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A Hierarchical Energy-Efficient Framework for Data
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Abstract—A network of sensors can be used to obtain state-
based data from the area in which they are deployed. To reduce
costs, the data, sent via intermediate sensors to a sink, are often
aggregated (or compressed). This compression is done by a subset
of the sensors called “aggregators.” Inasmuch as sensors are
usually equipped with small and unreplenishable energy reserves,
a critical issue is to strategically deploy an appropriate number of
aggregators so as to minimize the amount of energy consumed by
transporting and aggregating the data.

In this paper, the authors first study single-level aggregation
and propose an Energy-Efficient Protocol for Aggregator Selec-
tion (EPAS) protocol. Then, they generalize it to an aggregation
hierarchy and extend EPAS to Hierarchical EPAS. The optimal
number of aggregators with generalized compression and power–
consumption models was derived, and fully distributed algorithms
for aggregator selection were presented. Simulation results show
that the algorithms significantly reduce the energy consumption
for data collection in wireless sensor networks. Moreover, the
algorithms do not rely on particular routing protocols and are thus
applicable to a broad spectrum of application environments.

Index Terms—Energy efficient, hierarchy, wireless sensor
networks.

I. INTRODUCTION

A WIRELESS sensor network is a collection of sensors in-
terconnected by wireless communication channels. Each

sensor node1 is a small device that can collect data from its
surrounding area, carry out simple computations, and commu-
nicate with other sensors or with the controlling authorities of
the network. Long distance communications are achieved in
a multihop fashion. Such networks have been realized due to
recent advances in microelectromechanical systems and are ex-
pected to be widely used for applications such as environment
monitoring, intrusion detection, and earthquake warning [1].

In many of these applications, the data to be collected are
“state-based,” that is, they consist of measurements of ambient
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1We assume that each sensor node has only one sensor, and hence, in the rest
of this paper, “sensor” and “sensor node” are used interchangeably [1].

surroundings. Significant redundancies often exist in such data
due to spatial–temporal correlations. These local redundancies
can be removed prior to sending the oversized raw data to
the sink and draining the limited sensor energy store. This
process, referred to as “data aggregation” or “data fusion,” is
quite attractive, as it is often infeasible or costly to replenish
the batteries of the deployed sensors.

It is worth noting, however, that the amount by which the data
size may be reduced by aggregation depends on the application.
For example, simple statistical values such as sum, mean, or
deviation can be easily aggregated into a single scalar or vector.
On the other hand, a temperature map of a region would allow
more limited reduction. For example, a wavelet scheme sepa-
rately computes the wavelet transform for each subregion first
and then merges the resulting wavelet coefficients of subregions
to obtain the wavelet transform of the entire region. Here, the
number of wavelet coefficients of a subregion may increase as
does the number of sensors therein.

In this paper, we investigate energy-efficient aggregator
selection in wireless sensor networks. A unique feature of
our study is that we consider a general compression model
for data aggregation, which is more realistic than the “infinite
compression” [2]–[4] allowed in previous studies. We begin by
using only a single level of aggregation. With this restriction,
we calculate the number of aggregators needed to minimize
the amount of total energy consumed in the network. A
practical Energy-Efficient Protocol for Aggregator Selection
(EPAS) protocol is presented to achieve the target number
of aggregators. Next, we demonstrate that multiple levels of
aggregation can further reduce energy consumption. EPAS
is then extended to Hierarchical EPAS (hEPAS) to provide a
multiple-level solution. We give fully distributed algorithms
for aggregator selection in the above protocols, which are
applicable to a broad spectrum of state-based data collection
applications insensor networks.

The performance of these algorithms are examined by sim-
ulations. Our results demonstrate that EPAS conserves energy
consumed both by the entire network and by the most heavily
loaded sensors. The energy consumption can be further reduced
by using hEPAS. The number of levels in the hierarchy is also
a critical factor, and our results provide a general guideline
toward desirable settings of the aggregation levels.

