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Abstract—In our previous works, we defined a novel routing
metric for organization-aware multihop wireless networks [1].
We demonstrated that our proposed routing protocol with this
new metric provides the much needed survivability and efficiency
in battlefield environments when keeping the cross-organization
data transfer at a low level [2]. In this paper, we take one step
further and propose ORION, a framework for quality-of-service
(QoS) routing in organization-aware wireless networks. Here,
we formulate routing as a constrained optimization problem
with a new routing metric to address QoS and security/policy
requirements of traffic flows as well as node-specific needs,
while taking the organizational constraints into account. Since
the problem is not solvable in polynomial time, a near optimal
solution procedure based on Lagrangian decomposition and sub-
gradient method is proposed and studied to solve the constrained
optimization problem, and such a solution renders itself to
distributed implementations. Simulation results show that the
proposed method provides high QoS while keeping the cross-
organization data transfer at a specified level satisfying strict
organizational security constraints.

I. INTRODUCTION

In many mission critical applications, such as military op-
erations and first responder efforts, multiple organizations are
usually involved in the mission. For instance, national guard,
firefighters, emergency medical services can be deployed to a
disaster region after a severe earthquake. Typically, mobile ad
hoc networks (MANETs) are deployed in real time for com-
munications since either the infrastructure may be destroyed or
it cannot be accessed. However, different organizations could
have heterogeneous wireless networking devices and, yet,
information sharing among them plays a pivotal role in saving
lives and maximizing operation efficiency. As a result, inter-
operability among the participating organizations is highly
desirable for sharing information and effective collaborations.
The emerging software defined radio (SDR) platform pro-

vides an enabling technology for future inter-operable wireless
networks used by different organizations [3]. In this paper, we
consider the scenario of heterogeneous MANETs deployed
within the same geographical area, and assume that all the
nodes are inter-operable. Specifically, we focus on the routing
problem in scenarios where nodes of one organization can help
to transport traffic for nodes of a different organization. This is
crucial for maintaining survivability and efficiency in a harsh
environment. For example, as illustrated in Fig. 1, the soldiers

and the sensors belonging to two different organizations but
their radios are inter-operable. Assume that soldier D is out of
the radio range of its own network.D could only communicate
with other soldiers through sensor node 1. Moreover, in many
cases, more efficient communication may be achieved through
collaborations among different organizations. Again, as in the
figure, if sensor node 2 has little remaining battery power, we
must route the sensed data via other nodes. Without cross-
organization data forwarding, we must take the route of 3-4-
5-Fusion Center. However, if the help of the soldiers can be
used, it would be more efficient to transport through a shortcut
via soldier A.

Fig. 1. Collaboration in an organization-aware mobile ad hoc network

Although there can be considerable benefits for different or-
ganizations to collaborate in data transfer, it is crucial that the
incurred additional overhead to the helping organization will
not degrade its own operation significantly. More importantly,
the nodes within or outside the same organization may have
different security or policy requirements. For instance, suppose
that soldier A in Fig. 1 has strict security requirement. In this
case, it may not be appropriate for him to relay traffic for the
sensor nodes.
In our previous works, we defined an organization-aware

routing metric for multihop wireless networks [1]. We demon-
strated that such a metric indeed provides the much needed
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survivability and efficiency for mission critical applications
while keeping the cross-organization data transfer at a low
level [2]. In this paper, we extend our previous results to
address Quality-of-Service (QoS) and security/policy require-
ments of traffic flows as well as node-specific needs, while
taking the organizational constraints into account. The pro-
posed formulation strikes the balance between the benefit from
collaboration and the cost due to the organization induced
constraints. Here, the benefit can be measured by path quality,
such as number of hops, data rate or delay. Specifically, we
formulate QoS routing as a constrained optimization problem
with a new QoS routing metric. Since the problem is not solv-
able in polynomial time, efficient approximation algorithms
are proposed and studied based on Lagrangian decomposition
and sub-gradient method. We investigate the effects of the
parameter settings on the system performance using extensive
simulations using MATLAB. The results demonstrate the
effectiveness of the proposed scheme and its capability of
addressing the tradeoff between organizational constraints and
QoS requirements.
The rest of this paper is organized as follows. The proposed

QoS routing metric and the constrained optimization, as well
as efficient solutions are described in Section II. Section III
is dedicated to simulation studies and our findings out of
these experiments. Related works are discussed in Section IV.
Section V concludes this article with some discussion on future
extensions.

