Layer 25

Connection-oriented demux

r TCP socket identified
by 4-tuple:
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four
values to direct
segment to appropriate
socket

Q:
r Why use 4-tuple?

Review: Transport Layer 26

Connection-oriented demux

r TCP socket identified
by 4-tuple:
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four
values to direct
segment to appropriate
socket

Examples:
r Server host may support

many simultaneous TCP
sockets:
m each socket identified by

its own 4-tuple
r Web servers have

different sockets for
each connecting client
m non-persistent HTTP will

have a different socket
for each request

14

Review: Transport Layer 27

UDP: User Datagram Protocol [RFC 768]

r “no frills,” “bare bones”
Internet transport
protocol

r “best effort” service, UDP
segments may be:
m lost
m delivered out of order

to app
r connectionless:

m no handshaking between
UDP sender, receiver

m each UDP segment
handled independently
of others

Why is there a UDP?
r no connection

establishment (which can
add delay)

r simple: no connection state
at sender, receiver

r small segment header
r no congestion control: UDP

can blast away as fast as
desired

Review: Transport Layer 28

UDP: more
r often used for streaming

multimedia apps
m loss tolerant
m rate sensitive

r other UDP uses
m DNS – why ?

r reliable transfer over UDP:
add reliability at
application layer
m application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

15

Review: Transport Layer 29

Outline

r 1. Transport-layer
services

r 2. Multiplexing and
demultiplexing

r 3. Connectionless
transport: UDP

r 4. Principles of reliable
data transfer

r 5. Connection-oriented
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay

performance

Review: Transport Layer 30

Principles of Reliable data transfer
r important in app., transport, link layers
r top-10 list of important networking topics!

r characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

16

Review: Transport Layer 31

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Review: Transport Layer 32

Reliable data transfer: getting started

We’ll:
r incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
r What is unreliability ?

m Bit error
m Packet loss – congestion
m Delay – too long

17

Review: Transport Layer 33

Rdt1.0: reliable transfer over a reliable channel

r underlying channel perfectly reliable
m no bit errors
m no loss of packets

r separate FSMs for sender, receiver:
m sender sends data into underlying channel
m receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

sender receiver

Review: Transport Layer 34

rdt2.0: channel with bit errors

Wait for
call from
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
belowsender

receiver
rdt_send(data)

Λ

18

Review: Transport Layer 35

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

r sender doesn’ t know what
happened at receiver!

What to do?
r sender NAKs for receiver’s

ACK/NAK? What if sender
NAK corrupted?

r retransmit, assuming it is
NAK …

r but this might cause
retransmission of correctly
received pkt!

- packet duplications !

Handling duplicates:
r sender adds sequence

number to each pkt
r sender retransmits current

pkt if ACK/NAK garbled
r receiver discards (doesn’ t

deliver up) duplicate pkt

Review: Transport Layer 36

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

19

Review: Transport Layer 37

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Review: Transport Layer 38

rdt 2.1 in action

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

pkt

ACK

pkt

ACK

pkt

ACK

a) operation with no corruption

sender receiver

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

send NAK1
rcv NAK1

resend pkt1
rcv pkt1
send ACK1

pkt

ACK

pkt

NAK

pkt

ACK

X (corrupted)

b) packet corrupted

rcv pkt1

sender receiver

20

Review: Transport Layer 39

rdt 2.1 in action (cont)

send pkt0
rcv pkt0
send ACK0

resend pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

pkt

ACK

pkt

ACK

pkt

ACK

(corrupted) X

c) ACK corrupted

rcv ACK0

sender receiver

Review: Transport Layer 40

rdt2.2: a NAK-free protocol

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Λ

21

Review: Transport Layer 41

rdt 2.2 in action

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

pkt0

ACK0

pkt1

ACK1

pkt0

ACK0

a) operation with no corruption

sender receiver

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

send ACK0
rcv ACK0

resend pkt1
rcv pkt1
send ACK1

pkt0

ACK0

pkt1

ACK0

pkt1

ACK1

b) packet corrupted

X (corrupted)rcv pkt1

sender receiver

Review: Transport Layer 42

rdt 2.2 in action (cont)

