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Transport Layer 
Issues

Mobile Ad Hoc Networking
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Transport Layer Issues
Contents:
r overview principles 

behind transport layer 
services:
m multiplexing/demultiple

xing
m reliable data transfer
m flow control
m congestion control

r TCP Performance analysis
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But first, 
a general overview of networks (and the Internet)

Telecommunication
networks

Circuit-switched
networks

FDM TDM

Packet-switched
networks

Networks
with VCs

Datagram
Networks
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What Is the Internet?
r A network of networks, joining many government, university 

and private computers together and providing an 
infrastructure for the use of E-mail, bulletin boards, file 
archives, hypertext documents, databases and other 
computational resources

r The vast collection of computer networks which form and 
act as a single huge network for transport of data and 
messages across distances which can be anywhere from the 
same office to anywhere in the world.

Written by William F. Slater, III
1996
President of the Chicago Chapter of the Internet Society

Copyright 2002, William F. Slater, III, Chicago, IL, USA
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What is the Internet?

r The largest network of networks in the world.
r Uses TCP/IP protocols and packet switching .
r Runs on any communications substrate.

From Dr. Vinton Cerf, 
Co-Creator of TCP/IP
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Brief History of the Internet

r 1968 - DARPA (Defense Advanced Research Projects Agency) 
contracts with BBN (Bolt, Beranek & Newman) to create ARPAnet

r 1970 - First five nodes: 
m UCLA
m Stanford
m UC Santa Barbara
m U of Utah, and 
m BBN

r 1974 - TCP specification by Vint Cerf
r 1984 – On January 1, the Internet with its 1000 hosts 

converts en masse to using TCP/IP for its messaging
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*** Internet History ***
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A Brief Summary of the 
Evolution of the Internet

1945 1995

Memex
Conceived

1945

WWW
Created

1989

Mosaic
Created

1993

Mathematical
Theory of

Communication
1948

Packet 
Switching 
Invented

1964

Silicon
Chip
1958

First Vast 
Computer
Network

Envisioned
1962

ARPANET
1969

TCP/IP
Created

1972

Internet
Named 

and 
Goes

TCP/IP
1984

Hypertext
Invented

1965

Age of
eCommerce

Begins
1995

Copyright 2002, William F. Slater, III, Chicago, IL, USA
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From Simple, But Significant Ideas Bigger Ones 
Grow 1940s to 1969

1945 1969

We can access
information using 

electronic computers

We do it reliably with “bits”, 
sending and receiving data

We can do it cheaply by using 
Digital circuits etched in silicon.

We can accomplish a lot by having a 
vast network of computers to use for

accessing information and exchanging ideas

We will prove that packet switching 
works over a WAN.

Packet switching can be used to 
send digitized data though 

computer networks

Hypertext can be used to allow 
rapid access to text data

Copyright 2002, William F. Slater, III, Chicago, IL, USA
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From Simple, But Significant Ideas Bigger Ones 
Grow 1970s to 1995

1970 1995

Ideas from
1940s to 1969

We need a protocol for Efficient 
and Reliable transmission of
Packets over a WAN: TCP/IP

The ARPANET needs to convert to 
a standard protocol and be renamed to 

The Internet

Computers connected via the Internet can be used 
more easily if hypertext links are enabled using HTML

and URLs: it’s called World Wide Web

The World Wide Web is easier to use if we have a browser that
To browser web pages, running in a graphical user interface context.

Great efficiencies can be accomplished if we use
The Internet and the World Wide Web to conduct business. 

Copyright 2002, William F. Slater, III, Chicago, IL, USA
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The Creation of the Internet

r The creation of the Internet solved the following challenges:
m Basically inventing digital networking as we know it
m Survivability of an infrastructure to send / receive high-speed 

electronic messages
m Reliability of computer messaging

Copyright 2002, William F. Slater, III, Chicago, IL, USA
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Internet Pioneers

Mark Andreesen
(Mosaic/Netscape)

Tim Berners-Lee
(WWW)

Robert Kahn
(TCP/IP)

Vinton Cerf
(TCP/IP)

Lawrence Roberts
(APARNet)

Ted Nelson
(Hypertext)

Leonard Kleinrock
(Pakcet switching)

Paul Baran
(Pakcet switching)

Claude Shannon
(Information theory)

Vannevar Bush
(APARNet)
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Growth of Internet Hosts *
Sept. 1969 - Sept. 2002
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The Internet was not known as "The Internet" until January 1984, at which time
there were 1000 hosts that were all converted over to using TCP/IP.