II. CONSTRAINED OPTIMAL QOS ROUTING
The mixture of multiple organizations, along with the sub-

groups therein, can be regarded as one hierarchical network,
where it contains a number of tiers of groups. For many
mission-critical applications, it is important to keep cross-
organization data transfer at the lowest possible level for
minimal disruption of the traffic within each organization and
for security reasons (“level constraint”). To measure the degree
that a multi-hop path conforms to this “level constraint”, a new
link metric was proposed in [1] to quantify the “distance”
between two neighboring nodes in terms of their hierarchi-
cal addresses. Then the routing decision in such networks
should take into account the “level constraint” such that cross-
organization traffic flow will remain at the lowest possible
level.
To address the tradeoff between QoS such as end-to-end

delay and organizational concerns, we propose a generic rout-
ing metric as a weighted sum of both terms. Furthermore, to
include hard constraints due to QoS requirements and security
and policy issues, we formulate an optimal routing problem
as a constrained optimization problem.

A. Generic QoS Routing Metric
Define a weight vector ρ = 〈ρ1, ρ2, . . . , ρh〉 that represent-

ing how important each level is (due to chain of command,
etc.). In addition, a cost that reflecting link quality such as
delay or resource consumptions such as power, is denoted by
de and the path cost will be dP =

∑
e∈P de. The total cost

(including the organization-aware cost and the link quality and
resource cost) of a path P can be defined by

CP = η1[ρ ·WP ] + η2dP , (1)

where WP is the length of the path (in the organizational
sense) [1], ρ·WP denotes the inner product of the two vectors,
and 0 < η1 < 1, 0 < η2 < 1, η1 + η2 = 1. The goal of the
proposed optimal organization-aware routing is (P1)

min
P

CP (2)

In other words, for any given source destination pair, find the
path such that the total cost of the path is minimized.
Note that the parameters η1 and η2 determine the tradeoff

between emphasis on organization level constraints and path
quality and resource cost. The vector ρ provides further
flexibility of specifying the relative importance among each
levels.
Problem (P1) is an unconstrained optimization problem. In

many practical situations, certain QoS constraints such as end-
to-end delay bound may be necessary. In addition, there may
exist strict organizational security constraints, such as traffic
beyond a certain level is not allowed. Hence, we define the
following constrained optimization problem: (P2)

min
P

⎡
⎣η1

h∑
i=1

ρi

⎛
⎝ ∑

(j,k)∈P

W
(j,k)
i

⎞
⎠+ η2

∑
(j,k)∈P

d
(j,k)

⎤
⎦(3)

such that
∑

(j,k)∈P

d
(j,k)

≤ d
P,tar (4)

∑
(j,k)∈P

W
(j,k)
i ≤ W

P,tar
i ∀i = 1, 2, · · · , h. (5)

where dP,tar and W
P,tar
i are upper bounds for QoS (say,

delay) and organization security, respectively. In other words,
equation (4) and equation (5) reflect the hard QoS require-
ment and the hard organizational requirement, respectively.
The above constraints

∑
(j,k)∈P W

(j,k)
i ≤ W

P,tar
i ∀i =

1, 2, · · · , h. states the fact that there is possibly a constraint
at each level. If there is no constraint at some level m,
we may simply set WP,tar

m = ∞. It worth noting that
since dP represents link quality such as delay and resource
consumptions such as power, it is a function of traffic flow [4].
The above (P2) can be translated into the following network
flow problem with integer constraints and side constraints:
(P3)

min
(j,k)∈E

⎡
⎣η1

h∑
i=1

ρi

⎛
⎝ ∑

(j,k)∈E

W
(j,k)
i x

(j,k)