send pkt0
rcv pkt0
send ACK0

resend pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

pkt0

ACK0

pkt0

ACK0

pkt1

ACK1

c) ACK corrupted

(corrupted) X
rcv ACK0

sender receiver

22

Review: Transport Layer 43

rdt3.0 channels with errors and loss

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ Sender

Review: Transport Layer 44

rdt3.0: Poor performance

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender = L / R

RTT + L / R

Stop-and-Wait

Sender sends one packet,
then waits for receiver
response

stop and wait

23

Review: Transport Layer 45

Performance of rdt3.0

r example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
109 b/sec = 8 microsec

m U sender: utilization – fraction of time sender busy sending
m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
m network protocol limits use of physical resources!
m microsec = 10-6sec millisec=ms=10-3s Gb, Mb, Kb

U
sender =

.008
30.008

= 0.00027
microsec

L / R
RTT + L / R

=

L (packet length in bits)
R (transmission rate, bps) =

Review: Transport Layer 46

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
m range of sequence numbers must be increased
m buffering at sender and/or receiver

24

Review: Transport Layer 47

Pipelining: increased utilization
first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008
microsecon

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3

r Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Review: Transport Layer 48

Go-Back-N
Sender:
r k-bit seq # in pkt header
r “window ” of up to N, consecutive unack’ed pkts allowed – sliding

window

r ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
m may receive duplicate ACKs (see receiver)

r timer for the packet of send_base
r timeout(n): retransmit pkt n and all higher seq # pkts in window

25

Review: Transport Layer 49

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

Review: Transport Layer 50

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
m may generate duplicate ACKs
m need only remember expectedseqnum

r out-of-order pkt:
m discard (don’t buffer) -> no receiver buffering!
m Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =

make_pkt(0, ACK, chksum)

Λ

26

Review: Transport Layer 51

GBN in
action

Review: Transport Layer 52

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

27

Review: Transport Layer 53

GBN in
action

Cumulative ACK

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3
rcv pkt3
send ACK3

send pkt4

send pkt5

send pkt6

send pkt7

send pkt8

send pkt9

rcv pkt2
send ACK2

rcv pkt4
send ACK4

send ACK5
rcv pkt5

rcv ACK5

(loss)X

(loss)X

(loss)X

Review: Transport Layer 54

GBN in
action

Cumulative ACK

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3
rcv pkt3
send ACK3

send pkt4

send pkt5

send pkt6

send pkt7

send pkt8

send pkt9

rcv pkt2
send ACK2

rcv pkt4
send ACK4

send ACK5
rcv pkt5

rcv ACK5

(loss)X

(loss)X

(loss)X

28

Review: Transport Layer 55

GBN in
action

Premature
timeout

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3

rcv pkt3,discard
send ACK1

send pkt4

send pkt5

pkt2 timeout
send pkt2,3,4,5

rcv pkt2
send ACK2
rcv pkt4,discard
send ACK2

send ACK2
rcv pkt5,discard

Review: Transport Layer 56

GBN in
action

Premature
timeout

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3

rcv pkt3,discard
send ACK1

send pkt4

send pkt5

pkt2 timeout
send pkt2,3,4,5

rcv pkt2
send ACK2
rcv pkt4,discard
send ACK2

send ACK2
rcv pkt5,discard

29

Review: Transport Layer 57

Selective Repeat

r receiver individually acknowledges all correctly
received pkts
m buffers pkts, as needed, for eventual in-order delivery

to upper layer
r sender only resends pkts for which ACK not

received
m sender timer for each unACKed pkt

r sender window
m N consecutive seq #’s
m again limits seq #s of sent, unACKed pkts

Review: Transport Layer 58

Selective repeat: sender, receiver windows

30

Review: Transport Layer 59

Selective repeat

data from above :
r if next available seq # in

window, send pkt
timeout(n):
r resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

r mark pkt n as received
r if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

r send ACK(n)
r out-of-order: buffer
r in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

r ACK(n)
otherwise:
r ignore

receiver

Review: Transport Layer 60

Selective repeat in action

31

Review: Transport Layer 61

Selective repeat:
dilemma

Example:
r seq #’s: 0, 1, 2, 3
r window size=3

r receiver sees no
difference in two
scenarios!

r incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size? Will
this happen in GBN ?