The remainder of this paper is organized as follows. In
Section II, we provide some background and review related
work. An EPAS for one-level data aggregation is presented in
Section III. In Section IV, we generalize EPAS to accommodate
aggregation hierarchies, called hEPAS. The performance of
these protocols is examined in Section V. Finally, Section VI
concludes the paper and offers some future research directions.
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II. BACKGROUND AND RELATED WORK

Wireless sensor networks have received much attention due
to the number of potential applications of this technology. Many
data communication protocols have been proposed lately, such
as Directed Diffusion (DD) [5], Tiny AGgregation (TAG) [6],
Two-Tier Data Dissemination (TTDD) [7], GRAdient Broad-
cast (GRAB) [8], Pilot [9], Low-Energy Adaptive Clustering
(LEACH) Hierarchy [2], and Location-Aided Flooding (LAF)
[10]. Recent surveys by Akkaya and Younis [11], Akyildiz et al.
[12], and Tilak et al. [13] include information on these and other
protocols. There are three types of data collection in sensor
networks. “Event-based data,” such as intrusion detection or
object tracking, are collected when an event at a particular
venue within the deployment region occurs. The event is con-
firmed by detecting sensors using local consensus and reported
to the control authority [14], [15]. “Focused state-based data”
are collected in response to a query sent to selected sensors
requesting relevant data [5], [8]. “Global state-based data,” such
as temperature or humidity, are collected by sensors all over the
deployment area and transmitted to the sink [16]. Our interest
here is in global state-based data.

Bhardwaj et al. [17] provided an upper bound on the lifetime
of sensor networks that are engaged in event detections. In
their model, the energy consumed for a node to relay (that
is, to receive and transmit) a unit of data to another node at
distance d is denoted by α1 + α2d

l, where α1 and α2 depend
on the hardware implementation of the sensors and l is the
path attenuation exponent (usually in the range 2 ≤ l ≤ 4).
The distance from one sensor to the next that minimizes the
energy consumed is the “characteristic distance,” denoted dchar,
where dchar = l

√
α1/α2(l − 1). This value depends only on the

hardware design specifications and the environment.
For state-based data collection, Heinzelman et al. [2] pre-

sented a clustering algorithm (LEACH) to aggregate the data
from sensors. In LEACH, each sensor becomes a “clusterhead”
with a fixed probability during startup, and every noncluster-
head sensor joins the cluster of a nearest clusterhead. The
clusterheads act as aggregators. As clusterheads are likely to
consume more energy than nonclusterheads, LEACH allows
rotation of clusterhead status. Alternatively, unequal-sized clus-
ters can be used to balance the sensor energy consumption [18].
Clustering sensors and mobile ad hoc networks, in general, has
been an intensively studied area [14], [19]–[25].

In contrast to clustering, the design problem of determining
an appropriate number of aggregators for a given sensor net-
work has also been considered recently. This value can be used
to calculate the aggregator selection probability as in LEACH,
for example. Mhatre and Rosenberg [4] consider two types
of nodes: 1) regular sensors (type 0) and 2) more powerful
sensors (type 1) that can serve as clusterheads. Their work
focuses on determining the numbers of type-1 sensors in a
single aggregation level. A hierarchical clustering algorithm is
proposed by Bandyopadhyay and Coyle [3] assuming infinite
compression. In their model, they calculate the number of
aggregators in each level for energy conservation.

Our hierarchical aggregator selection protocol (hEPAS) is
motivated by these studies. In particular, Bandyopadhyay and

TABLE I
LIST OF NOTATION

Coyle [3] show that the use of a hierarchical structure can help
conserve energy. However, we consider a more realistic com-
pression model and propose a general hierarchical framework
to minimize the total energy consumed by both communication
and aggregation. Another novelty of this work is our two-phase
aggregator selection protocol (Section III-C) to produce evenly
distributed aggregators.