⎞
⎠+ η2

∑
(j,k)∈E

d
(j,k)

x
(j,k)

⎤
⎦(6)

such that
∑

{k|(j,k)∈E}

x
(j,k)

−
∑

{k|(k,j)∈E}

x
(k,j) =

⎧⎨
⎩

1 if j = s
−1 if j = t
0 otherwise

(7)

0 ≤ x
(j,k)

≤ 1, ∀(j, k) ∈ E (8)∑
(j,k)∈E

d
(j,k)

x
(j,k)

≤ d
P,tar (9)

∑
(j,k)∈E

W
(j,k)
i x

(j,k)
≤ W

P,tar
i ∀i = 1, 2, · · · , h. (10)

where (j, k) is the link from node j to node k and E is the
set of all links.
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B. Feasibility Conditions and Special Cases
It is observed that the bounds (dP,tar and W

P,tar
i ) have

to be set properly such that problem (P3) would be feasible.
Let WOSP

i , ∀i = 1, 2, · · · , h. denote the minimum possible
WP

i for any path P , i.e., it corresponds to the Organizational
Shortest Path (OSP). Similarly, let dTSP denote the minimum
possible dP for any path P . In other words, it corresponds to
the Topological Shortest Path (TSP). Here, we use the term
“Topological” loosely since it depends on the choice of d(j,k).
If it is the same for each link in the network, then indeed dTSP

corresponds to the TSP (path with minimum hop count). It is
clear that the necessary conditions for a feasible path to exist
include:
1) W

P,tar
i ≥ WOSP

i , ∀i = 1, 2, · · · , h.
2) dP,tar ≥ dTSP .

However, unless the OSP and the TSP are identical1, the
above conditions are not sufficient. Let set Pfeasible = {P :
WOSP

i ≤ WP
i ≤ W

P,tar
i ∀i = 1, 2, · · · , h; dTSP ≤

dP ≤ dP,tar}. A feasible path for problem (P3) exists iff
Pfeasible �= ∅. Illustrative examples are given in Section II-C.
If the problem (P3) is feasible, the parameters come into

play together with the constraints. Note that this generic path
metric degenerates to a few forms depending on the values of
η1, η2, ρ, and d. These degenerated cases models a number of
differing application requirements. Table I summarizes these
cases.

TABLE I
DEGENERATION BY DIFFERENT PARAMETER SETTINGS

Pure OSP Hop Count Informative

η1 any positive number 0 0
η2 0 any positive number 1
d any same for all links ETX, ETT, etc.
ρ heavy-head ρi any any

It is also interesting to notice that there are multiple pa-
rameter settings as well as changing the target value of the
constraints may result in the same (optimal) path. For example,
there are at least two ways to obtain the TSP assuming that the
problem (P3) is feasible: 1) η1 = 0 ; η2 can be any positive
number; and d is the same for all links. 2) dP,tar = dTSP .

C. Illustrative Examples
Two small scale examples are presented in this section

to illustrate the proposed routing metric and the optimal
path found under different constraints and parameter settings.
First we use the previous example given in Fig.2 of [2]
with the weight vector W indicated on each link. Suppose
node A is the source and node C is the destination, then
WOSP

1 = 0, WOSP
2 = 4, and dTSP = 2 assuming d = 1 for

all the links. Following the discussions in the previous section,
the necessary conditions for a feasible path to exist include 1)
W

P,tar
1 ≥ 0, W

P,tar
2 ≥ 4; 2) dP,tar ≥ 2. It is obvious that

1In this case, the OSP or TSP is the optimal solution to problem (P3).