Review: Transport Layer 62

Go Back N vs. Selective Repeat

r Efficiency
m No loss
m Loss

• Bursty loss
• Sporadic loss

r Resource consumption
m Buffer space
m Timer

• How to implement multi-timers ?

32

Review: Transport Layer 63

Outline

r 1. Transport-layer
services

r 2. Multiplexing and
demultiplexing

r 3. Connectionless
transport: UDP

r 4. Principles of reliable
data transfer

r 5. Connection-oriented
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay

performance

Review: Transport Layer 64

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

r full duplex data:
m bi-directional data flow

in same connection
r connection-oriented:

m handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

r flow controlled:
m sender will not

overwhelm receiver

r End-to-end, unicast:
m one sender, one receiver

r reliable, in-order byte
steam:
m no “message boundaries”

r Pipelined (not stop-wait):
m TCP congestion and flow

control set window size
m send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

33

Review: Transport Layer 65

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Review: Transport Layer 66

TCP Connection Setup

Three way handshake:
Step 1: client host sends TCP SYN segment to server

m specifies initial seq #
m no data

Step 2: server host receives SYN, replies with SYNACK
segment
m server allocates buffers
m specifies server initial seq. #

Step 3: client receives SYNACK, replies with ACK segment,
which may contain data – piggyback

Q: Is 3-way handshake perfect ?

34

Review: Transport Layer 67

TCP reliable data transfer

r TCP creates rdt
service on top of IP’s
unreliable service

r Pipelined segments
r Cumulative acks
r TCP uses single

retransmission timer

r Retransmissions are
triggered by:
m timeout events
m duplicate acks

r Initially consider
simplified TCP sender:
m ignore duplicate acks
m ignore flow control,

congestion control

Review: Transport Layer 68

TCP sender events:
data rcvd from app:
r Create segment with

seq #
r seq # is byte-stream

number of first data
byte in segment

r start timer if not
already running (think
of timer as for oldest
unacked segment)

r expiration interval:
TimeOutInterval

timeout:
r retransmit segment that

caused timeout
r restart timer
Ack rcvd:
r If acknowledges

previously unacked
segments
m update what is known to be

acked – cumulative ack
m start timer if there are

outstanding segments

35

Review: Transport Layer 69

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum+ length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Review: Transport Layer 70

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2

ti
m

eo
ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2

ti
m

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

36

Review: Transport Layer 71

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Review: Transport Layer 72

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of segment that
partially or completely fills gap

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediate send ACK, provided that
segment starts at lower end of gap

Immediately send duplicate ACK,
indicating seq. # of next expected byte

37

Review: Transport Layer 73

Fast Retransmit

r Time-out period may be relatively long:
m eRTT+4DevRTT
m long delay before resending lost packet

r Solution: Fast Retransmit
m Hint: GBN

Review: Transport Layer 74

GBN in
action

38

Review: Transport Layer 75

Fast Retransmit

r Time-out period may
be relatively long:
m eRTT+4DevRTT
m long delay before

resending lost packet
r Detect lost segments

via duplicate ACKs.
m Sender often sends

many segments back-to-
back

m If segment is lost,
there will likely be many
duplicate ACKs.

r If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
m fast retransmit: resend

segment before timer
expires

Review: Transport Layer 76

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

39

Review: Transport Layer 77

TCP Round Trip Time and Timeout
Q: how to estimate RTT?

r SampleRTT: measured time from segment transmission
until ACK receipt

One RTT sample

Review: Transport Layer 78

TCP Round Trip Time and Timeout
r Problem 2:

SampleRTT will vary -> atypical
m Need the trend of RTT: history –> future
m average several recent measurements, not just current
SampleRTT RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 3 6 4 3 5 0 5 7 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

40

Review: Transport Layer 79

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)* EstimatedRTT + α*SampleRTT

r typical value: α = 0.125
r influence of past sample decreases exponentially fast

m Exponential weighted moving average

Review: Transport Layer 80

Outline

r 1. Transport-layer
services

r 2. Multiplexing and
demultiplexing

r 3. Connectionless
transport: UDP

r 4. Principles of reliable
data transfer

r 5. Connection-oriented
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay

performance

41

Review: Transport Layer 81

Principles of Congestion Control

Congestion:
r informally: “too many sources sending too many

data too fast for network to handle”
r Solution

m Sender controls sending rate
r different from flow control!

m Flow control: not overwhelm receiver
m Congestion control: not overwhelm network

r another top-10 problem!