III. ONE-LEVEL AGGREGATION

We begin by allowing only one level of data aggregation.
Sensor nodes are partitioned into clusters, each with a cluster-
head. The sensors within each cluster periodically send their
data to the clusterhead. The clusterhead compresses the data
collected from all members and sends the aggregated data to
the sink. We first construct an ideal model, where the sensors
and the aggregators are uniformly distributed over the region.
Then, we present a distributed algorithm, EPAS, to select the
aggregators under practical constraints.

A. System Model and Notation

We first state our assumptions and introduce some notation
to be used. A summary list of the notation used in this paper is
given in Table I.

Consider a network of n sensors uniformly distributed over a
region. Many large-scale sensor networks such as environment
monitoring sensors dropped from aircraft have this property
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[1], [12]. Route calculation is carried out during the initial
setup after the aggregators (clusterheads) are selected, and
the sensors send packets to their respective clusterheads using
multihop paths (if necessary). Each hop in these paths is
roughly of characteristic distance dchar [17]. That is, each node
forwards the data to a node that is approximately dchar closer
to the destination.

We assume that data collection is synchronized by cycles,
where each cycle consists of a round of data collection, trans-
mission, and aggregation. During each cycle, sensors collect
data. The data generated are then sent to the aggregator as
a packet of r bits. Each aggregator compresses the data it
receives from the sensors of its cluster and then forwards the
data to the sink. We assume that, by relaying packets via hops
of the characteristic distance, transporting one unit of data a
distance d consumes α× d units of energy, where α = (α1 +
α2d

l
char)/dchar [17]. That is, to send one unit of data a distance

one requires the sender to expend α2d
l
char units of energy to

transmit the message. The sender and receiver together use a
total of α1 units of energy internally.

We use a general function g(x) to represent the data com-
pressibility at aggregators. Basically, g(x) gives the data vol-
ume after compression as a function of the input data volume
x. When g(x) is a constant, this is the infinite compression
assumed in many of the previous studies [2], [3]. We use
fa(x) to denote the energy consumed by compressing x data
units. This is generally proportional to x but need not be.
Although in practice the energy consumed by compressing a
unit of data may be significantly less than that consumed by
transmitting it (see [1]), we include this cost in our model for
completeness, e.g., to accommodate advanced algorithms like
wavelet compression [1].

B. Optimal Number of Aggregators

We would like to determine the number of clusterheads
(aggregators) that minimizes the total energy consumed by
transmitting and aggregating data under our model. For sim-
plicity, we assume that the sensors are deployed in a circular
region A of radius a meters with the sink located at the center of
the circle. Our solution can be easily extended to accommodate
other region shapes or sink locations.

Let Ec0 denote the total energy consumed by all of the
sensors sending data to their respective aggregators in a
single cycle. Consider the area covered by cluster C cen-
tered at (xc, yc). The total distance that the data packets
travel from all members of C to (xc, yc) is (n/πa2) ×∫∫

(x,y)∈C

√
(x− xc)2 + (y − yc)2dx dy, where n/πa2 is the

sensor density.
If each sensor chooses the closest aggregator as its cluster-

head, the sensors essentially form a Voronoi diagram of the net-
work region where each cluster corresponds to a Voronoi cell.
For large k, a typical cluster can be approximated as a circle
of radius α/

√
k [26]2 with the aggregator at the center. With

this, the above expression evaluates to 2an/3k3/2. Thus, after

2More details on the problem of covering geometric spaces with spheres can
be found in Conway and Sloane [27].

factoring in the α coefficient to obtain the energy consumption,
the sensor data rate r, and summing over the k aggregators,
we have

Ec0 =
2αanr

3k
1
2

. (1)

Let Ea denote the total energy consumed by data aggregation
in a single cycle. Inasmuch as the aggregator receives data at an
average rate of nr/k bits per cycle, we have

Ea = k × fa

(nr

k

)
. (2)

Let Ec1 denote the total energy consumed by all of the aggre-
gators sending these data to the sink in a single cycle. Inasmuch
as the data are sent by an aggregator at a rate of g(nr/k) bits
per cycle and the aggregator density is k/πa2, we have Ec1 =
g(nr/k) × α× (k/πa2) ×

