Pattern Recognition 43 (2010) 378 -386

Contents lists available at ScienceDirect PATTERN

RE(

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Personalized text snippet extraction using statistical language models
Qing Li**, Yuanzhu Peter Chen®

aSchool of Economic Information Engineering, Southwestern University of Finance and Economics, China
bDepartment of Computer Science, Memorial University of Newfoundland, Canada

ARTICLE INFO ABSTRACT

In knowledge discovery in a text database, extracting and returning a subset of information highly rel-
evant to a user’s query is a critical task. In a broader sense, this is essentially identification of certain
personalized patterns that drives such applications as Web search engine construction, customized text
summarization and automated question answering. A related problem of text snippet extraction has been
previously studied in information retrieval. In these studies, common strategies for extracting and pre-
senting text snippets to meet user needs either process document fragments that have been delimitated
a priori or use a sliding window of a fixed size to highlight the results. In this work, we argue that text
snippet extraction can be generalized if the user’s intention is better utilized. It overcomes the rigidness
of existing approaches by dynamically returning more flexible start-end positions of text snippets, which
are also semantically more coherent. This is achieved by constructing and using statistical language mod-
els which effectively capture the commonalities between a document and the user intention. Experiments

Article history:

Received 17 September 2008

Received in revised form 14 May 2009
Accepted 10 June 2009

Keywords:

Text snippet extraction
Personalization

Language model
Information retrieval
Natural language processing
Pattern discovery

Hidden Markov Model

indicate that our proposed solutions provide effective personalized information extraction services.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Information systems are becoming an integral part of everyday
life as we accumulate more and more knowledge that are often rep-
resented as texts. An important function of information processing
in such systems is to facilitate search of useful information in tex-
tual corpus. This service is parameterized as a user query so that the
search can be personalized. It is essentially discovering patterns in a
knowledge base relevant to the query. Specifically, after a user issues
a query, the system retrieves a set of text documents from the cor-
pus which are deemed relevant to the query. Typically, there is also
arank associated with each returned document. In order for the user
to better utilize these documents, they need to be “shortened” in a
way that reflects the characteristics of the query. This step is referred
to personalized text snippet extraction in this article. A straightforward
approach would be to return one or multiple parts of a document
that contain as much of the query as possible. This is adopted by
most current Web search engines, such as Google, when presenting
results to users. In this work, we focus on more intelligent methods
to identify flexible document snippets.

Personalized text snippet extraction finds a wider scope of ap-
plications than Web search engine design. Its generality is due to
the various potential origins of a user query. When a query is a

* Corresponding author.
E-mail addresses: kooliging@gmail.com, liq_t@swufe.edu.cn (Q. Li).

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.06.003

string of text submitted by a Web search engine user, our method
can be utilized by search engine construction. However, a query
can carry other forms of information. For example, a digital li-
brary can present annotated documents to a user where parts of
the documents are highlighted according to this particular user’s
preference encoded as a query. When used in automated document
summarization, our method can provide more personalized docu-
ment summaries tailored to the needs of different users. It is also
useful to provide more accessible Web user interface to visually
impaired users. Such a special group of users make extensive use
of screen readers, such as JAWS and Window-Eyes, which convert
texts to audible signals. Screen readers are not easy to follow with-
out the capability of intelligently summarizing the documents being
processed. Their comprehensibility can be significantly improved
when personalized summaries are directed to them rather than
the full documents themselves.! In the rest of this article, we use
the term “query” equivalently to information that represents user
preferences.

In our approach, we first use a document filter to retrieve a set
of documents from the corpus that are relevant to a query. Since
this step is orthogonal to the subsequent text snippet extraction,
we can use any good such filter to retrieve documents. Typically, a

! The solutions described in this article are in fact a central component of
OASIS, which is a Web front end of a digital library for blind children of the State
of Arizona (http://aria.asu.edu/oasis/).

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:kooliqing@gmail.com
mailto:liq_t@swufe.edu.cn
http://aria.asu.edu/oasis/

Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386 379

document filter conducts a certain similarity comparison between
the query and a subset of documents in the corpus which contain at
least part of the query. Next, we construct a pair of statistical lan-
guage models, one pertinent to the query and the other independent
of the query. Using these two models, we can calculate two proba-
bilities of each word in the relevant document being generated by
either model. We treat a relevant document as a sequence of words,
each associated with these two probabilities. Thus, from every rel-
evant document, we are able to extract one or more snippets that
are deemed to best satisfy the user’s intention. In this work, we re-
sort to two methods for snippet extraction. One directly utilizes the
probability sequence associated with the document, and the other
processes a Markov model hidden behind these observed word gen-
eration probabilities. When understood from the context, we use
“documents” and “relevant documents” interchangeably.

In this article, we utilize relevance language models to extract text
snippets in response to user needs. It improves existing approaches,
which more or less formulate a query as a word frequency vector
and compare it with the frequency vector of document fragments.
In particular:

o Two language models are constructed for the relevant documents
specifically for the given query. Using these models, we calculate
the precise start-end positions of each snippet to return. This flex-
ibility allows our method to produce more coherent text snippets
personalized to different users.

Furthermore, our approach looses the implicit assumption made
in the existing work that all words in the query carry the same
weight when compared to the frequency vector of a document
fragment. This, however, is not reasonable because different words
can have significantly different occurrence probabilities in any
language model. Our method dispenses with such an assumption
via heavier investigation of statistical language models.

In Section 2, we first provide some background information. The
design details of our solutions are described in Section 3. We have
conducted experimental evaluation, and comparisons to previous
work indicate that our method yield higher user satisfaction (Section
4). In Section 5, we conclude our work with further discussion and
outlook for future research.

