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Abstract—Innovative routing in mobile ad hoc networks is
crucial for unleashing the full potential of such networks.
In this paper, we propose a new Proactive Source Routing
(PSR) protocol that has a very small communication overhead
but provides nodes with more network structure information
than distance-vector based protocols. The value of the source
routing protocol includes: 1) better control of path selection
by the source nodes for congestion avoidance, load and energy
consumption balancing, and bypassing untrusted areas, 2) alle-
viation of IP forwarding at intermediate nodes, and 3) support
for opportunistic data forwarding. PSR complements DSR as a
proactive counterpart to provide responsive data transportation
services in heavily loaded networks. Our simulation results show
that PSR achieves performance similar to OLSR and DSDV, but
with only a small fraction of the communication overhead.

Index Terms—Mobile ad hoc network, proactive, source rout-
ing

I. INTRODUCTION

A mobile ad hoc network (MANET) is a wireless com-
munication network where nodes that are not within direct
transmission range establish their communication via the help
of other nodes to forward data. It can operate without a
fixed infrastructure, support user mobility, and falls under
the general scope of multi-hop wireless networking. Such a
networking paradigm originated from the needs in battlefield
communications, emergency operations, search and rescue,
and disaster relief operations. Later, it found civilian applica-
tions such as community networks.

A great deal of research results on MANETs have been
published since its early days in the 1980’s [1], and the
network layer has received the most attention. Two most
important operations at the network layer are routing and
forwarding. Data forwarding regulates how packets are taken
from one link and put on another. Routing determines which
path a data packet should follow from the source node
to the destination. With different network types, topologies
and performance objectives, abundant routing protocols with
differing features and for various specific needs have been
proposed [2].

Many routing protocols in wireless network are fundamen-
tally derived from two algorithms adopted in the Internet —
Link State (LS) routing and Distance Vector (DV) routing.
In LS routing, every node provide the cost to it neighbors
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to all other nodes in the network, so every node has the
knowledge of the topology of the entire network and it can
always select the best route to the destination. In DV routing,
a node provide its neighbors the knowledge of the estimated
cost to reach a particular destination, so every node can
choose the most efficient neighbor as the next hop to reach
a destination node. Because LS provides more information
about the network structure than DV does, the LS usually
has a larger overhead than DV. Meanwhile, routing protocols
in MANETs are usually categorized as proactive, a.k.a. table
driven, and reactive, a.k.a. on demand according to their
timing strategy. Proactive routing means that nodes in the
network should maintain valid routes to all destinations at all
time. Instead, reactive routing means the nodes in the network
do not always maintain routing information. When a node
receives data from the upper layer for a given destination,
it must first find out about how to reach the destination.
In general, most proposed routing protocols in MANETs
can be categorized according to their different fundamental
algorithms and timing strategies. For example, Destination-
Sequenced Distance Vector (DSDV) [3] is a proactive pro-
tocol based on DV, Ad-hoc On Demand Distance Vector
(AODV) [4] is a reactive one based on DV, and Optimized
Link State Routing (OLSR) [5] is a proactive routing protocol
using LS.

Another important type of routing protocol is source rout-
ing, which is neither LS nor DV, where the entire route is
included in the data packet. Therefore, source routing not
only provides routing information, but also controls data
forwarding when it is handled by intermediate nodes, which
is quite different from IP forwarding used by LS or DV. Such
a feature in source routing has its exclusive advantages:

• More control by source node — As the entire route
can be selected by the source node, it has complete
control of how the packet should be forwarded. This
allows it to avoid congested areas, balance the load and
energy consumption among nodes, and bypass untrusted
segments of the network.

• Less requirement on intermediate nodes — Without
relying on traditional IP forwarding, source routing does
not require intermediate nodes have switching/routing
capabilities. The intermediate nodes only need to exam-
ine the path embedded in the data packets to forward the
data to the next hop neighbor without looking up in its
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forwarding table.
• Support of opportunistic data forwarding — The broad-

cast nature of wireless links differentiates multi-hop
wireless networks from the Internet [6]. Opportunistic
data forwarding explicitly utilizes such a feature in mesh
networks [7]. To achieve this, a redundant set of nodes
along the path are allowed to help forwarding data,
which are included as an ordered list in the data packets.