∫∫
(x,y)∈A

√
x2 + y2dx dy, which

evaluates to

Ec1 = g
(nr

k

)
× 2kαa

3
. (3)

Summing up (1), (2), and (3), we have

2αanr

3k
1
2

+ k × fa

(nr

k

)
+ g

(nr

k

)
× 2kαa

3
. (4)

Consider a typical circuit power consumption model, where
the aggregation energy consumption is proportional to the vol-
ume of the data to be compressed, that is, fa(x) = βx, for some
constant β. Also, consider a typical linear compression model,
g(x) = γx + c, where γ (0 ≤ γ ≤ 1) is the compression ratio
and c is the compression overhead [28]. It follows that the
number of aggregators that minimizes the energy consumption
of the network in a single cycle [i.e., (4)] is k = (nr/2c)2/3.
Substituting g(x) = γx + c into (3), we see that the energy
consumed by transporting the data from k aggregators to the
sink is proportional to nrγ + ck. Thus, the contribution of γ to
the value of (3) [and (4)] is independent of k.

Thus, to minimize energy consumption, there should be
(nr/2c)2/3 aggregators. This conclusion also applies to the
special case of β = 0, where the energy required to com-
press data is negligible (as assumed in many existing sensor
systems [1]).

C. Distributed Aggregator Selection—EPAS

In this section, we propose a practical EPAS that follows our
optimal solution in the previous section.

EPAS is a randomized and fully distributed algorithm that
consists of two phases. In the first phase, each sensor chooses
to be a clusterhead (aggregator) with probability p1 indepen-
dently for some p1 ∈ [0, k/n]. Suppose that each clusterhead
has a fixed coverage radius of b meters. (See Section III-D
for discussion of determining the value of b.) In the second
phase, each sensor that is not within the coverage radius
of some clusterhead declares itself to be a clusterhead with
probability p2.
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By careful choice of p1 and p2, we can ensure that the
expected number of aggregators is k. To do that, we leverage
the following propositions.
Lemma 3.1: After phase 1 of EPAS, the probability that a

sensor c is not covered is (1 − p1)(1 − (p1b
2/a2))n−1, where

p1 is the phase-1 selection probability, and b and a are the
coverage and network region radii, respectively.

Proof: Let X be a random variable denoting the number
of sensors other than c that are contained in a circle of
radius b centered at c. Thus, we have Pr[X = i] =

(
n
i

)
(b2/

a2)i(1 − (b2/a2))n−i−1, for i = 0, 1, . . . , n− 1. Further,
(1 − p1)X is a random variable indicating the probability that
c is not covered by any selected clusterhead after phase 1. Its
expected value is

E
[
(1 − p1)X

]
=

n∑
i=0

(1 − p1)i × Pr[X = i]

=
n∑

i=0

(1 − p1)i

(
n

i

)(
b2

a2

)i(
1 − b2

a2

)n−i−1

=
(

1 − p1b
2

a2

)n−1

.

This is also the probability that c is not covered by any
selected clusterhead. Factoring in the probability that c does
not select itself, we have the expected probability that sensor
c is not covered: (1 − p1)(1 − (p1b

2/a2))n−1. �
For the expected number of clusterheads generated by EPAS

to be k, the selection probabilities of the two phases should
satisfy the following condition.
Theorem 3.2: The expected number of clusterheads gener-

ated by EPAS is k if and only if (iff) p1 and p2 are chosen such
that p1 + p2(1 − p1)(1 − (p1b

2/a2))n−1 = k/n.
Proof: Let random variable Y denote the number of clus-

terheads generated by EPAS. Let binary random variable Yi be
1 iff sensor ci (i = 1, 2, . . . , n) becomes a clusterhead. Thus,
we have E[Yi] = E[Y ]/n = k/n. Let binary random variables
Yi,1 and Yi,2 denote the fact that ci becomes a clusterhead in
phases 1 and 2, respectively. Inasmuch as the events that ci

becomes a clusterhead in either phase are mutually exclusive,
we have

E[Yi] =Pr[Yi = 1]

= Pr [(Yi,1 = 1) ∪ (Yi,2 = 1)]

=Pr[Yi,1 = 1] + Pr[Yi,2 = 1]

=E[Yi,1] + E[Yi,2].