Review: Transport Layer 82

Approaches towards congestion control

Network-assisted
congestion control:

r routers provide feedback
to end systems
m single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

m explicit rate sender
should send at

Two broad approaches towards congestion control:

End-end congestion
control:

r no explicit feedback from
network

r congestion inferred from
end-system observed loss,
delay

r approach taken by TCP

Fast, accurate, but expensive

42

Review: Transport Layer 83

TCP Congestion Control

r end-end control (no network assistance)
r sender limits transmission:

LastByteSent-LastByteAcked
≤ CongWin

RcvWindow?
≤ min { rcwWindow, CongWin }

r CongWin is dynamic, function of perceived
network congestion
m Too high a rate -> congestion
m Too low a rate -> low network utilization

Review: Transport Layer 84

TCP Congestion Control

How does sender perceive congestion?
r loss event
r TCP sender reduces rate (CongWin) after loss

event
Loss event = timeout or 3 duplicate acks

three mechanisms:
m AIMD (additive increase multiplicative decrease)
m slow start
m conservative after timeout events

43

Review: Transport Layer 85

1. TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease :
cut CongWin in half
after loss event

additive increase:
increase CongWin by
1 MSS every RTT in
the absence of loss
events: probing

Long-lived TCP connection

Sawtooth

Review: Transport Layer 86

2. TCP Slow Start

r When connection begins,
CongWin = 1 MSS
m Example: MSS = 500 bytes

& RTT = 200 msec
m initial rate = 20 kbps

r available bandwidth may
be >> MSS/RTT
m desirable to quickly ramp

up to respectable rate

r When connection begins,
increase rate exponentially
fast until first loss event

44

Review: Transport Layer 87

2. TCP Slow Start (more)

r When connection
begins, increase rate
exponentially until
first loss event:
m double CongWin every

RTT
m done by incrementing
CongWin for every ACK
received

r Summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

Review: Transport Layer 88

3. Refinement (TCP Reno)
r After 3 dup ACKs:

m CongWin is cut in half
m window then grows

linearly
r But after timeout event:

m CongWin instead set to
1 MSS;

m window then grows
exponentially

m to a Threshold, then
grows linearly

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

Tahoe -> Reno -> Sack
TCP versions:

Vegas, Westwood …
(Nevada)

45

Review: Transport Layer 89

Refinement (more)
Q: Threshold: When will

exponential increase
switch to linear?

A: When CongWin gets to
1/2 of its value before
timeout.

Implementation:
r Variable Threshold
r At a loss event, Threshold

is set to 1/2 of CongWin
just before loss event

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
n

g
es

ti
o

n
 w

in
d

o
w

 s
iz

e
(s

eg
m

en
ts

)

Series1 Series2

threshold
TCP

Tahoe

TCP
Reno

TimeOut

Review: Transport Layer 90

TCP congestion behavior (1)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
n

g
es

ti
o

n
 w

in
d

o
w

 s
iz

e

(s
eg

m
en

ts
)

Series1 Series2

threshold

TimeOut

46

Review: Transport Layer 91

TCP congestion behavior (2)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
n

g
es

ti
o

n
 w

in
d

o
w

 s
iz

e

(s
eg

m
en

ts
)

Series1 Series2

threshold

TCP
Tahoe

3 Dup Ack

Review: Transport Layer 92

TCP congestion behavior (3)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
n

g
es

ti
o

n
 w

in
d

o
w

 s
iz

e

(s
eg

m
en

ts
)

Series1 Series2

threshold

TCP
Tahoe

TCP
Reno

3 Dup Ack

47

Review: Transport Layer 93

Summary: TCP Congestion Control (Reno)

r When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

r When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

r When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

r When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

V. Jacobson, Congestion Avoidance and Control. Proceedings of
ACM SIGCOMM '88, Aug. 1988.

Review: Transport Layer 94

Outline

r 1. Transport-layer
services

r 2. Multiplexing and
demultiplexing

r 3. Connectionless
transport: UDP

r 4. Principles of reliable
data transfer

r 5. Connection-oriented
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay

performance

48

Review: Transport Layer 95

Fair: 1. Equal share
2. Full utilization

Goal: if K TCP sessions share same bottleneck link
of bandwidth R, each should have average rate of
R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Review: Transport Layer 96