2. Background

Text snippet extraction returns one or more fragments of a doc-
ument that are considered most related to a given query. When a
text corpus is constructed or updated, there can be a preprocessing
step that partitions each document into segment [5,19,26]. In this
case, when a query is issued and a set of relevant documents are
returned, one or more of these segments generated a priori are re-
turned as extraction. Thus, the start-end positions of a snippets are
fixed [1,6]. Alternatively, if no such preprocessing is involved, each
relevant document is extracted on the fly and a snippet can have
arbitrary start-end positions [9,10,16,18].

During the preprocessing of a document, there can be a variety of
options as of how to partition a document. For example, a document
can be cut into non-overlapped segments. This leads to a potential
problem that the best text snippet can cross the boundary of two
adjacent segments. To address this, a partition can also create over-
lapped segments. When determining the length of a segment, be it
overlapped or not, it can also have a fixed size as part of the system
configuration, or a variable length using semantic text partitioning.
These two aspects can be somehow combined to create, say, over-
lapped variable-length text snippets.

In contrast, text snippet extraction can also be conducted with-
out document partitioning a priori. Specifically, the start-end posi-

tions of a snippet are determined in response to a user query. The
Google search engine takes such an approach. When a set of docu-
ments have been identified as relevant by the engine and presented
in the search result page, each document is represented by a few
sliding windows containing (part of) the query. Google uses a set of
heuristics, such as document and grammatical structures, to regu-
late the size of the sliding windows and where they start and end.
In this work, we further investigate using more intelligent methods
to generate variable-length text snippets that make heavy use of the
characteristics of the user query.

In a broader context, a related problem is the creation of a sum-
mary for a given document [3,4,29]. In document summarization,
while being significantly shorter than the input documents, the out-
put needs to represent the content of the document well. Most
existing summarization schemes [3,22,30,15] create summaries by
combining several important words or sentences from the original
documents. A large amount of work in this area take this even fur-
ther by creating a single summary from multiple documents [22,15].
Instead of capturing a summary using several sentences within a
document or across multiple documents, some researchers study
composition of headlines, which are very short phrases, typically not
more than 10 words, from news stories or e-mails [29,31]. While
summaries and headlines are useful to help users skim through long
documents to assess their usefulness, they are often insensitive to
the needs of particular users. That is, while a single summary or
headline will be a reasonable gist for a given document, this is not
sufficient for snippet extraction, where the output should be tailored
to the user needs. On the other hand, document summarization sys-
tems may be further informed by snippet extraction tools for per-
sonalized services. In particular, once document segments relevant
to a user query have been identified, they can be fed to a summa-
rizer to meet this user’s specific needs. Another related domain is
question answering (QA) [2,17,23]. A QA system looks for parts of
documents as answer to a submitted question. Text snippet extrac-
tion can also be used to improve the performance of QA systems
by narrowing down the scope of materials that the system uses to
compose answers.

Our solutions to text snippet extraction are based on statistical
language models [13,20,25]. A statistical language model is a proba-
bility distribution that captures the statistical regularities (e.g., word
or phoneme distribution) of a natural language. If we confine the
use of this language within a domain under consideration, such
a model is called a relevance language model [13]. When using a
statistical language model in text retrieval, a document can be repre-
sented as a bag of words and their distribution. That is, a given piece
of text can be regarded as a sample drawn according to the underly-
ing word probability distribution of the model. Thus, language mod-
els are also referred to as “generative” models. A common theme in
this area is to estimate the likelihood that a query and a document
could have been generated by the same language model. Recently,
language models have been applied to various research problems
in information retrieval, including topic detection and tracking [12],
information recommendation [14] and question answering [32].

3. Design details

The design scheme is sketched in Fig. 1. It takes the entire set of
documents and a user query as input and generates personalized text
snippets as output. The user query is fed to a retriever for a subset
of relevant documents. Using the relevant subset and the entire set,
we generate a relevant and irrelevant language modes, respectively.
With these models, we are able to output personalized text snippets
using word sequence analysis or hidden Markov model.

To process the user query, we construct two language models,
one relevant to the query, denoted by My, and the other irrelevant,

380 Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386

User
query

Relevant | Hidden
document Markov
»| Retriever |—»| Model model »{ Personalized
q All i text
ocuments _ .
= Irrelevant Word snippets
document sequence
model analysis

Fig. 1. Design scheme.

0.010
0.008 1

=~ 0.006

[

Q

[}

S 0.004

(%]

2

@ 0.002 1

o

c

g

3 0.000

Q

o
-0.002 1
-0.004
-0.006

0 20 40 60 80 100 120 140 160 180 200 220 240
Word

Fig. 2. Document plotted as a sequence of words.

denoted by M;. Specifically, the relevance model M; is a probabil-
ity distribution function of each word being generated by the natu-
ral language relevant to the query. In contrast, the irrelevance model
M; is a probability distribution function of each word being gener-
ated by the complement of the above language, i.e., the part of the
language considered irrelevant to the query. When written in the
form of conditional probability as a convention in natural language
processing [24,28], each word w can be generated by M, with proba-
bility P(w|M;). In addition, it can also be generated by M; with prob-
ability P(w|M;). We defer the description of how we obtain these
probabilities to Section 3.3.

We represent each relevant document d as a sequence of words
{w1,Ws, ..., wp}, where n is the number of words in d. There are two
ways to treat such a sequence. On one hand, any word subsequence
can resemble the query to a varying degree, which can be quantified
by the probabilities of each word in the subsequence being gener-
ated by M; and M;. On the other hand, the word sequence can also
be considered as output of a generator that can be modeled by a
two-state Markov Chain. At each point, the generator is either in a
relevant or irrelevant state. Essentially, the Markov chain and the
observed sequence of words form a hidden Markov model (HMM),
whose output probabilities are regulated by M, and M;. These two
approaches are described in the sequel. In both cases, we assume
that each document contains at least one relevant subsequence.