We know that E[Yi,1] = p1. In addition, we have E[Yi,2] =
p2 × Pr[c is not covered in phase 1]. Based on Lemma 3.1,
we have Pr[c is not covered in phase 1] = (1 − p1) (1 −
(p1b

2/a2))n−1. As a result, we have k/n = E[Yi,1] + E[Yi,2]
= p1 + p2(1 − p1)(1 − (p1b

2/a2))n−1. �
After phase 2, the expected number of aggregators is k. Each

sensor that is not an aggregator selects the closest aggregator
as its clusterhead. Thus, the clusters essentially form a Voronoi
partitioning of the network.

D. Discussion

Given the number of sensors, deployment area, compression
ratio, characteristic distance, and other network parameters,
we can calculate the optimal number of aggregators k. Given
this target number of aggregators, we can choose appropriate
probabilities p1 and p2 offline. After deployment, the sensors
select k aggregators. Each of the aggregators broadcasts its
status to all sensors within coverage radius b. For large k, k

circles of radius b = (
√

3
√

3/2π)(a/
√

k) ≈ 1.0996 × (a/
√

k)
can cover the entire region of area πa2 [26]. We use a larger
coverage radius b = 2a/

√
k to ensure that most of the sensors

are within the coverage radius of at least one aggregator while
keeping the broadcast radius small. In Section V, we report
on a set of experiments to determine how many sensors lie
outside the coverage areas for k aggregators with coverage
radius b = 2a/

√
k.

IV. HIERARCHICAL AGGREGATION

We now consider a more general framework that organizes
the aggregators in a hierarchy. We begin with all sensors in
level 0 of the hierarchy. From those sensors, we select a subset
as aggregators for level 1. From the level 1 aggregators, we
select a subset to act as level 2 aggregators. Similarly, we select
a subset of the aggregators at each level to act as aggregators
at the next higher level. Finally, the sink (which may not be an
aggregator of any of the other levels) is the only aggregator of
level h + 1.

Once the aggregation hierarchy is established, sensors collect
data and send them to the nearest level 1 aggregator. The
level 1 aggregators collect these data from their sensors, aggre-
gate them, and forward them to the nearest level 2 aggregator.
This process continues until the level h aggregators forward the
data to the sink.

In this section, we modify the method of Section III to
determine the optimal number of aggregators in each level
of the hierarchy. Then, we extend EPAS to hEPAS, its hierar-
chical version.

A. Optimal Numbers of Aggregators in the Hierarchy

We denote the number of aggregators in level i by ki (i =
0, 1, . . . , h + 1). Note that k0 = n and kh+1 = 1. The data are
sent out of a level i aggregator to its clusterhead at a rate of
ri bits/cycle and r0 = r. As before, the data compression rate
is described by function g(·). We assume that aggregators in
each level are distributed uniformly. That is, a level i aggregator
receives data from ki−1/ki level (i− 1) aggregators. The data
rate ri can be expressed as

ri =

{
r, if i = 0
g

(
ri−1 × ki−1

ki

)
, i = 1, 2, . . . , h.

Let Eai be the total energy consumed by the compression
done by all of the aggregators of each level i in a single cycle.
We have Eai = ki × fa((ki−1/ki) × ri−1).
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We now consider Eci, the total energy consumed by trans-
porting data from level i aggregators to level (i + 1) ag-
gregators (i = 0, 1, . . . , h) in a single cycle. As before, a
typical level (i + 1) cluster C can be approximated with
a circle of radius ai+1 = a/

√
ki+1, centered at (xc, yc),

and the density of the level i aggregators is ki/πa
2. The

portion of Eci within this cluster is ri × α× (ki/πa
2) ×∫∫

(x,y)∈C

√
(x− xc)2 + (y − yc)2dx dy = 2αakiri/3k

3/2
i+1.