Chart by William F. Slater, III

Sept. 1, 2002

Dot-Com Burst Begins

Copyright 2002, William F. Slater, III, Chicago, IL, USA
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ISO 7-layer reference model

application

presentation

session

application

transport

network

link

physical
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Internet protocol stack
r application: supporting network 

applications
m FTP, SMTP, HTTP

r transport: host-host data transfer
m TCP, UDP

r network: routing of datagrams from 
source to destination
m IP, routing protocols e.g. OSPF, BGP

r link: data transfer between 
neighboring  network elements
m PPP, Ethernet

r physical: bits “on the wire”

application

transport

network

link

physical
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Internet Standardization Process

r All standards of the Internet are published as RFC 
(Request for Comments)
m but not all RFCs are Internet Standards !
m available: http://www.ietf.org
m Till now: RFC4333

r A typical (but not the only) way of standardization:
m Internet draft
m RFC
m Proposed standard   
m Draft standard  (requires 2 working implementations)
m Internet standard (declared by Internet Architecture 

Board)
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Outline

r 1. Transport-layer 
services

r 2. Multiplexing and 
demultiplexing

r 3. Connectionless 
transport: UDP

r 4. Principles of reliable 
data transfer

r 5. Connection-oriented 
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay 

performance
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Transport layer – the other side of the door

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

r API: (1) choose transport protocol; (2) set parameters
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Transport services and protocols
r provide logical 

communication between 
app processes running on 
different hosts

r transport protocols run 
in end systems 
m send side: breaks app 

messages into 
segments, passes to  
network layer

m rcv side: reassembles 
segments into 
messages, passes to 
app layer

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end
-end transport
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Transport vs. network layer

r network layer: logical communication between hosts
m Point-to-point

r transport layer: logical communication between 
processes 
m relies on and enhances, network layer services
m also called “End-to-End”

J. Saltzer , D. Reed, and D. Clark. End-to-end arguments in system design. 
ACM Transactions on Computer Systems, 2(4):277--288, 1984. 
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Outline

r 1. Transport-layer 
services

r 2. Multiplexing and 
demultiplexing

r 3. Connectionless 
transport: UDP

r 4. Principles of reliable 
data transfer

r 5. Connection-oriented 
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay 

performance
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How demultiplexing works
r host receives IP datagrams

m each datagram has source 
IP address, destination IP 
address

m each datagram carries 1 
transport-layer segment

m each segment has source, 
destination port number 
(recall: well-known port 
numbers for specific 
applications)

r host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format
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Connection-oriented demux

r TCP socket identified by 4-tuple: 
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four values to direct 
segment to appropriate socket

Review: Transport Layer 24

Connection-oriented demux

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 80
DP: 9157

SP: 9157
DP: 80

SP: 80
DP: 5775

SP: 5775
DP: 80

P4
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Connection-oriented demux

r TCP socket identified 
by 4-tuple: 
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four 
values to direct 
segment to appropriate 
socket

Q:
r Why use 4-tuple?