In source routing, the source node must include the entire
path in data packets for a given destination, DV cannot
provide sufficient routing information in this case. On the
other hand, LS gives each node the knowledge of the complete
topology of the entire network, it could be utilized by source
routing as in [7]. However, proactive LS protocols are rather
expensive in terms of communication overhead. In this paper,
we propose the Proactive Source Routing (PSR) in MANETs
to complement the DSR [8] to fulfill the needs of rapid data
transportation with a small end-to-end delay. When designing
PSR, our primary goal is to minimize the communication
overhead without sacrificing the network performance. This
is evidenced by our performance evaluation and comparison
to OLSR and DSDV using extensive simulation experiments
in ns-2.

The rest of this article is organized as follows. Section II
reviews related work on source routing and summarizes the
difference between PSR and others. Section III describes the
design and implementation details of PSR. We use computer
simulation to evaluate the performance of PSR and the
settings and results of these experiments are presented in
Section IV. Section V concludes the article with outlook to
future research.

II. RELATED WORK

DSR is a pioneering work in source routing in MANETs.
In DSR, when a node has data for a destination node, a
route request is flooded in the network. An intermediate
node who has received the request adds itself to the request
and rebroadcasts it. When the destination node receives the
request, it transmits a route reply packet back to the source
node following the route used by the request. As a reactive
protocol, DSR is suitable for delay-insensitive applications
and situations where data requests are infrequent.

DSR has since been extended to meet different objectives.
Hu and Johnson [9] propose to use flow ID to identify a route
in the network. The intermediate nodes use the flow ID to look
up in a local data structure so that data packets no longer
need to carry the full path. To better utilize the cached routes
in [10], explicitly signals are used to inform the upstream
nodes when detecting a broken link instead of using a timer
as in the original DSR. In [11], Bai and Singhal proposed a
Way Point Routing (WPR), which combines DSR and AODV
together in a hierarchical network. Specifically, they break
the end-to-end route into segments with way points, and use
DSR for “intersegment” routing and AODV for “intraseg-
ment” routing, respectively. Thus, when a route is broken
within a segment, it only needs to find another segment to

connect the two way points of the broken segment. Sivakumar
and Ramkumar enhanced the security for DSR in [12] by
preventing illegal operations on the route information in a
data packet. Hu and Gharavi [13] used directional antennas
to support DSR for better performance by use of the reduced
interference.

Garcia-Luna-Aceves and Spohn proposed STAR [14] as
a proactive routing protocol in MANETs. They first put
forward two astute observations about route update strategies,
i.e., Optimum Routing Approach (ORA) and Least-Overhead
Routing Approach (LORA), to interpret the difference be-
tween proactive routing and reactive routing from a different
perspective. In STAR, every node maintains a tree structure
for the network, and adopts a tree update strategy that is nei-
ther proactive nor reactive. Instead, it uses a “lazy” approach,
where update message, will only be transmitted when the
local tree structure is considered sufficiently inferior to the
original optimum. Here, all the tree updates are performed
differentially and the link states are timestamped.

In this article, we present the working and performance
evaluation of a new proactive source routing algorithm called
PSR. PSR is built on the similar idea of spanning tree
as in STAR. It has the following distinct features. First,
we do not timestamp links. Instead, only the topological
information is used for tree updates in order to reduce the
communication overhead. Second, PSR always maintains a
breadth-first spanning tree at each node, to provide responsive
data transportation services. Third, we utilize both full dump
and differential updates to strike the balance between efficient
and robust network operations. Last, we use source routing to
forward data rather than IP forwarding as in STAR, which can
potentially support opportunistic data transfer in MANETs.

III. DESIGN OF PSR

In this section, we highlight some of the challenges of
PSR and present the general operations of PSR formulated
as graphs. Then we discuss some of the crucial aspects in
implementing the protocol. Essentially, PSR builds a Breadth-
First Spanning Tree (BFST) in every node of the network. To
do that, we must address the following challenges:

• Overhead reduction — As a proactive routing protocol,
we must reduce the overhead of PSR. Ideally, we need
to provide each node with abundant routing information
using a communication overhead similar to or smaller
than that of a proactive DV protocol.

• High data transportation performance — Reducing the
communication overhead should not penalize the net-
work’s capability in data communication.