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease :
cut CongWin in half
after loss event

additive increase:
increase CongWin by
1 MSS every RTT in
the absence of loss
events: probing

Long-lived TCP connection

Sawtooth

49

Review: Transport Layer 97

Why is TCP fair?
Two competing sessions:
r Additive increase gives slope of 1, as throughout increases
r multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Review: Transport Layer 98

Why is TCP fair?

R

RConnection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

x=y

x

y

(x0,y0)

(x0+? , y0+?)

(x0/2+? /2, y0/2+? /2)

Known:
x0>y0

(x0+? /2, y0+? /2)

50

Review: Transport Layer 99

Why is TCP fair?

R

R

x=y

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

D.M. Chiu and R. Jain, "Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,"

Computer Networks and ISDN Systems, pp. 1-14, 1989.

Review: Transport Layer 100

Fairness (more)
Fairness and UDP
r Multimedia apps often do

not use TCP
m do not want rate throttled

by congestion control
r Instead use UDP:

m pump audio/video at
constant rate, tolerate
packet loss

r Research area: TCP
friendly, more on later

Fairness and parallel TCP
connections

r nothing prevents app from
opening parallel connections
between 2 hosts.

r Web browsers/FTP client do this
m NetAnts, GetRight

r Example: link of rate R with 9
ongoing Tcp connections;
m new app asks for 1 TCP, gets rate

R/10
m new app asks for 11 TCPs, gets >

R/2 !

51

Review: Transport Layer 101

Delay performance
Q: How long does it take to receive an object from

a Web server after sending a request?

Methods
r Measurement

m Ping, traceroute
r Simulation

m Ns-2
r Analytical modeling

m Math

Review: Transport Layer 102

Delay modeling – No Congestion

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

r TCP connection establishment
r data transmission delay
r slow start

Notation, assumptions:
r Assume one link between

client and server of rate R
r S: MSS (bits)
r O: object size (bits)
r no retransmissions (no loss,

no corruption)
Window size:
r First assume: fixed

congestion window, W
segments

r Then dynamic window,
modeling slow start

52

Review: Transport Layer 103

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window ’s
worth of data sent

delay = ?

Review: Transport Layer 104

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window ’s
worth of data sent

delay = 2RTT + O/R

53

Review: Transport Layer 105

Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

delay = ?

Review: Transport Layer 106

Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K ?

54

Review: Transport Layer 107

Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K =O/(WS)

Review: Transport Layer 108

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start
But no congestion

Will show that the delay for one object is:

R
S

R
S

RTTP
R
O

RTTLatency P)12(2 −−



 +++=

where P is the number of times TCP idles at server:

min{ , 1}P Q K= −

- Q is the number of times the server idles
if the object were of infinite size.

- K is the number of windows that cover the object.

55

Review: Transport Layer 109

Case 1: P = Q

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit object
• time server idles due to
slow start

Server idles:
P = min{K-1,Q} times

Review: Transport Layer 110

Case 2: P = K-1

Example:
• O/S = 3 segments
• K = 2 windows
• Q = 2
• P = min{K-1,Q} = 1

Server idles P=1 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit object
• time server idles due to
slow start

Server idles:
P = min{K-1,Q} times

56

Review: Transport Layer 111

TCP Delay Modeling (contd)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

12 idle time after the th windowkS S
RTT k

R R

+
− + − =  

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

12 time to transmit the th window k S k
R

− =

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Review: Transport Layer 112

TCP Delay Modeling (contd)





 +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min

}222:{min

2

2

110

110

S
O

S
O

kk

S
Ok

SOk

OSSSkK

k

k

k

L

L

Calculation of Q, number of idles for infinite -size object,
is similar

Recall K = number of windows that cover object

How do we calculate K ?

1max{ : 2 / / }qq S R RTT S R− ≤ +