Review: Transport Layer 26

Connection-oriented demux

r TCP socket identified 
by 4-tuple: 
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four 
values to direct 
segment to appropriate 
socket

Examples:
r Server host may support 

many simultaneous TCP 
sockets:
m each socket identified by 

its own 4-tuple
r Web servers have 

different sockets for 
each connecting client
m non-persistent HTTP will 

have a different socket 
for each request
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UDP: User Datagram Protocol [RFC 768]

r “no frills,” “bare bones”
Internet transport 
protocol

r “best effort” service, UDP 
segments may be:
m lost
m delivered out of order 

to app
r connectionless:

m no handshaking between 
UDP sender, receiver

m each UDP segment 
handled independently 
of others

Why is there a UDP?
r no connection 

establishment (which can 
add delay)

r simple: no connection state 
at sender, receiver

r small segment header
r no congestion control: UDP 

can blast away as fast as 
desired

Review: Transport Layer 28

UDP: more
r often used for streaming 

multimedia apps
m loss tolerant
m rate sensitive

r other UDP uses
m DNS – why ?

r reliable transfer over UDP: 
add reliability at 
application layer
m application-specific 

error recovery!

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header
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Outline

r 1. Transport-layer 
services

r 2. Multiplexing and 
demultiplexing

r 3. Connectionless 
transport: UDP

r 4. Principles of reliable 
data transfer

r 5. Connection-oriented 
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay 

performance
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Principles of Reliable data transfer
r important in app., transport, link layers
r top-10 list of important networking topics!

r characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper

Review: Transport Layer 32

Reliable data transfer: getting started

We’ll:
r incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
r What is unreliability ?

m Bit error
m Packet loss – congestion
m Delay – too long
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Rdt1.0: reliable transfer over a reliable channel

r underlying channel perfectly reliable
m no bit errors
m no loss of packets

r separate FSMs for sender, receiver:
m sender sends data into underlying channel
m receiver read data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for 
call from 
below

rdt_rcv(packet)

sender receiver

Review: Transport Layer 34

rdt2.0: channel with bit errors

Wait for 
call from 
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 
NAK

Wait for 
call from 
belowsender

receiver
rdt_send(data)

Λ
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rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?

r sender doesn’ t know what 
happened at receiver!

What to do?
r sender NAKs for receiver’s 

ACK/NAK? What if sender 
NAK corrupted?

r retransmit, assuming it is 
NAK …

r but this might cause 
retransmission of correctly 
received pkt!

- packet duplications !

Handling duplicates: 
r sender adds sequence 

number to each pkt
r sender retransmits current 

pkt if ACK/NAK garbled
r receiver discards (doesn’ t 

deliver up) duplicate pkt

Review: Transport Layer 36

rdt2.1: sender, handles garbled ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

Λ
Λ
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rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt ) && 
not corrupt(rcvpkt ) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt ) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt ) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt ) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt ) && 
not corrupt(rcvpkt ) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt ) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Review: Transport Layer 38

rdt 2.1 in action

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

pkt

ACK

pkt

ACK

pkt

ACK

a) operation with no corruption

sender receiver

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

send NAK1
rcv NAK1

resend pkt1
rcv pkt1
send ACK1

pkt

ACK

pkt

NAK

pkt

ACK

X (corrupted)

b) packet corrupted

rcv pkt1

sender receiver
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rdt 2.1 in action (cont)

send pkt0
rcv pkt0
send ACK0

resend pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

pkt

ACK

pkt

ACK

pkt

ACK

(corrupted) X

c) ACK corrupted

rcv ACK0

sender receiver
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rdt2.2: a NAK-free protocol

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0

sender FSM
fragment

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Λ
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rdt 2.2 in action

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

pkt0

ACK0

pkt1

ACK1

pkt0

ACK0

a) operation with no corruption

sender receiver

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

send ACK0
rcv ACK0

resend pkt1
rcv pkt1
send ACK1

pkt0

ACK0

pkt1

ACK0

pkt1

ACK1

b) packet corrupted

X (corrupted)rcv pkt1

sender receiver
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rdt 2.2 in action (cont)

send pkt0
rcv pkt0
send ACK0

resend pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

pkt0

ACK0

pkt0

ACK0

pkt1

ACK1

c) ACK corrupted

(corrupted) X
rcv ACK0

sender receiver
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rdt3.0 channels with errors and loss 

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt ) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt )   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt ) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt )   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt )

Wait for 
call 0from 

above

Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt )

Λ
Λ

Λ Sender

Review: Transport Layer 44

rdt3.0: Poor performance

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send 
ACK

ACK arrives, send next 
packet, t = RTT + L / R

 