• Loop prevention — PSR should allow intermediate
nodes to modify the paths carried by data packets
according to their updated network structure information.
However, this needs to be handled properly so as to avoid
possible loops.
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A. General operations in PSR

Before we describe the operation of PSR, let us first review
some graph theoretic terms used here. Let us denote the
network as undirected graph G = (V,E), where V is the
set of vertices (or nodes) in the network and E is the set
of edges (or links). Two nodes u and v are connected by
an edge e = (u, v) ∈ E if they are close to each other
and can communicate directly with a given reliability. Given
a node v, we use N(v) to denote its open neighborhood,
i.e., {u ∈ V |(u, v) ∈ E}. Similarly, we use N [v] to denote
its closed neighborhood, i.e., N(v) ∪ {v}. In general, for a
node v, we use Nl(v) (l ≥ 1) to denote the distance-l open
neighborhood of v, i.e., the set of nodes that are exactly l hops
away from v. Similarly, Nl[v] (l ≥ 1) denotes the distance-l
closed neighborhood of v, i.e., the set of nodes that are within
l hops of v. As special cases, N1[v] = N [v], N1(v) = N(v),
N0[v] is v itself, and N0(v) = ∅. Also as a convention in
graph theory, for any S ⊆ V , we use ⟨S⟩ to denote the
subgraph induced by S, i.e., ⟨S⟩ = (S,E′), where E′ is the
set of edges where each element has both endpoints in S. The
readers are suggested to refer to the monograph of West [15]
for other graph theoretic notions and other details.

Generally speaking, PSR is a source routing algorithm in
that every node has a BFST of the entire network rooted
at itself after convergence. To do that, nodes periodically
broadcast network structure information to the best of its
knowledge. Based on what has been collected from its neigh-
bors in the current iteration, a node can expand the scope of
its knowledge about the network structure. This knowledge is
exchanged among all neighboring nodes in the next iteration.
PSR achieves this with the same communication overhead as
proactive distance vector algorithms, such as DSDV, which
is significantly smaller than that of the link state routing
algorithms like OLSR. The operation of PSR is iterative and
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Fig. 1. Add edge

distributed among all nodes in the network. At the beginning,
a node v is only aware of the existence of its neighbors by
listening to their beacons. Therefore, it is able to construct
a BFST rooted at itself within N1(v), i.e., the star graph
centered at v. In each subsequent iteration, nodes exchange
their spanning trees with their neighbors. Specifically, in the
ith iteration (i = 2, 3, 4, . . .), node v does the following:

1) It receives a broadcast message from each of its

neighbors. The message from neighbor uk (k =
1, 2, . . . , |N(v)|) contains the BFST of Ni−1[uk] rooted
at uk. We denote this tree with T i−1

uk
.

2) Node v calculates its own BFST, denoted T i
v , based the

above spanning trees, i.e., T i−1
uk

(k = 1, 2, . . . , |N(v)|)
and T i−1

v . This is essentially done by calculating a
BFST of the union graph

T i−1
v ∪

|N(v)|∪
k=1

T i−1
uk

of all these trees. This is achieved by incrementally
incorporating each tree T i−1

uk
(k = 1, 2, . . . , |N(v)|) to

T i−1
v . Consider the example of node v and its neighbor

uk in Figure 1, T 3
v is depicted in black and T 3

uk
is in

light blue. We use T to denote a temporary tree which is
initially set to T i−1

v . We add each edge of
∪|N(v)|

k=1 T i−1
uk

to T one at a time, denoted by T ′. If T ′ contains a
cycle, we use the following procedure to break it.

a) If the cycle is odd (e.g., adding edge e1 in the
figure), in which case the newly added edge must
connect two vertices of the same distance from v.
Remove this new edge.

b) Otherwise, on the even cycle (e.g., case of adding
e2), we locate the vertex which is the farthest
from v, denoted w. Node w has two paths, p1
and p2, to the vertex that is on the opposite side
of the cycle. In this case, we need to break the
tie by removing one of the two edges during the
cycle that are incident on w. In PSR, we only
use the hop count in the BFST to evaluate the
costs on different routes, so to avoid too much
unnecessary operations. In that case, we can just
keep the original edge in path p1 and remove the
new edge.

After incorporating all edges of
∪|N(v)|

k=1 T i−1
uk

, we have
constructed T i

v , i.e., the BFST of Ni(v) rooted at v.
3) At the end of the period, node v broadcasts T i

v to all
of its neighbors.

Assume that the network diameter, i.e., the maximum pairwise
distance, is D hops. After D iterations of operation, each
node in the network has constructed a BFST of the entire
network rooted at itself. This information can be used for
any source routing protocol. The amount of information that
each node broadcasts in an iteration is bounded by O(|V |)
and the algorithm converges in at most D iterations.