3.1. Snippet extraction via word sequence analysis

We can plot the word sequence along the x-axis and represent
each word’s relevance to the query as a value on the y-axis (Fig. 2).
Thus, a relevant text snippet corresponds to a contiguous portion of
the plotting with a relatively large value. Here, for each word w in
document d, we use the value

P(w|M;) — P(w|M;)

Input : Document d, query g, relevance threshold, 6
Output : Relevant snippet set S
Step 1 : Plot d as word sequence and store in a queue
1.1.a=10
1.2. for each word w € d do
P(w|M,) = getRMProb(w, q)
P(w|Mz) = getIRMProb(w, q)
¢ = P(w|M,) — P(w|M5)
a.add(c)
Step 2: Identification of relevant snippets
2.1. § =0, Seyr = null, Spye,y = null
2.2. a.smooth()
2.3. Seur = a.getMaxInterval() /* get the maximum contiguous interval */
2.4 Heyr = Seyp-sum()

2.5. do {
Sprev = Secur
Seur = a.getMaxInterval()
Hprev = Heur
Heyr = Seyr.sum()
if (gp— < 9)

break;
a.maskSubqueue(Sey;)
S.add(Seur)
}
2.6. Return &

Fig. 3. Snippet extraction via word sequence analysis.

to quantify the degree that w is relevant to the query. The subtrac-
tion of the probability of w being generated by the irrelevance model
is a type of normalization to offset its “background likelihood” in
the language. Note that there can be other forms of similar normal-
ization, but our experiments (Section 4) show that this simple ad-
justment is very effective. This probability difference falls in [-1, 1].
When w is considered relevant to the query, this quantity tends to
be positive; while w is irrelevant, it tends to be negative. Therefore,
we identify a contiguous interval [s, t] on the x-axis that achieves the
following maximum:

t
max_ S (PWIM;) — PwIM))

l=s=t=n

i=s
That is, the relevant text snippet is {ws, Wsy1, ..., Wt}.

We describe the entire algorithm as the pseudocode in Fig. 3.
There are two notes that we would like to make. First, there is a
smoothing process before the actual calculation of the maximum
in order to remove the very-short-term fluctuation in the plotting.
Second, the algorithm has been extended to extract multiple relevant
text snippets from a single document. To do that, iteratively extract
and mask the returned snippet from the word sequence. For each
snippet, we record the sum of the y values of all words in it. This
is repeated until the ratio of such values between two consecutive
iterations falls below a threshold 0.

Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386 381

Document _] ! : EmmEm L

Observations

States

Fig. 4. Representation of a document as HMM.

Fig. 5. Hidden state transitions in HMM.

3.2. Snippet extraction using HMM

In contrast, snippet extraction via HMM models each document
as an observable symbol chain, behind which there is a hidden state
chain revealing whether the corresponding word is relevant to the
query or not (Fig. 4). That is, a given document can be represented
as a sequence of words, each of which is generated by either the
relevance or irrelevance model. The hidden Markov chain has two
states associated with these two language models. Therefore, our
goal is to determine how the chain transits between these two states
and how each state generates a word in the given document. In
essence, this is the well-known HMM evaluation problem [21].

In order to extract a relevant text snippet from the document, we
expect that the Markov chain starts with the irrelevant state, transits
to the relevant state to generate the snippet and then returns to the
irrelevant state before it terminates. Since the irrelevant states before
and after the snippet must be differentiated to avoid loops, we extend
the two-state HMM to a three-state HMM by breaking the irrelevant
state into two, with one preceding the relevant state and the other
succeeding it. The state transition of the Markov chain is depicted in
Fig. 5. In the figure, ¥; and i, are the two types of irrelevant states and
r is the relevant state. Here, we focus on the scenario of extracting
one text snippet from the document. This scheme is extended to
produce multiple snippets towards the end of this subsection.

Next, the snippet boundary detection task is to locate the two
transitions that leads the Markov chain into and out of r. That is, to
find the subsequence of the hidden states that are most likely to have
generated the observed sequence of output symbols (i.e., words).
We denote all possible state transitions that follow the pattern in
Fig. 5 by 7. In addition, for any T € .7, we use P(T|d) to denote
the probability that the transition is in fact T given the observation
of document d. Thus, we are interested in the transition in .7~ that
maximizes such a probability, i.e.,

T* = arg maxrcop(T|d).
Using Bayes'’ rule, this can be rewritten as

T* = arg maxres

where P(d) is the probability of observing d and P(T) is that of the
hidden state transition T. Since we build HMM for the same given

document d, the probability p(d) of generating it is a constant. Thus,
the equation can also be written as

T* = arg maxyc 7 P(d|T) x P(T).

Here, we assume that document d can be represented as a first-order
Markov chain and that the words in the sequence are independent of
each other (i.e., uni-gram). We can further rewrite the above equa-
tion as

T* = arg maxy. 7 P(T) x | | P(wjls;)

= H':]:
| —

1 n
P(siz11si) x [[Pwilsy),

= arg maxrc 7 P(s1) x
i=1 i=1

where {s1,52,...,5p} is a sequence of states that the hidden Markov
chain has visited when generating d. In the above derivation,
P(sijy11si) is the state transition probability, with P(s;) being the
probability of the initial state s1, and P(wjls;) is output probability.