U
sender = L / R 

RTT + L / R 

Stop-and-Wait

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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Performance of rdt3.0

r example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
109 b/sec = 8 microsec

m U sender: utilization – fraction of time sender busy sending
m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
m network protocol limits use of physical resources!
m microsec = 10-6sec  millisec=ms=10-3s Gb, Mb, Kb

 

U
sender = 

.008 
30.008 

= 0.00027 
microsec

L / R 
RTT + L / R 

= 

L (packet length in bits)
R (transmission rate, bps) =

Review: Transport Layer 46

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
m range of sequence numbers must be increased
m buffering at sender and/or receiver
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Pipelining: increased utilization
first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

 

U
sender = 

.024 
30.008 

= 0.0008 
microsecon

3 * L / R 
RTT + L / R 

= 

Increase utilization
by a factor of 3

r Two generic forms of pipelined protocols: go-Back-N, 
selective repeat
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Go-Back-N
Sender:
r k-bit seq # in pkt header
r “window ” of up to N, consecutive unack’ed pkts allowed – sliding

window

r ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
m may receive duplicate ACKs (see receiver)

r timer for the packet of send_base
r timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt ) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt ) 
&& corrupt(rcvpkt)

Λ
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GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
m may generate duplicate ACKs
m need only remember expectedseqnum

r out-of-order pkt: 
m discard (don’t buffer) -> no receiver buffering!
m Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt )
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    

make_pkt( 0, ACK, chksum )

Λ
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GBN in
action

Review: Transport Layer 52

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt ) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt ) 
&& corrupt(rcvpkt)

Λ
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GBN in
action

Cumulative ACK

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3
rcv pkt3
send ACK3

send pkt4

send pkt5

send pkt6

send pkt7

send pkt8

send pkt9

rcv pkt2
send ACK2

rcv pkt4
send ACK4

send ACK5
rcv pkt5

rcv ACK5

( loss)X

(loss)X

(loss)X
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GBN in
action

Cumulative ACK

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3
rcv pkt3
send ACK3

send pkt4

send pkt5

send pkt6

send pkt7

send pkt8

send pkt9

rcv pkt2
send ACK2

rcv pkt4
send ACK4

send ACK5
rcv pkt5

rcv ACK5

( loss)X

(loss)X

(loss)X
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GBN in
action

Premature 
timeout

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3

rcv pkt3,discard
send ACK1

send pkt4

send pkt5

pkt2 timeout
send pkt2,3,4,5

rcv pkt2
send ACK2
rcv pkt4,discard
send ACK2

send ACK2
rcv pkt5,discard
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GBN in
action

Premature 
timeout

send pkt0
rcv pkt0
send ACK0

rcv ACK0

send pkt1
rcv pkt1
send ACK1

rcv ACK1

Sender Receiver

send pkt2

send pkt3

rcv pkt3,discard
send ACK1

send pkt4

send pkt5

pkt2 timeout
send pkt2,3,4,5

rcv pkt2
send ACK2
rcv pkt4,discard
send ACK2

send ACK2
rcv pkt5,discard
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Selective Repeat

r receiver individually acknowledges all correctly 
received pkts
m buffers pkts, as needed, for eventual in-order delivery 

to upper layer
r sender only resends pkts for which ACK not 

received
m sender timer for each unACKed pkt

r sender window
m N consecutive seq #’s
m again limits seq #s of sent, unACKed pkts

Review: Transport Layer 58

Selective repeat: sender, receiver windows
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Selective repeat

data from above :
r if next available seq # in 

window, send pkt
timeout(n):
r resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

r mark pkt n as received
r if n smallest unACKed pkt, 

advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

r send ACK(n)
r out-of-order: buffer
r in-order: deliver (also 

deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

r ACK(n)
otherwise:
r ignore 

receiver

Review: Transport Layer 60

Selective repeat in action
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Selective repeat:
dilemma

Example: 
r seq #’s: 0, 1, 2, 3
r window size=3

r receiver sees no 
difference in two 
scenarios!