Therefore, summing over the ki+1 level (i + 1) clusters, we
have Eci = 2αakiri/3k

1/2
i+1.

Thus, the total energy consumed in a single cycle is

h∑
i=1

Eai +
h∑

i=0

Eci (5)

which is a function of the ki.
Given values of r, a, α, γ, and c for a particular system, the

values of ki minimizing the above total energy consumption
can be calculated. These values can then be used to configure
the aggregator selection protocol.

B. hEPAS

Here, we propose an hEPAS. We assume that the optimal
number of aggregators in each level i is ki (i = 1, 2, . . . , h) as
calculated above. The protocol selects an expected ki sensors as
the level i aggregators. hEPAS executes for h iterations. Each
iteration is similar to EPAS (Section III-C). During iteration i, a
level (i− 1) aggregator chooses to become a level i aggregator
with probability pi ∈ [0, ki/n] in the first phase. Each chosen
aggregator has a coverage radius of b = 2a/

√
ki. In the second

phase, a level (i− 1) aggregator that is not covered by any
level i aggregator chooses to become a level i aggregator with
probability p2, where p1 and p2 satisfy the condition described
in Theorem 3.2 for k = ki. After the aggregators of all levels
are chosen, each level i aggregator (i = 0, 1, . . . , h) joins the
cluster of the nearest level (i + 1) aggregator.

V. PERFORMANCE EVALUATION

We evaluate the performance of EPAS and hEPAS through
simulations using our custom simulator. We first investigate the
energy consumption versus the number of aggregators in the
single-level case to understand the effectiveness of EPAS. Then,
we study the energy saving gained by adding more levels to the
aggregation hierarchy.

In the simulation, we use a network of 10 000 sensors
uniformly deployed in a circular region of radius 1000 m.
The system specifications we use are similar to those used
by Heinzelman et al. [2] and Mhatre and Rosenberg [4] (see
Table II). We assume that the sensors sample the environment
every minute. This differs slightly from the assumptions in
these previous paper but is reasonable for our application. The
measured values are converted to 16-bit digital representations,
and a single cycle lasts for 10 min. Therefore, the sensor data
rate is 160 bits/cycle.

The regions served by the aggregators of each level form a
Voronoi diagram of the overall network region. In the single-

TABLE II
SYSTEM SPECIFICATIONS

Fig. 1. Uncovered sensors versus phase-1 probability.

Fig. 2. Single-level energy consumption.

level EPAS protocol, each aggregator compresses the data
collected from sensors located within its Voronoi cell and sends
them to the sink at the center of the region. To mitigate the
impact of inefficient routing, we assume an idealized routing
protocol, Characteristic Distance Progressive Routing (CDPR),
to approximate straight-line routing [17]. In CDPR, when a
packet intended for node d is at node s with dist(s, d) > dchar,
it is forwarded to an intermediate node v1 that is the closest to
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TABLE III
NUMBER OF AGGREGATORS

the target point t, a point on the line segment (s, d) at distance
dchar from s. The packet is forwarded one step at a time until
it reaches node vi within distance dchar of d from which it is
forwarded to d directly.

Our next goal is to choose a suitable value of p1, and thus
that of the corresponding p2, that leaves few sensors uncovered
after EPAS. To do this, we fix k and n, select a coverage radius
b, and then, using various appropriate values of p1, simulate the
placement of the sensors and the choice of aggregators using
that value of p1. For each simulation, we count the number of
uncovered sensors. In particular, we then assume that there are
10 000 sensors, and we choose the expected numbers of aggre-
gators k to be 25, 100, 400, or 1600. Having fixed k, we use
the coverage radius b = (2 × 1000)/