these two conditions are not sufficient. In fact, the solution to
problem (P3) does not exist when all the above constraints are
tight. In other words, a path with WP = 〈0, 4〉 and dP = 2
does not exist. Now, if we loosen one of the constraints, say
dP,tar = 4, then A-D-E-F-C would be the optimal path and
it is the OSP from A to C. If we keep dP,tar = 2, and set
WP,tar = 〈2, 0〉, A-B-C is the optimal path, and it is the TSP
from A to C. These are the two extreme cases corresponding
to the strict requirements on organizational constraint and QoS
(hop count) constraint, respectively.
In general, if the constraints are not binding, the constrained

optimization problem (P3) reduces to an unconstrained op-
timization problem and the optimal path could be different
from the OSP and the TSP. An example is given in Fig.2,
where node A is the source and node D is the destination and
the weight vector W and d are marked on each link. Other
parameters are set as η1 = η2 = 0.5, ρ = 〈4, 1〉. The resulted
OSP, TSP and optimal path are given in Table.II. It is clear
that in this example, all of them are different.

F d=2

0,1

G d=2

0,1

H

0,1
d=2

d=2

1,01,0

d=2
0,1

d=2

A

B

0,1
d=2

d=2
0,1 C

0,1
d=2

DE

Fig. 2. An example where OSP, TSP and optimal path are all different.

TABLE II
AN EXAMPLE

path WP DP Objective CP

OSP: A-B-C-D 〈0, 3〉 6 4.5
TSP: A-E-D 〈2, 0〉 2 5

optimal path: A-F-G-H-D 〈0, 4〉 4 4

D. Optimal Solution
We solve the problem (P3) using the dual decomposition

technique [5]. The problem (P3) may be rewritten as

min
∑

(j,k)∈E

(
η1 · ρ ·W

(j,k)T + η2 · d
(j,k)

)
· x(j,k)

subject to:
∑

k|(j,k)∈E

x(j,k) −
∑

k|(j,k)∈E

x(k,j) =

⎧⎨
⎩

1 if j = s

−1 if j = t

0 otherwise∑
(j,k)∈E

d(j,k) · x(j,k) ≤ dtar

∑
(j,k)∈E

ρ(j,k)T · x(j,k) ≤ W tar
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where W (j,k)T = [W
(j,k)
1 ,W

(j,k)
2 , · · · ,W

(j,k)
h ]T . We intro-

duce Lagrange multiplier µ for each of the side constraints,
and we form the corresponding Lagrangian function

L(x, µ) = f(x) +
2∑

t=1

µt · gt(x)

where f(x) =
∑

(j,k)∈E

(
η1 · ρ ·W

(j,k)T + η2 · d
(j,k)

)
· x(j,k)

g1(x) =
∑

(j,k)∈E

d(j,k) · x(j,k) − dtar

g2(x) =
∑

(j,k)∈E

ρ(j,k)T · x(j,k) −W tar

Let F̃ denote the conservation flow constraints

F̃ =

⎧⎨
⎩x|x ∈ [0, 1],

∑
k|(j,k)∈E

x(j,k) −
∑

k|(j,k)∈E

x(k,j) = sj

⎫⎬
⎭

The dual function is defined as

q(µ) = inf
x∈F̃

L(x, µ) (11)

Thus the dual problem can be formulated as

maximize q(µ)
subject to µ ≥ 0 (12)

1) Subgradient Algorithm: In this section, a subgradient
algorithm is presented to resolve the dual problem (12). The
subgradient of q(µ) at a given µ ≥ 0 is defined to be any
vector g such that

q(v) ≤ q(µ) + (v − µ)′g, ∀v ≥ 0 (13)

For any µ, let xµ to be the minimizer of the Lagrangian
function L(x, µ) over x ∈ F̃

xµ = argmin
x∈F̃

L(x, µ) (14)

It can be shown that vector g = [g1(xµ), g2(xµ)] that has
components

g1(x) =
∑

(j,k)∈E

d(j,k) · xµ − dtar

g2(x) =
∑

(j,k)∈E

ρ(j,k)T · xµ −W tar (15)

is a subgradient of q at µ.
Proof: From the definition of L(x, µ), q(µ) and xµ, we

can get

q(v) = inf
x∈F̃

L(x, µ) ≤ L(xµ, v)