While this maximization problem can be solved using the Viterbi
algorithm [21], in order to apply it, we first need to obtain the pa-
rameters of the HMM, i.e., the above output and transition prob-
abilities. There can be two possible approaches to calculate them.
We could apply the Baum-Welch algorithm [21] iteratively to es-
timate them simultaneously. However, since the output probabil-
ities can be computed using the statistical language models as a
separate source (Section 3.3), we modify the Baum-Welch algo-
rithm to only estimate the state transition probabilities and hold
the output probabilities constant. This decision has been backed
by our preliminary experiments. The similar idea to limit the pa-
rameter estimation in HMM for better performance have also been
adopted in part-of-speech tagging for natural language processing in
[8,11].

Extracting n (n > 1) snippets from the same document would re-
quire either extending the HMM to accommodate n relevant states
or running the above single-snippet procedure multiple times. We
experimented with both and found that the former tends to break
the a long relevant snippet into several fragments and return them
separately. Therefore, to produce multiple relevant snippets itera-
tively, we first extract and mask a relevant snippet using the above
single-snippet procedure. The rest of the document is applied with
the same procedure again. This is repeated until the difference of the
word lengths between two snippets falls below a threshold 0. The
details of our algorithm are described in Fig. 6.

3.3. Language model parameter estimation

Here, we investigate the word generation probabilities of the rel-
evance language model M; and the irrelevance language mode M;.
For the irrelevance model M;, the probability P(w|M;) of observing
word w can be closely approximated by that regulated by a back-
ground language model M, which combines M; and M;. This is true
because the irrelevant part of the language dominates the vast ma-
jority of the background language given the small number of rele-
vant documents relative to the entire corpus. Thus, for given word
w and the entire text corpus, we denote the number of times that
w occurs in the corpus by f,, and the total number of tokens (i.e.,
words with repetition) in the corpus by F. Therefore, we estimate
the word generation probability of w as

P(W|M;) = P(WwIM) = wa

Estimation of the parameters of the relevance language model
M; would require a good sample of the text snippets relevant to
the query. However, this information is not available at this point.

382 Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386

Input : Document d, query ¢
Output : Relevant snippet setS
Step 1 : Initialization
1.1. words =0 /* word map of probabilities
1.2. HMM = () /* Hidden Markov Model */
1.3. tMat = () /* transition probability matrix */
1.4. oMat = () /* output probability matrix*/
/* compute output probability for each word using language models */
1.5. for each word w € d do
P(w|M,) = getRMProb(w, q)
P(w|M;) = getIRMProb(w, q)
words.add(w, P(w|M,), P(w|Mz))
1.6. tMat.init() /* create transition matrix based on Figure 5 */
1.7. oMat.set(d, words) /* create output probability matrix language models */
Step 2: Identification of relevant snippets
2.1. 8 =0, Seur = null, Sppep, = null
2.2. HM M baumwelch(d, tMat, oMat) /* estimate HMM parameters */
2.3. Seur = HM M viterbi(d) /* extract relevant snippet */
2.4 Heyr = Seurlength()
2.5. do {
Sprev = Seur
HM M baumwelch(d, tMat, oMat)
Seur = HMM viterbi(d)
Hyreo = Hou
Heyr = Seurlength()
if (1’1" < 9)
break;
d.maskSubqueue(Sey,)
S.add(Seur)

}

2.6. Return &

Fig. 6. Snippet extraction using HMM.

Therefore, to address this issue, we take the approach of Lavrenko
and Croft [13] by assuming that M, can be built equally well on the
set of documents relevant to the query. Specifically, we conduct the
following operations.

o Use the query q to retrieve a set of highly ranked documents D,
using any good text filter, e.g., Apache Lucene. This step yields a
set of documents that contain most or all of the words in g. In
addition, each document d in D; has a probability P(d|q) that d
should be retrieved based on q.

o Calculate the probability p(w|d) of word w being generated
by a given document d using a maximum likelihood estimate,
smoothed by the background language model M:

P(w|d) = /1% + (1 =)P(w|M),

where f,,, 4 is the number of times that w occurs in d and |d| is the
number of tokens in d. Note that we use a parameter / to control
the contribution of the term frequency to this probability. This
is a common technique in natural language modeling. We have
investigated the effect of |D;| and A and the results are reported
in Section 4.7.

Calculate P(w|D;) to approximate P(w|M;), the probability that
given word w is generated by the relevance language model:

P(w|M;) ~ P(w|Dy) =) "~ P(w|d)P(dIq).
deD;

This summation can be taken over only those in D, that have non-
trivial P(d|q) to accelerate execution.

With the word generation probabilities of M, and M; in place, we
can extract text snippets relevant to the query q using the algorithms
in the previous subsections (Sections 3.1 and 3.2).

Table 1
Data sets used for evaluation.

Single Multiple Noisy
Number of documents in collection 226,087
Average length of relevant documents 521 1452 527
Number of queries for evaluation 80 54 80

4. Experimental evaluation

In this section, we present the experiments to evaluate the
two proposed methods for extracting personalized text snippets.
Both methods utilize language models to generate a pair of rele-
vant/irrelevant probabilities of each word with regard to a query in
the relevant document. Recall that one method is based on word
sequence analysis by directly utilizing these probabilities, and the
other treats the document as a observed chain of the hidden Markov
model parameterized with these probabilities. In this section, we
call these methods SE-WSA and SE-HMM, respectively.

4.1. Experimental settings

To gauge how well the proposed snippet identification approach
performs, we carry out our experiments using data set synthe-
sized from the TREC DOE (U.S. Department of Energy) collection
(http://trec.nist.gov). This collection contains 226,087 documents
along with 80 benchmark queries. Each document is an abstract
from some longer DOE publication, and their average length is
149 words. Among these 226,087 document abstracts, 2352 are
considered relevant to any of the 80 queries.