B. Implementation

The implementation of PSR has to address a fairly large
number of issues. Due to the limited space, we highlight those
related to overhead reduction, notification of unreachable
nodes, and incorporation of neighbors’ trees.

1) Overhead reduction: Two of the primary approaches
that we took to reduce communication overhead include 1) us-
ing compact tree representation in route exchange messages,
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and 2) interleaving less frequent “full-dump” messages with
more frequent “differential” ones.

• Compact tree representation — Here, our goal is to
broadcast the BFST information stored at a node to
its neighbors in a short packet. To do that, we first
convert the general rooted tree into a binary tree of the
same size, say s nodes. Then we serialize the binary
tree using a bit sequence of 34s bits, where the IPv4
is assumed. Specifically, we scan the binary tree layer
by layer. When processing a node, we first include its
IP address in the sequence. In addition, we append two
more bits to indicate if it has a left and/or right child.
For example, the binary tree in Figure 2 is represented
as A10B11C11D10E00F00G11H00I00.

*

+

, -

/. 0

1 2

Fig. 2. Binary Tree

• Full dump and differential updates — If the topology of
the network is relatively stable, broadcasting full BFSTs
frequently would be an overkill. Hence, in PSR, we only
allow each node to broadcast the full tree structure in a
full-dump message once very f cycles. In stead, in every
cycle, a node broadcasts a differential update message
to depict the changes in its locally stored BFST if any.
Since the broadcast messages in wireless networks are
usually unreliable, there is a tradeoff between overhead
reduction and robust dissemination of the trees. In our
experiments, we set f = 3 to strike this balance.
The difference between two BFSTs over the same set of
nodes can be represented by the set of nodes who have
changed parents, i.e., which are essentially a set of edges
connecting to these new parents. Note that these edges
form a forest, we use the above tree representation to
package each tree in the forest. After a node receives a
differential update message from a neighbor, it extracts
the edges and use them to reconstruct the new BFST.
This requires each node to cache an old copy of the
BFST for each of its neighbors.

2) Notification of unreachable nodes: When a node v is
about to transmit its periodical route information, it verifies
if it is still connected to all of its neighbors. That is, if it has
missed the periodic broadcast message from a neighbor during
the previous cycle, the link to this neighbor is considered
to be lost. Then, node v will trigger a repair procedure as
follows. It first removes all broken links from its BFST,

consequently trimming some branches from the tree. Each
trimmed branch is rooted at a lost neighbor, rendering the
nodes in this branch temporarily unreachable. Node v then
incorporates the cached copies of the BFSTs of its neighbors
to repair its own tree. Such a repair procedure may or may not
give node v BFST to all temporarily unreachable nodes, i.e.,
some nodes in the network may still be unreachable according
to the combined knowledge of N(v). Thus, in the event of
differential update, we use a dummy tree rooted at the special
IP address of 255.255.255.255 to represent the changes in
the “set of unreachable nodes”. This being said, full-dump
message always include reachable nodes only, which implies
that all other nodes are implicitly unreachable. Upon receiving
the route message from a neighbor, node v needs to update
the cached set of unreachable nodes for the neighbor as
well. If these unreachable nodes cannot be reached via other
neighbors of v, they become part of v’s set of unreachable
nodes. The set of unreachable nodes from v, whether detected
by v itself or informed by a neighbor, will be used when
incorporating a neighbor’s tree at a later time.

3) Incorporation of neighbors’ trees: The description of
PSR’s general idea earlier in this section covers the case
of growing the spanning trees of a node. After the BFST
has been constructed and during the network’s subsequent
operation, when a node v has received a route update from
a neighbor u, it incorporates this new information differently
based on the following cases for each destination d.

1) If the neighbor u indicates that node d, which is
considered unreachable previously by v, is reachable
again, the augmentation of v’s spanning tree is similar
to growing the tree.

2) If the neighbor u indicates that d has a shorter distance
than what node v is aware of, v adopts this neighbor as
the next hop to reach this destination node unless there
is a loop.

3) If the neighbor u indicates that d has a longer distance
instead, and if node v considers u as the next hop
to reach d, node v first adopts u’s suggestion. Then
it query the cached trees for all other neighbors. If
any neighbor yields a better route to d, v’s BFST is
modified, i.e., using that neighbor as next hop for d.