= f(xµ) + v1 · g1(x) + v2 · g2(x)

= f(xµ) + µ1 · g1(xµ) + µ2 · g2(xµ)

+ (v1 − µ1) · g1(xµ) + (v2 − µ2) · g2(xµ)

= q(µ) + (v − µ)′ · g

Thus, the evaluation of q(µ) which requires finding a
minimizer xµ of L(x, µ) over F̃ , yields a by-product, the
subgradient g. The subgradient method consists of the iteration

µk+1 = [µk + sk · gk]+ (16)

where gk is the subgradient of q at µk as shown in (15), and
sk is a positive scalar stepsize. In this work, we adopt the
following stepsize formula

sk =
ak

(
qk − q(µk)

)
‖gk‖2

(17)

where qk is an approximation to the optimal dual cost and ak
is a constant within the interval

0 ≤ ak ≤ 2 (18)

Since qk is difficult to estimate, we use the best known upper
bound of q(µ) to the optimal dual cost at the kth iteration, i.e.
qk = max{q1(µ), q2(µ), · · · , qk(µ)}. ak is a number which
is initially equal to one and it decreased by a certain factor
for every iteration. The formula for ak is given as

ak =
m

m+ k
(19)

In each iteration, L(x, µ) can be re-organized as

L(x, µ) =
∑

(j,k)∈E

[(
η1 + µk

2

)
ρ ·W (j,k)T + (η2 + µk

1)d
(j,k)

]
x(j,k)

− (µk
1d

tar + µk
2W

tar), ∀x(j,k) ∈ F̃ (20)

where µk
1 and µk

2 can be regarded as constants. Therefore,
minx∈F̃ L(x, µ) is reduced to the shortest path problem with
non-negative arc lengths. Single origin/destination label cor-
recting algorithm is adopted in this work to find the minimizer
xµ of the L(x, µ), see Table III. The label correcting method
uses a queue to store the candidate list V . Small Label First
(SLF) approach is used for node entrance and Large Label
Last (LLL) is used as node removal method from queue. To
reduce the number of node entrance to the candidate list, we
define ui as an underestimate of the shortest distance from
node i to node t (destination) for each node i ∈ N . Since the
arc length in this work is non-negative, we let ui = 0, ∀i ∈ N .
2) Convergence and Optimality: We refer to the optimal

values attained in the primal and in the dual problems as the
optimal primal cost and optimal dual cost, respectively. It is
noted that the optimal dual cost is always no greater than the
optimal primal cost which is referred as weak duality theorem.
It can be given as

sup
µ≥0

q(µ) ≤ inf
x∈F̃ ,gt(x)≤0,t=1,··· ,r

f(x) (21)

There are many results on the convergence of the subgra-
dient method. For constant step size and constant step length,
the subgradient algorithm is guaranteed to converge to within
some range of the optimal value, i.e., we have

lim
k→∞

qkbest(µ)− q∗(µ) < ε (22)
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TABLE III
LABEL CORRECTING ALGORITHM

Algorithm:
Initialization: V = {1}, d1 = 0, di = ∞,∀i �= s
Iteration of label correcting algorithm
Let i be the front node of Q, and let

a = [
∑

j∈Q

dj ]/|Q|

If di > a, move node i to the end of Q
Repeat until a node i such that di ≤ a is found

Remove node i from the candidate list V ,
For each outgoing arc (i, j) ∈ A, if

di + ai,j < min {dj , dt − uj}
Set dj := di + ai,j

Add j to V if it does not already belong to V
If dj ≤ dfront, dfront is the label of the front node in Q
Node j is entered at the front of Q
Otherwise, j is entered at the end of Q

where q∗(µ) denotes the optimal value of the dual
problem, i.e., q∗(µ) = supµ q(µ) and qkbest(µ) =
max{q1(µ), q2(µ), · · · , qk(µ)}. This implies that the sub-
gradient method finds an ε-suboptimal point within a finite
number of steps.