We build our test documents using these abstracts. Since each ab-
stract is a self-containing snippet of average length 149, we can syn-
thesize longer documents with different properties by compound-
ing a number of relevant abstracts and irrelevant ones. Using these
synthesized documents, we can test our algorithms in the follow-
ing the aspects of (a) extraction of the most relevant snippet, (b)
identification multiple relevant snippets and (c) extraction of rele-
vant snippets under noisy conditions. Specifically, we generate three
documents sets as follows.

o Single-snippet data set (Sq)—Each document in this set is created
by concatenating a relevant abstract with a number of randomly
selected irrelevant abstracts.

o Multiple-snippet data set (S;)—In this set, each document is gen-
erated by concatenating 2-5 relevant abstracts with a number of
randomly selected irrelevant abstracts. In addition, the relevant
abstracts included in the document is always relevant with regard
to the same query. Since 54 queries out of the 80 have at least
two relevant abstracts in the document collection, only these 54
queries can be used to test this data set.

o Noisy data set with single snippet (S3)—This date set is an enhance-
ment of the first data set by including noise to the generated doc-
uments. For each query and a relevant abstract, we generate a
document by concatenating the relevant abstract with a number
of randomly selected irrelevant ones as when generating the first
data set. Next, we insert words in the query to at least three loci
around the irrelevant-abstract parts of the document. This data
set represents a much more realistic scenario for testing.

Details of our synthesized data sets are summarized in Table 1.
4.2. Baseline methods

In addition to the proposed methods, we also implemented two
well-known snippet extraction methods as the baseline.

http://trec.nist.gov

Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386 383

The first method, FL-Win, is commonly applied when presenting
snippets in the search result pages [18]. Given a window size k, it
examines all k-word-long text segments and selects that with the
most occurrences of the query words to be the most relevant. In our
experiments, the window size k is set to 149 words, i.e., the average
word length of the ground truth snippets for the data sets (Section
4.1). Without a priori knowledge about the appropriate length of the
relevant snippet in each document, the best that an extract method
can do is to adopt one that can perform well in the average case. We
believe the true average relevant snippet length is an optimal value,
and is the best setting that the system can choose for FL-Win method.
As a matter of fact, this gives it an unrealistic advantage and it can
be regarded as a strong baseline with over-estimated performance.

The second is the Cos-Win method, which extracts variable-
length text segments as relevant snippets in response to a query
submission [10]. In particular, the text segments of a set of prede-
fined lengths are examined for each document, and the one with
the highest cosine similarity with the query is selected as the most
relevant snippet.

In both baseline methods, we follow the example of [10] by using
text segments starting at every 25th word instead of every word in
a document to reduce the computational complexity. As reported by
Kaszkiel and Zobel [9,10], starting at 25-word intervals is as effective
as starting at every word. In case of Cos-Win baseline method, we
followed the example of [10] by first selecting one representative
segment at each starting word among several candidate text seg-
ments starting at the same word with size ranging from 50 to 600
words, with increments of 25. The relevant snippets are then iden-
tified by the one with the highest cosine similarity with the query
among these representatives. We applied the same cosine similarity
between a text segment and a query as defined by [9] in the exper-
iments.

4.3. Metrics

Given the identified snippets, we compute precision P and recall
R as follows. Let Lg be the length of the ground truth snippet. Let L,
be the word length of the extracted snippet and L, be the overlap
between the ground truth and the extracted snippet. Then,

Lo
p=2=2

Le
and

Lo
R=—.

Ls

In addition, we also use the harmonic mean (i.e., the F-measure),
which assumes a high value only when both recall and precision are
high

For all of the three data sets in Section 4.1, we apply our proposed
methods (SE-WSA and SE-HMM) and the two baseline methods
(FL-Win and Cos-Win) to investigate their performance in text snip-
pet extraction. For each method, we record its P, R and F measures
along with time cost (Table 2).

4.4. Statistical significance

Before reporting our experimental results using precision, recall
and F-measure, we provide a significance test to show that the ob-
served differences are not incidental. The Wilcoxon signed-rank test
and t-test are commonly used for the significance test in information

Table 2
Performance of alternative methods.

Method B R F Time cost (ms)
Cos-Win 0.685 0.415 0.517 289
FL-Win 0.781 0.573 0.661 17.6
SE-WSA 0.749 0.856 0.799 332
SE-HMM 0.879 0.793 0.834 31.5

retrieval experiments [27]. In a nutshell, both take a pair of equal-
sized sets of per-query effectiveness values, and assign a confidence
value to the null hypothesis that the values are drawn from the same
distribution. If confidence in the hypothesis (reported as a p-value)
is less than (= 5%), it is typically rejected. Although such tests only
consider the null hypothesis, it is common to assume rejection im-
plies that values are most likely drawn from different distributions,
which means that the results of experiments are statistically signif-
icant.

Among the assumptions of the Wilcoxon signed-rank test and
the t-test are that the values being tested—in our case, per-query
effectiveness—are distributed symmetrically and normally, respec-
tively [27]. However, effectiveness rarely follows either distribution.
Countering such caution, Hull [7] points out that the t-test can be
reliable even when data being tested are not distributed normally.
Therefore, we applied paired t-test to find out whether the observed
differences is identical. Our t-test showed that using F-measure
as the performance measure, the proposed methods (SE-WSA and
SE-HMM) performed better than the baseline methods (FL-Win and
Cos-Win) at p = 0.001. This is much less than the critical confidence
value (0.05).