√
k. For the above values

of k, this gives b = 400, 200, 100, and 50 m, respectively. We
consider each value of p1 such that p1/(k/n) = 0.05i, where
i = 0, 1, 2, . . . , 20. Fig. 1 shows the percentage of sensors not
covered by any aggregator for each choice of p1/(k/n). That
is, the percentage of sensors not covered by any aggregator
varies as p1 does. Moreover, the fewer uncovered sensors, the
better an aggregator’s Voronoi cell can be approximated by a
circle. Thus, choosing p1/(k/n) ∈ [0.7, 0.8] should yield the
fewest uncovered sensors. For subsequent simulations, we use
0.75 as the value for p1/(k/n) and obtain the value of p2

from Theorem 3.2.
We now measure the energy consumed in a single cycle of

the data collection assuming a single level of aggregation. We
fix the number of aggregators, select them, and then simulate
the collection of data at each sensor, transmission of the data to
the aggregators, aggregation of the data, and transmission of the
aggregated data to the sink. For each simulation, we compute
the maximum energy consumed by an individual sensor in the
network. That is, if the sensor is not an aggregator, we count
the energy needed to transmit their data to the aggregator and
any energy used to forward other data during the cycle. For
aggregators, we also include the cost of aggregation. In addition
to determining the maximum of these costs, we also compute
the total of these costs over all sensors. In the simulations, we
again assume that we have 10 000 sensors. We choose the num-
ber of aggregators to be a value 100j, where j = 1, 2, . . . , 30.
Fig. 2 shows the resulting maximum energy consumption and
total energy consumption values. The total energy consumption
appears to be minimized when the number of aggregators is

Fig. 3. Hierarchical energy consumption.

between 800 and 900. Note that the value predicted by (3) is
855. The maximum energy consumption is minimized when
the number of aggregators is between 450 and 500 and is
reasonably small for the range between 300 and 1000. Our
simulations show that these most heavily loaded nodes are
generally located near the aggregators or the sink. Such nodes
are required to transport large amounts of data because the data
are being concentrated at the aggregators and the sink.

We now consider whether additional energy savings can be
achieved by instituting a hierarchical structure for the aggre-
gators using the hEPAS protocol as described above. In an
h-level hierarchy, we have calculated the number of aggregators
ki at each level i of the hierarchy that minimize the total energy
consumption in an ideal situation. This total is given by (5), and
we can calculate the values of ki that achieve this minimum.
Table III shows the values of ki for h levels, where 1 ≤ h ≤ 10
with a total of 10 000 sensors deployed. We performed some
simulations for h-level hierarchies where 1 ≤ h ≤ 10 using the
computed values ki shown in the table. In each simulation,
we used the hEPAS protocol to select ki aggregators at each
level i and then measured the energy consumed by each sensor,
recording both the maximum for any sensor and the total
consumed by all sensors. For each choice of h, we performed
1000 simulations. The averages of these values over all of the
simulations for each h are shown in the two plots in Fig. 3.
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The ideal values from (5) are included in the lower plot (which
shows the total energy consumed). From these experimental
results, we conclude that for 10 000 sensors, the best choice
would be to use a hierarchical solution with five levels. Note
that the experimental results are reasonably close to the ideal
values, which indicates that our ideal scenario is a good model
of the actual situation.

VI. CONCLUSION

In this paper, we studied the energy consumed in wireless
sensor networks in which some sensors can aggregate the
data. In particular, we considered one scenario that allowed a
single level of aggregation assuming a general compressibility
function. We calculated the number of aggregators needed to
minimize the amount of total energy consumed in the network.
A practical EPAS was presented to achieve the target number
of aggregators.

We then considered a more general scenario with multiple
levels of aggregation and extended EPAS to its hierarchical
version, hEPAS. We gave fully distributed algorithms for ag-
gregator selection in the above protocols, which are applicable
to a broad spectrum of state-based data collection applications
in sensor networks.

We performed a series of simulations, measuring energy
consumption in networks with different numbers of levels and
aggregators at each level. Overall, our simulations show that
both the total energy consumption and the maximum energy
consumption among sensors are significantly reduced by em-
ploying the proposed protocols.

This work can be extended in a number of different ways. For
example, we can better balance the energy consumption among
nodes by the use of mobile aggregators. We may also consider
the problem of aggregator selection for sensor networks with
heterogeneous nodes.
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