r incorrectly passes 
duplicate data as new 
in (a)

Q: what relationship 
between seq # size 
and window size? Will 
this happen in GBN ?
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Go Back N vs. Selective Repeat

r Efficiency
m No loss
m Loss

• Bursty loss
• Sporadic loss

r Resource consumption
m Buffer space
m Timer

• How to implement multi-timers ?
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Outline

r 1. Transport-layer 
services

r 2. Multiplexing and 
demultiplexing

r 3. Connectionless 
transport: UDP

r 4. Principles of reliable 
data transfer

r 5. Connection-oriented 
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay 

performance
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

r full duplex data:
m bi-directional data flow 

in same connection
r connection-oriented:

m handshaking (exchange 
of control msgs) init’s
sender, receiver state 
before data exchange

r flow controlled:
m sender will not 

overwhelm receiver

r End-to-end, unicast:
m one sender, one receiver

r reliable, in-order byte 
steam:
m no “message boundaries”

r Pipelined (not stop-wait):
m TCP congestion and flow 

control set window size
m send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)
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TCP Connection Setup

Three way handshake:
Step 1: client host sends TCP SYN segment to server

m specifies initial seq #
m no data

Step 2: server host receives SYN, replies with SYNACK 
segment
m server allocates buffers
m specifies server initial seq. #

Step 3: client receives SYNACK, replies with ACK segment, 
which may contain data – piggyback

Q: Is 3-way handshake perfect ?
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TCP reliable data transfer

r TCP creates rdt
service on top of IP’s 
unreliable service

r Pipelined segments
r Cumulative acks
r TCP uses single 

retransmission timer

r Retransmissions are 
triggered by:
m timeout events
m duplicate acks

r Initially consider 
simplified TCP sender:
m ignore duplicate acks
m ignore flow control, 

congestion control
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TCP sender events:
data rcvd from app:
r Create segment with 

seq #
r seq # is byte-stream 

number of first data 
byte in  segment

r start timer if not 
already running (think 
of timer as for oldest 
unacked segment)

r expiration interval: 
TimeOutInterval

timeout:
r retransmit segment that 

caused timeout
r restart timer
Ack rcvd:
r If acknowledges 

previously unacked
segments
m update what is known to be 

acked – cumulative ack
m start timer if there are  

outstanding segments
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TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum+ length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

Comment:
• SendBase-1: last 
cumulatively 
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked
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TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2 

ti
m

eo
ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2 

ti
m

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100
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TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of segment that 
partially or completely fills gap

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediate send ACK, provided that
segment starts at lower end of gap

Immediately send duplicate ACK, 
indicating seq. # of next expected byte
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Fast  Retransmit

r Time-out period  may be relatively long:
m eRTT+4DevRTT
m long delay before resending lost packet

r Solution: Fast Retransmit
m Hint: GBN

Review: Transport Layer 74

GBN in
action
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Fast  Retransmit

r Time-out period  may 
be relatively long:
m eRTT+4DevRTT
m long delay before 

resending lost packet
r Detect lost segments 

via duplicate ACKs.
m Sender often sends 

many segments back-to-
back

m If segment is lost, 
there will likely be many 
duplicate ACKs.

r If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed
data was lost:
m fast retransmit: resend 

segment before timer 
expires
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event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for 
already ACKed segment

fast retransmit
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TCP Round Trip Time and Timeout
Q: how to estimate RTT?

r SampleRTT: measured time from segment transmission 
until ACK receipt

One RTT sample
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TCP Round Trip Time and Timeout
r Problem 2: 

SampleRTT will vary -> atypical
m Need the trend of RTT: history –> future
m average several recent measurements, not just current 
SampleRTT RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 3 6 4 3 5 0 5 7 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)* EstimatedRTT + α*SampleRTT

r typical value: α = 0.125
r influence of past sample decreases exponentially fast

m Exponential weighted moving average

Review: Transport Layer 80

Outline

r 1. Transport-layer 
services

r 2. Multiplexing and 
demultiplexing

r 3. Connectionless 
transport: UDP

r 4. Principles of reliable 
data transfer

r 5. Connection-oriented 
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay 

performance
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Principles of Congestion Control