4.5. Overall performance

We compare our methods to the two baseline methods using
the single-snippet data set (S; of Section 4.1). Their measures are in
Table 2. As indicated in the table, SE-HMM is the best in terms of
precision. Based on the recall, on the other hand, SE-WSA outper-
forms the other methods. Further analysis of the results (Section 4.6)
shows that, in general, SE-WSA tends to extract longer snippets,
which correctly include the ground-truth snippets to achieve high
recall, but reducing its precision. Although SE-WSA and SE-HMM
win over each other in terms of recall and precision, respectively,
the combined F-measure asserts that SE-HMM is the most effective
among all (0.834) with SE-WSA trailing closely (0.799). While in most
categories our proposed methods prove to superior, there is one ex-
ception when comparing SE-WSA to FL-Win in terms of precision.
This is because the design of SE-WSA generates the longest snippets,
thus, sacrificing its precision; but note that its recall is much higher
even compared to our other proposed method SE-HMM. This pro-
vides a tradeoff between the precision and recall measures. The last
column of the table summarizes the time cost of these four methods
in terms of execution time per document per query.

4.6. Effect of snippet length

We focus on the effect of snippet length on the performance of
these methods. To do that, we classify the single-snippet documents
into different groups according to the length of the contained text
snippet. Specifically, the groups are documents of snippet lengths
up to 50, 51-100, 101-200, 201-300, 301-400 and 401-500. We
plot the values of P, R and F-measure for these methods in different
snippet length groups in Figs. 7(a), (b) and (c), respectively. The
x-axes are labeled with the upper limits of these snippet length
groups.

384 Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386
a b
1.0 1.0
o [e]
0.8 - 0.8 /—g__\
N
v A\\\
S 0.6 - _ 061 \\\\
O © N
R o NO¥o
3 & AT
a 0.4 0.4 4 N “‘\\\\,\\
N ———
N
0.2 4 ——e—— SE-HMM 0.2 | —e— SE-HMM LS
o SE-WSA o SE-WSA T _
———v-—— FL-Win ———v-—— FL-Win
0.0 ' ' ' — Afl Cos-Win 0.0 ——t— ('Zos—Win ' ' ' T
0 100 200 300 400 500 0 100 200 300 400 500
Snippet Length Snippet Length
C
1.0
——e—— SE-HMM
o SE-WSA
——-v-—— FL-Win 0
0.8 4 ——2— Cos-Win
o
3 0.6+
@®
Q
&
L 04 o /// b "
v [
~— ~
0.2 4 = T
0 100 200 300 400 500
Snippet Length
Fig. 7. Effect of snippet length on (a) precision, (b) recall and (c) F-measure.

The general trend of extraction precision is increasing as the
ground-true length increases (Fig. 7(a)). The only exception is the FL-
Win reaches its highest precision for ground-true length of 101-200.
This is an artifact of setting the fixed window length to 149, the aver-
age snippet length, in the algorithm design (Section 4.2). We observe
that, for FL-Win, its precision is affected adversely by the increase of
ground-true length. When comparing across different methods, we
see that SE-HMM and SE-WSA are more precise than the baseline
methods for most groups except for FL-Win at 101-200. In terms
of recall (Fig. 7(b)), SE-HMM and SE-WSA stabilize as the ground-
true length increases while FL-Win and Cos-Win quickly deteriorate.
This is attributed by the much stronger capability of SE-HMM and
SE-WSA in adapting to different ground-true lengths whereas the
baseline methods are only suitable for short ones. The F-measure
(Fig. 7(c)) possesses a similar trend to recall.

4.7. Language model parameters

The relevance language model that forms the basis of SE-WSA and
SE-HMM have two main parameters: (1) the size of retrieved relevant
document set, |D;| and (2) the smoothing parameter, A (Section 3.3).

We first take the F-measure for different document set size |D;|
(Fig. 8). The figure indicates that the performance is stable when |Dy|
is set to anywhere between 5 and 40 documents. Using fewer than
five documents does not provide sufficient retrieval background, but
using more than 50 documents introduces excessive noises. In our
experiments, unless other specified, we always use the top-15 doc-
uments in estimating the language model.

1.0

F-measure

0.2 4

—e— SE-HMM
O SE-WSA

40 60 80
Number of documents

100

Fig. 8. Effect of the number (|D,|) of documents used in modeling.

Usually, smoothing would have a very strong impact on perfor-
mance of language model parameter estimation [20]. An important
role of smoothing in the language models is to ensure non-zero prob-
abilities for every word under the document model and to act as a
variance-reduction technique. In our experiments, however, we ob-
serve that setting A to 0.9 yields the best F-measure. In other words,
with almost no smoothing of the document models, SE-WSA and SE-
HMM achieve their best performance. This is because we incorporate

Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386 385

F-measure

—e— SE-HMM
O+ SE-WSA

0.0 ¢ T :
0 20 60 80 100
Fig. 9. Threshold (0).
Table 3
Multiple relevant snippets.
Method P R F
Cos-Win 0.601 0.374 0.461
FL-Win 0.701 0.498 0.582
SE-WSA 0.73 0.776 0.752
SE-HMM 0.752 0.763 0.757

a number of the relevant documents when estimating the relevance
language model for a given query. This results in non-zero probabil-
ities for many words that do not occur in the original query, thus,
little need for smoothing to avoid zeros.