III. SIMULATION STUDY

In this simulation study, we test the proposed con-
strained QoS routing algorithm in a “city” scenario. It
is assumed that there are 500 nodes randomly distributed
on 2 west-east streets and 4 north-south streets within a
1500 × 2500m2 urban area. The node transmission range
is 250 m. The setup is shown in Fig. 3 and the exact
configuration is given in the file available at http://nsf-
rise.pvamu.edu/webpage/files/mmc street posall 500.txt. The
first 3 columns are the index (node ID), x-position and y-
position of the nodes, respectively. In order to simulate real-
world organizational hierarchy, for instance, the multi-level
tactical networks [6], and test the performance of the proposed
algorithm in networks with multi-level hierarchical addresses,
we assume a 4-level hierarchy, where each node belongs to one
of the 3 different organizations, denoted by addr[0] with values
0, 1, or 2, and there are 5 branches within each organization
and 5 groups within each branch. Each node has a 4-level
address similar to the common IP address but with different
meaning and much less span. For example, a node with address
addr[0]=1, addr[1]=0, addr[2]=4, addr[3]=0, means the node
belongs to organization 1, branch 0, group 4, and ID 0. The
organization weight of a link can be calculated by comparing
the addresses of the two end nodes. For instance, the weight
vector between node 3 〈1, 0, 2, 3〉 and node 4 〈1, 3, 4, 4〉
is W34 = 〈0, 1, 1, 1〉. The weight vector between node 0
〈1, 0, 4, 0〉 and node 3 〈1, 0, 2, 3〉 is W03 = 〈0, 0, 1, 1〉. It is
assumed that d = 1 for all the links unless stated otherwise.

A. Finding OSP and TSP
We first perform a proof-of-concept test by finding OSP

and TSP using the proposed algorithm. Specifically, we select

Fig. 3. Simulation setup.

a source and a destination uniformly from 1 to 500 and find
the TSP and OSP by solving the unconstrained optimization
problem with η1 = 0, η2 = 1 for TSP and η2 = 0,
η1 = 1, ρ = 〈64, 16, 4, 1〉 for OSP, respectively. We repeat
this experiment 20 times and we record the resulted paths
and calculate their corresponding path organizational weight
vectors (WTSP , WOSP ) and hop count (dTSP , dOSP ). It is
observed that we find the correct TSP and OSP each time, and
the average weight (calculated as the product of ρ and W ) is
164 for OSP and 585 for TSP, while the average hop count
is 9 for TSP and 12 for OSP. This confirms that the proposed
routing algorithm is able to find OSP with significantly less
cross-unit traffic while only incur moderate increase in hop
count.

B. Effects of Parameters
As pointed out earlier, the parameters in the proposed QoS

routing metric affect the path found by the algorithm. Here
we demonstrate the effect of the weight factor ρ, by finding
the “loose” OSPs with the setting (1) η2 = 0, η1 = 1,
ρ = 〈8, 4, 2, 1〉 for OSPL1 and (2) η2 = 0, η1 = 1,
ρ = 〈4, 3, 2, 1〉 for OSPL2. We record OSPL1 and OSPL2

and calculate their corresponding hop counts. Comparing with
the OSP obtained in section III-A by keeping the same source-
destination pairs, the average hop count of OSPL1 and OSPL2

are 10 and 9, respectively. It can be seen that with less
emphasis on organizational constraints, the hop count of a
“loose” OSP can be very close or equal to that of a TSP. In
our experiment, the average weight is 35 for OSPL2 and 47
for TSP while they have the same hop count. Hence, a proper
setting of parameters may result a path has both low cross-unit
traffic and low hop count.