Congestion:
r informally: “too many sources sending too many 

data too fast for network to handle”
r Solution 

m Sender controls sending rate
r different from flow control!

m Flow control: not overwhelm receiver
m Congestion control: not overwhelm network

r another top-10 problem!
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Approaches towards congestion control

Network-assisted 
congestion control:

r routers provide feedback 
to end systems
m single bit indicating 

congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)

m explicit rate sender 
should send at

Two broad approaches towards congestion control:

End-end congestion 
control:

r no explicit feedback from 
network

r congestion inferred from 
end-system observed loss, 
delay

r approach taken by TCP

Fast, accurate, but expensive



42

Review: Transport Layer 83

TCP Congestion Control

r end-end control (no network assistance)
r sender limits transmission:

LastByteSent-LastByteAcked
≤ CongWin

RcvWindow?
≤ min { rcwWindow, CongWin }

r CongWin is dynamic, function of perceived 
network congestion
m Too high a rate -> congestion
m Too low a rate   -> low network utilization
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TCP Congestion Control

How does  sender perceive congestion?
r loss event 
r TCP sender reduces rate (CongWin) after loss 

event
Loss event = timeout or 3 duplicate acks

three mechanisms:
m AIMD (additive increase multiplicative decrease)
m slow start
m conservative after timeout events
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1. TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease :
cut CongWin in half 
after loss event

additive increase:
increase  CongWin by 
1 MSS every RTT in 
the absence of loss 
events: probing

Long-lived TCP connection

Sawtooth
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2. TCP Slow Start

r When connection begins, 
CongWin = 1 MSS
m Example: MSS = 500 bytes 

& RTT = 200 msec
m initial rate = 20 kbps

r available bandwidth may 
be >> MSS/RTT
m desirable to quickly ramp 

up to respectable rate

r When connection begins, 
increase rate exponentially 
fast until first loss event
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2. TCP Slow Start (more)

r When connection 
begins, increase rate 
exponentially until 
first loss event:
m double CongWin every 

RTT
m done by incrementing 
CongWin for every ACK 
received

r Summary: initial rate 
is slow but ramps up 
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments
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3. Refinement (TCP Reno)
r After 3 dup ACKs:

m CongWin is cut in half
m window then grows 

linearly
r But after timeout event:

m CongWin instead set to 
1 MSS; 

m window then grows 
exponentially

m to a Threshold, then 
grows linearly

• 3 dup ACKs indicates 
network capable of 
delivering some segments
• timeout before 3 dup 
ACKs is “more alarming”

Philosophy:

Tahoe -> Reno -> Sack
TCP versions:

Vegas, Westwood …
(Nevada)
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Refinement (more)
Q: Threshold: When will

exponential increase 
switch to linear? 

A: When CongWin gets to 
1/2 of its value before 
timeout.

Implementation:
r Variable Threshold 
r At a loss event, Threshold

is set to 1/2 of CongWin
just before loss event
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TCP congestion behavior (1)
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TCP congestion behavior (2)
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TCP congestion behavior (3)
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Summary: TCP Congestion Control (Reno)

r When CongWin is below Threshold, sender in 
slow-start phase, window grows exponentially.

r When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

r When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold.

r When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.

V. Jacobson, Congestion Avoidance and Control. Proceedings of 
ACM SIGCOMM '88, Aug. 1988. 
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Outline

r 1. Transport-layer 
services

r 2. Multiplexing and 
demultiplexing

r 3. Connectionless 
transport: UDP

r 4. Principles of reliable 
data transfer

r 5. Connection-oriented 
transport: TCP

r 6. TCP congestion control
r 7. TCP fairness and delay 

performance
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Fair:  1. Equal share
2. Full utilization

Goal: if K TCP sessions share same bottleneck link 
of bandwidth R, each should have average rate of 
R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2

TCP Fairness

Review: Transport Layer 96

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease :
cut CongWin in half 
after loss event

additive increase:
increase  CongWin by 
1 MSS every RTT in 
the absence of loss 
events: probing

Long-lived TCP connection

Sawtooth
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Why is TCP fair?
Two competing sessions:
r Additive increase gives slope of 1, as throughout increases
r multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Why is TCP fair?