4.8. Performance of multiple relevant snippets

Both SE-WSA and SE-HMM utilize thresholds to automatically
decide the number of relevant snippets to be selected as described
in Sections 3.1 and 3.2. We plot the F-measures of these meth-
ods against the changing values of threshold 0 in Fig. 9 using the
multiple-snippet data set S,. Note that the threshold in SE-WSA
determines “loss of returned area”. As shown in the figure, the
F-measure is high when set anywhere between 50% and 80%. In con-
trast, the threshold in SE-HMM controls the “loss of word sequence
length”. In the figure, the performance peaks when 0 is 30%-60%.
Therefore, in our experiments, unless explicitly stated, we set 0 in
SE-WSA to 40% and that in SE-HMM to 60%, respectively.

The baseline methods Cos-Win and FL-Win can also be extended
to extract multiple relevant text snippets. To that, we also employ
a similarity threshold to control the number of iterations executed.
We compare our methods with them and record the precision, recall
and F-measures in Table 3. From the table, we notice that SE-WSA
and SE-HMM are capable of generating more relevant text snippets
when multiple are extracted.

4.9. Immunity to noise

Up to this point, we have experimented with data with clean
delineation of relevant and irrelevant parts. To study the affects of
more realistic situations such as in presence of noise, we evaluate
all the methods using the noisy data set S3. In S3, a document may
have several text segments that contain the query words, but only
one segment corresponds to the ground truth; others are noises. We
plot the F-measure of all four methods tested using documents in

1.0
——=@—— SE-HMM
o SE-WSA
——-v-—— FL-Win
08— —A-—-- Cos-Win |
[
5
2 0.6
©
(0]
=
Ce - '\\
0.4 - o T \\\\
T = e ————_
» ~IT -~
V ——
A/ 7/ A
92 ~
0.2 1 v Sl T

0 100 200 300 400 500
Snippet Length

Fig. 10. Documents with noise.

S (Fig. 10). These documents are grouped in length as previously.
In the figure, SE-WSA and SE-HMM perform almost the same as in
the noiseless situations (Figs. 7(a) and (b), Section 4.6). Oppositely,
the performance of FL-Win and Cos-Win drop significantly when
facing noisy data. In essence, for a method based on the relevance
language model, it is able to select query-relevant snippets by not
only considering the exact words in a query but also by incorporating
other words closely related to these words. Thus, when there is
noise in a document, SE-WSA and SE-HMM can eliminate irrelevant
segments which have superficial connections to the query.

5. Concluding remarks

Previous work on text snippet extraction either outputs docu-
ment fragments segmented prior to a user query or uses a sliding
window to highlight some words of the query. While these meth-
ods may be light-weight, they have fundamental limitations. In the
former approach, pre-processed document segments have rigid
boundaries. Even if overlaps are allowed, the rigidness of doc-
ument segmentation is not flexible enough to support accurate
personalization according to user queries. For the latter approach,
the start-end positions of the sliding window are usually defined
so that a large number of words in the query appear in a small
window. That is, to maximize the “number of query words per
window length”. Typically, less important words are given smaller
weights when calculating the above ratio. However, such a weight-
ing scheme is necessarily heuristic in nature. In this work, we have
shown that personalized text snippet can be improved by utilizing
statistical language models to effectively capture the commonalities
between a document and the user intention. Taking the advantage
of language models, we can lose the implicit assumption made in
existing work that all words in the query contributes equally to per-
sonalizing the relevant snippet. This flexibility allows our method
to produce more coherent text snippets personalized to different
users. In future research, we plan to work on as smart but more
efficient methods for personalized text snippet extraction.

Acknowledgements

This research is supported by National Natural Science Founda-
tion of China Grant no. 60803106. We would also like to thank Chen
Zhang and Jia Wang for their help in various phases of the imple-
mentation.

386 Q. Li, Y. P. Chen / Pattern Recognition 43 (2010) 378 -386

References

[1] J.P. Callan, Passage-level evidence in document retrieval, in: Proceedings
of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Springer, New York, 1994,
pp. 302-310.

[2] C. Clarke, G. Cormack, D. Kisman, T. Lynam, Question answering by passage
selection (multitext experiments for trec-9), in: Proceedings of the 9th Text
Retrieval Conference (TREC), 2000, pp. 673-684.

[3] J. Conroy, D.P. O'leary, Text summarization via hidden Markov models and
pivoted QR matrix decomposition, Technical Report CS-TR-4221, University of
Maryland, College Park, Maryland, USA, 2001.

[4] P. Fung, G. Ngai, C.-S. Cheung, Combining optimal clustering and hidden
Markov models for extractive summarization, in: ACL Workshop on Multilingual
Summarization and Question Answering, Association for Computational
Linguistics, Morristown, NJ, USA, 2003, pp. 21-28.

[5] M.A. Hearst, Texttiling: segmenting text into multi-paragraph subtopic passages,
Computational Linguistics 23 (1) (1997) 33-64.

[6] M.A. Hearst, C. Plaunt, Subtopic structuring for full-length document access,
Technical Report, Berkeley, CA, USA, 1993.

[7] D. Hull, Using statistical testing in the evaluation of retrieval experiments,
in: Proceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, New York, NY, USA,
1993, pp. 329-338.

[8] F. Jelinek, R. Mercer, Probability distribution estimation from sparse data, IBM
Technical Disclosure Bulletin 28 (6) (1985) 2591-2594.

[9] M. Kaszkiel, J. Zobel, Passage retrieval revisited, in: Proceedings of the 20th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, New York, NY, USA, 1997, pp. 178-185.

[10] M. Kaszkiel,]. Zobel, Effective ranking with arbitrary passages, Journal of
the American Society for Information Science and Technology 52 (4) (2001)
344-364.

[11] J. Kupiec, Robust part-of-speech tagging using a hidden Markov model,
Computer Speech & Language 6 (3) (1992) 225-242.