C. Effects of Constraints
Here we focus on the effects of the hard QoS and orga-

nizational constraints on the resulted paths. We impose very
tight constraints: WP,tar

1 = WTSP
1 , W

P,tar
2 = W

P,tar
3 =

W
P,tar
4 = 500, dP,tar = dOSP , and η1 = η2 = 0.5. Assume

that d for each link is a random integer uniformly distributed
between 1 and 10, representing random delay (not hop count)
of each link. The resulted paths by solving the constrained
optimization problem as well as the parameter settings and the
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TABLE IV
CONSTRAINED OPTIMAL QOS PATHS (HC:HOP COUNT)

ρ TSP OSP obtained path

case (1): ρ = 〈64, 16, 4, 1〉 W = 454, d = 13, hc = 10 W = 164, d = 57, hc = 12 converge to OSP (15 iterations)
case (2): ρ = 〈8, 4, 2, 1〉 W = 88, d = 13, hc = 10 W = 64, d = 18, hc = 10 converge to OSP (26 iterations)
case (3): ρ = 〈4, 3, 2, 1〉 W = 62, d = 13, hc = 10 W = 50, d = 18, hc = 10 converge to OSP (30 iterations)
case (4): ρ = 〈1, 1, 1, 1〉 W = 32, d = 13, hc = 10 W = 18, d = 48, hc = 10 nor OSP or TSP (10 iterations)

average weights, delay and hop count are listed in Table. IV.
It is observed that the proposed algorithm converges to OSP in
a relatively large range of parameter settings, cases (1)-(3). In
case (1), most emphasis is given to organizational constraints,
hence the low weight but high delay of the resulted path.
Cases (2) and (3) provide balanced path coincide with OSP,
with low weight, low delay and hop count equal to that of
the TSP. Case (4) gives a path neither OSP nor TSP with
weight and delay in between. From the above experiments, we
observe that the proposed method is flexible enough to fit our
needs for addressing the tradeoff between QoS requirements
and organizational constraints.

IV. RELATED WORK

Hierarchical routing have been studied extensively for mil-
itary applications, such as [6], [7]. In [6], an IP multicast
routing protocol, called “Hierarchical Level-based IP Multi-
casting” (HLIM), is proposed for tactical networks. Extended
Hierarchical State Routing (EHSR) is proposed in [7] for a
multi-level physical heterogeneous network with UAVs. Both
papers addressed the routing scalability problem for large
networks by arranging the nodes in a hierarchical manner.
However, each lower-level node can only communicate with
a pre-designated higher-level node or nodes at the same level.
Contrary to the configuration in [6], [7], our proposed ORION
allow collaborations among all nodes in a mesh topology,
while maintaining the organizational structure and satisfying
QoS requirements and node specific needs.
QoS routing has also been studied in many previous works,

such as in past MILCOM [8], [9], [10], [11], just to name a
few. Incorporation of flexible and scalable QoS path selection
heuristics into a Network Engineering Design Analytic Toolset
(NEDAT) is proposed in [8]. In [9], traffic aware QoS routing
is studied and it is shown that Heavy-tailedness Aware Routing
Protocol (HARP) significantly outperforms the state-of-the-
art under heavy-tailed workload. Both [10] and [11] concern
inter-domain routing, namely, BGP performance with QoS
requirements. In addition, it is noted that the dual decompo-
sition technique has been used to develop distributed routing
algorithms, e.g., in [12]. However, none of them considered
QoS routing with organizational constraints.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we consider a novel QoS routing metric
to address one of the critical issues in organization-aware
wireless networks, the tradeoff between QoS requirement and
organizational constraints. Furthermore, we take into account

strict QoS requirement such as the end-to-end delay and hard
security constraints and formulate a constrained optimization
problem. The dual decomposition method is applied to solve
this constrained optimization and a sub-gradient search based
algorithm is proposed to obtain the near optimal solution
efficiently. Simulation results demonstrate the effectiveness of
the proposed method.
Note that any routing protocol implementing the proposed

QoS routing metric needs large amount of information prop-
agated through the network, thus introducing burden on the
control plane. We can create a multi-point relay for propa-
gating information efficiently using the concept of Connected
Dominating Set, which can be calculated efficiently using only
local information [13]. Detailed scheme will be designed in
our future research. In addition, the effects of node mobility
on the proposed routing protocol will also be studied.
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