R

RConnection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

x=y

x

y

(x0,y0)

(x0+? , y0+? )

(x0/2+? /2, y0/2+? /2)

Known: 
x0>y0

(x0+? /2, y0+? /2)
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Why is TCP fair?

R

R

x=y

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

D.M. Chiu and R. Jain, "Analysis of the Increase and Decrease 
Algorithms for Congestion Avoidance in Computer Networks," 

Computer Networks and ISDN Systems, pp. 1-14, 1989. 
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Fairness (more)
Fairness and UDP
r Multimedia apps often do 

not use TCP
m do not want rate throttled 

by congestion control
r Instead use UDP:

m pump audio/video at 
constant rate, tolerate 
packet loss

r Research area: TCP 
friendly, more on later

Fairness and parallel TCP 
connections

r nothing prevents app from 
opening parallel connections 
between 2 hosts.

r Web browsers/FTP client do this 
m NetAnts, GetRight

r Example: link of rate R with 9 
ongoing Tcp connections; 
m new app asks for 1 TCP, gets rate 

R/10
m new app asks for 11 TCPs, gets > 

R/2 !
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Delay performance
Q: How long does it take to receive an object from 

a Web server after sending a request? 

Methods
r Measurement

m Ping, traceroute
r Simulation

m Ns-2
r Analytical modeling 

m Math
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Delay modeling – No Congestion

Q: How long does it take to 
receive an object from a 
Web server after sending 
a request? 

Ignoring congestion, delay is 
influenced by:

r TCP connection establishment
r data transmission delay
r slow start

Notation, assumptions:
r Assume one link between 

client and server of rate R
r S: MSS (bits)
r O: object size (bits)
r no retransmissions (no loss, 

no corruption)
Window size:
r First assume: fixed 

congestion window, W 
segments

r Then dynamic window, 
modeling slow start
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Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for 

first segment in window 
returns before window ’s 
worth of data sent

delay = ?

Review: Transport Layer 104

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for 

first segment in window 
returns before window ’s 
worth of data sent

delay = 2RTT + O/R
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Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait 

for ACK after sending 
window’s worth of data 
sent

delay = ?
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Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait 

for ACK after sending 
window’s worth of data 
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K ?
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Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait 

for ACK after sending 
window’s worth of data 
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K =O/(WS)
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TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start
But no congestion

Will show that the delay for one object is:

R
S

R
S

RTTP
R
O

RTTLatency P )12(2 −−



 +++=

where P is the number of times TCP idles at server:

min{ , 1}P Q K= −

- Q is the number of times the server idles
if the object were of infinite size.

- K is the number of windows that cover the object.
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Case 1: P = Q

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S  = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection 
estab and request
• O/R to transmit object
• time server idles due to 
slow start

Server idles: 
P = min{K-1,Q} times

Review: Transport Layer 110

Case 2: P = K-1

Example:
• O/S  = 3 segments
• K = 2 windows
• Q = 2
• P = min{K-1,Q} = 1

Server idles P=1 times

Delay components:
• 2 RTT for connection 
estab and request
• O/R to transmit object
• time server idles due to 
slow start

Server idles: 
P = min{K-1,Q} times
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TCP Delay Modeling (contd)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

12  idle time after the th windowkS S
RTT k

R R

+
− + − =  

ementacknowledg receivesserver  until                   

segment  send  tostartsserver   whenfrom time=+ RTT
R
S

12 time to transmit the th window k S k
R

− =

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server
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TCP Delay Modeling (contd)
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Calculation of Q, number  of idles for infinite -size object,
is similar

Recall K = number of windows that cover object

How do we calculate K ?

1max{ : 2 / / }qq S R RTT S R− ≤ +