[12] V. Lavrenko,]. Allan, E. DeGuzman, D. LaFlamme, V. Pollard, S. Thomas,
Relevance models for topic detection and tracking, in: Proceedings of the 2nd
International Conference on Human Language Technology Research, Morgan
Kaufmann, San Francisco, CA, USA, 2002, pp. 115-121.

[13] V. Lavrenko, W.B. Croft, Relevance based language models, in: Proceedings
of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM, New York, NY, USA, 2001,
pp. 120-127.

[14] V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allan, Language models
for financial news recommendation, in: Proceedings of the 9th International
Conference on Information and Knowledge Management (CIKM), ACM, New
York, NY, USA, 2000, pp. 389-396.

[15] C.Y. Lin, E. Hovy, From single to multi-document summarization: a prototype
system and its evaluation, in: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, 2002, pp. 457-464.

[16] X. Liu, W.B. Croft, Passage retrieval based on language models, in: Proceedings of
the 7th International Conference on Information and Knowledge Management
(CIKM), 2002, pp. 375-382.

[17] F. Llopis, J.L. Vicedo, A. Ferrindez, Passage selection to improve question
answering, in: Proceedings of the Conference on Multilingual Summarization
and Question Answering (COLING), Association for Computational Linguistics,
Morristown, NJ, USA, 2002, pp. 1-6.

[18] R. Nobles, Pleased with your google description? Technical Report, 2004.

[19] J.M. Ponte, W.B. Croft, Text segmentation by topic, in: Proceedings of the 1st
European Conference on Research and Advanced Technology for Digital Libraries
(ECDL), Springer, London, UK, 1997, pp. 113-125.

[20] J.M. Ponte, W.B. Croft, A language modeling approach to information retrieval,
in: Proceedings of the 21st annual international ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, New York, NY, USA,
1998, pp. 275-281.

[21] L.R. Rabiner, A tutorial on hidden markov models and selected applications in
speech recognition, Proceedings of the IEEE 77 (2) (1989) 257-286.

[22] D.R. Radev, H. Jing, M. Budzikowska, Centroid-based summarization of multiple
documents: sentence extraction, utility-based evaluation, and user studies, in:
Proceedings of ANLP/NAACL Workshop on Summarization, 2000, pp. 21-29.

[23] L. Roberts, R. Gaizauskas, Evaluating passage retrieval approaches for question
answering, in: Proceedings of 26th European Conference on Information
Retrieval, 2004, pp. 72-84.

[24] S.E. Robertson, The probability ranking principle in IR, Journal of Documentation
33 (4) (1977) 294-304.

[25] R. Rosenfeld, Two decades of statistical language modeling: where do we go
from here, in: Proceedings of the IEEE, 2000.

[26] G. Salton,]. Allan, A. Singhal, Automatic text decomposition and structuring,
Information Processing and Management 32 (2) (1996) 127-138.

[27] M. Sanderson, J. Zobel, Information retrieval system evaluation: effort,
sensitivity, and reliability, in: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
ACM, New York, NY, USA, 2005, pp. 162-169.

[28] F. Song, W.B. Croft, A general language model for information retrieval, in:
Proceedings of the 8th International Conference on Information and Knowledge
Management (CIKM), ACM, New York, NY, USA, 1999, pp. 316-321.

[29] M. Witbrock, V.O. Mittal, Headline generation: A framework for generating
highly-condensed non-extractive summaries, in: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 1999, pp. 315-316.

[30] M. Witbrock, V.0. Mittal, Summarizing text documents: sentence selection
and evaluation metrics, in: Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 1999,
pp. 121-128.

[31] D. Zajic, B. Dorr, R. Schwartz, Automatic headline generation for newspaper
stories, in: Proceedings of the ACL Workshop on Automatic Summarization and
Document Understanding Conference (DUC), 2002, pp. 78-85.

[32] D. Zhang, W.S. Lee, A language modeling approach to passage question
answering, in: Proceedings of the Text Retrieval Conference (TREC), 2003.

About the Author—QING LI is an associate professor of Southwestern University of Finance and Economics, China. Currently, he is also a visiting professor at the Department
of Computer Science and Engineering at the Arizona State University. Prior to that he was a post-doctoral Researcher with ASU and Information & Communications University
of Korea separately. Li's research interests lie primarily in intelligent information access and text data mining. He has published over 20 articles in respected journals and
conferences in related areas. He served in the organization and program committees of various international conferences including PC member of SIGIR 2008, CIKM 2007
and AIRS2005. He is also the winner of Chinese Government Award for Outstanding Self-financed Students Abroad in 2004. He received his Ph.D. from Kumoh National
Institute of Technology in February 2005, and his M.S. and B.S. degrees from Harbin Engineering University, China.

About the Author—YUANZHU PETER CHEN is an assistant professor in the Department of Computer Science at Memorial University of Newfoundland in St. John'’s,
Newfoundland. He received his Ph.D. from Simon Fraser University in 2004 and B.Sc. from Peking University in 1999. Between 2004 and 2005, he was a post-doctoral
researcher at Simon Fraser University. His research interests include mobile ad hoc networking, wireless sensor networking, distributed computing, combinatorial optimization,

graph theory and information retrieval.

	Personalized text snippet extraction using statistical language models
	Introduction
	Background
	Design details
	Snippet extraction via word sequence analysis
	Snippet extraction using HMM
	Language model parameter estimation

	Experimental evaluation
	Experimental settings
	Baseline methods
	Metrics
	Statistical significance
	Overall performance
	Effect of snippet length
	Language model parameters
	Performance of multiple relevant snippets
	Immunity to noise

	Concluding remarks
	Acknowledgements
	References