IV. PERFORMANCE EVALUATION

We study the performance of PSR by running computer
simulation using Network Simulator ns-2 (version 2.34). We
compare the results with those from OLSR and DSDV with
varying network densities and node mobility rates as they both
are widely adopted proactive routing protocols in MANETs
and their characteristics are well understood by the research
community. We observe that the overhead of PSR is only a
fraction of OLSR and DSDV, however, it achieves similar
performance in transporting TCP and UDP data flows when
compared with the other two protocols.
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A. Experiment settings

To model node mobility, we adopt the random waypoint
model to generate the simulation scenarios. In this model,
each node moves towards a series of target positions. The
rate of velocity for each move is uniformly selected from
[0, vmax]. Once it has reached a target position, it may pause
for a specific amount of time before moving towards the next
position. In our tests, we have two series of mobile scenarios
using this mobility model. The first series of scenarios have
a fixed vmax, a fixed number of nodes, but with a varying
network dimension. The second series have the same network
size and dimension, but with a varying vmax. A total of 50
nodes are deployed in different network dimensions to achieve
varying node densities. The simulation time is 500 seconds
for all scenarios. We set the data rate at the link layer to 2
Mbps.

We apply TCP and UDP flows separately to the network
scenarios. Specifically, both TCP and UDP segments have a
payload of 512 bytes. The UDP flows are generated by CBR
sources at the rate of 1 pkt/s, and TCP flows are generated
by FTP agents. When comparing these protocols, we record
1) their routing overhead, 2) UDP Packet Delivery Ratio
(PDR), and 3) TCP throughput. All of these measurements
are compared for varying node densities and mobility velocity
rates.

B. Peformance analysis

We measure and compare the total communication over-
head (bytes/node/second) of PSR, OLSR, and DSDV versus
varying node area density (Figure 3) and varying node rate
of velocity (Figure 4). We observe that PSR has only a
very small fraction of the overhead of OLSR and DSDV.
In addition, its overhead is insensitive to node density and
node velocity change. In contrast, both OLSR and DSDV’s
overhead increase with the node mobility. Note that OLSR’s
overhead is less when the node density is either fairly low or
fairly high because the Multi-Point Relay (MPR) mechanism
becomes very effective in dense networks. We then inves-
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Fig. 3. The overhead vs. network density

tigate and compare the TCP throughput of these protocols
for the two scenarios. We can see that the TCP throughput
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performance of all three protocols is little affected by the
node density which is mostly in the range of 400 to 600
kbps as shown in Figure 5. The similar result is observed
for the other scenario where node velocity is varying, but the
variance is slightly larger, as shown in Figure 6. Note that,
for each simulation scenario, we run PSR, OLSR, and DSDV
separately and measure their performance; hence there is a
high correlation in TCP throughput among these protocols.
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We also study the UDP packet delivery ratio of PSR, OLSR,
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and DSDV under these two scenarios. Again, their relative
performance is very similar. As shown in Figure 7 and 8,
the PDR increases with the network density. This is because
of two reasons: first, the number of available paths increases
with the average number of neighbors of a node; second, the
average length of paths decreases with the density. In contrast,
the UDP PDR drops gradually as the node velocity increases,
rendering all these protocols not as effective in capturing the
network topology changes.
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V. CONCLUDING REMARKS

This work was motivated by the need of providing source
routing to support opportunistic data forwarding in MANETs.
In order to provide responsive data transfer capability in
such networks, a proactive source routing protocol is highly
preferred. Despite that the array of optimization techniques
employed by OLSR, its overhead remains high in the presence
of the constrained communication resources in MANETs.
Thus, we set forth to design PSR, which can provide nodes
with the cost of network structure information for source
routing at a communication overhead similar to or even less
than a proactive distance vector routing protocol. In PSR,
nodes maintain and exchange BFSTs periodically. The full-
dump message containing the entire spanning tree is of the

size O(|N |), which is in fact much less frequently broadcast
than a compact differential updates. While achieving these
objectives, PSR yields the same transportation capability as
the more expensive protocols like OLSR and DSDV.

Our future research includes further improving the perfor-
mance of PSR in the way that a data packet is not dropped
immediately after the link layer reports a transmission error.
Instead, the intermediate node can choose to recover it by
conducting some sort of quick local repair. The goal is that
by increasing the persistence in forwarding a packet, both
UDP PDR and TCP throughput will be increased.
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