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a b s t r a c t

Indoor localization using mobile devices such as smartphones remains a challenging problem as GPS (Global

Positioning System) does not work inside buildings and the accuracy of other localization techniques typically

comes at the expense of additional infrastructure or cumbersome war-driving. For such environments, we

propose a localization scheme which uses motion information from the smartphone’s accelerometer, mag-

netometer, and gyroscope sensors to detect steps and estimate direction changes. At the same time, we use a

Wi-Fi based fingerprinting technique for independent position estimation. These measurements along with

an internal representation of the environment are combined using a Bayesian filter. This system will allow us

to reduce the amount of training required and work in sparse Wi-Fi environments. We test our approach in

two real-world environments to show the benefits of incorporating user motion for indoor localization.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In the past, most of the attention was given to Location Based Ser-

vices (LBS) in outdoor environments as GPS played the dominant role

in localization. Recently, we are seeing a paradigm shift in the mo-

bile applications market, where indoor LBS is being considered the

new frontier. Due to the increasing number of mega size multi-level

constructions like airports, shopping malls, universities and other fa-

cilities, people tend to spend more time indoors. Research shows that

people only spend 10–20% of their time outdoors [1] and more than

70% calls originate from indoors which indicates great potential for

indoor LBS.

The proliferation of smartphones is motivating researchers to look

at other ways for more reliable and energy efficient indoor posi-

tioning of users which have a reasonable tradeoff between accuracy,

reliability, cost, and scalability. To minimize deployment and infras-

tructure costs, different technologies are being explored. Indoor po-

sitioning is challenging as GPS may not work inside buildings so most

common solutions take advantages of existing RF (Radio Frequency)

infrastructures like Wi-Fi access pointa (AP) and cellular base sta-

tions. There are several ways in which RF signals can be used for

positioning. It is not easy to model the radio propagation in indoor

environments because of diffraction, scattering, shading, severe mul-

tipath, low probability for availability of line-of-sight (LOS) path, and

specific site parameters such as floor layout, moving objects, and nu-

merous reflecting surfaces. There is no single good model for an in-

door radio multipath characteristic so far. Different techniques have
∗ Corresponding author. Tel.: +1 6137162997.
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ifferent advantages and disadvantages. Hence, using more than one

ype of positioning algorithm at the same time may yield better per-

ormance. There are different triangulation, proximity or fingerprint-

ng based algorithms available which deal with the indoor position-

ng problem in various ways.

On the other hand in robotics, inertial sensors, laser range-finders,

nd computer vision are used to provide accurate localization with-

ut the requirement of fixed infrastructure. Mobile devices, such as

martphones and music players, have recently begun to incorporate

powerful yet diverse set of sensors. These sensors include GPS re-

eivers, microphones, cameras, proximity sensors, magnetometers,

emperature sensors, accelerometers, and gyroscopes. In the future,

ther sensors like altimeters, barometers, etc., may be included into

hese devices. Inertial measurement units (IMUs) like accelerom-

ters and gyroscopes are being embedded in most of the latest

martphones. Accelerometers measure 3D linear accelerations of the

evice whereas gyroscopes give angular velocities. Most modern

martphones also include a magnetometer for raw magnetic readings

nd heading information. Using these sensors one can estimate the

ser’s motion and characterize their activity as, for example, walking,

tanding, jumping, running etc. User motion can then also be used to

eep track of position via dead reckoning.

Problems arise when using RF based positioning schemes in en-

ironments where RF signals are sporadic or sparsely deployed. Due

o the placement of APs (Access Points) and cell towers, there might

e areas where RF signals are not available. Similarly there may be

isruption in the RF signals due to limits on radio range, energy re-

ources, and other sources of noise. In such environments, it is better

o incorporate additional information from IMUs for localization with

pportunistic RF based position correction.

http://dx.doi.org/10.1016/j.comcom.2015.09.002
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mailto:wasiq.waqar@mun.ca
http://dx.doi.org/10.1016/j.comcom.2015.09.002
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Fig. 1. Block diagram of the proposed system.
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Our main contributions to address the above challenges are sum-

arized as follows:

• We identify an opportunity to use sensor-based dead-

reckoning and opportunistic Wi-Fi positioning for localization

using smartphones in areas where there is sparse Wi-Fi cover-

age. Our approach does not require the installation of additional

infrastructure.

• We developed and used an iOS app on the Apple iPhone 4 to

evaluate our technique. This app was tested in the tunnels of

Memorial University of Newfoundland which have very lim-

ited Wi-Fi coverage.

The subsequent sections expand on each of these contributions,

eginning with a short related research overview followed by our

roposed idea, evaluation, and conclusion.

. Related work

Smartphone accelerometers have been used in some mobile local-

zation schemes in an assistive or collaborative manner. In Surround-

ense [9], they are used as one of the parameters for the fingerprint,

hereas CompAcc [2] uses them to count the number of steps taken

o estimate the distance travelled by a pedestrian.

In [11] the authors gave a novel particle filtering based scheme

or indoor positioning which does not rely on any infrastruction and

ses only the sensors from the smartphones. But their system is not

tand alone as their design requires a centralized system. In [6] the

uthors dont rely on any Wi-Fi but depend on a more accurate step

ounter and turn detections for position accuracy. However in build-

ngs where multiple floors have the same layout, this scheme might

ail and some kinds of auto correction measure has to be taken. In

ther work [3,5,10,12], researchers have used accelerometer data to

etect human activities such as walking, standing, climbing stairs,

ogging, etc. A short overview of related work is covered in [14].

. System architecture

In probabilistic robotics, a belief is the internal knowledge of the

obot or a system about the state of the world. In our case state means

he location of the subject in our environment. States cannot be mea-

ured directly, but we can represent and estimate the probability that

he system lies in each possible state. We use the term belief to refer to

he conditional probability distribution over all possible states. This

istribution assigns a probability to each possible hypothesis with re-

ards to the true state. State xt is generated stochastically from state

t−1 meaning that the belief at time t is calculated from its past be-

ief at time t − 1. The most general algorithm for calculating beliefs is

iven by the Bayes Filter algorithm. Algorithm 1 depicts Bayes Filter

hich is a recursive Bayesian state estimation technique utilized in

obile robotics and other applications [13].

Algorithm 1: The general algorithm for Bayes Filtering.

Input: ut , zt , bel(xt−1)

1: for all xt do

2: bel(xt) = ∫
p(xt |ut , xt−1)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt |xt)bel(xt)
4: end for

Output: bel(xt)

This algorithm is recursively applied at every iteration when be-

ief bel(xt) needs to be calculated from bel(xt−1). Bayes filter pos-

esses two essential steps. In Line 2, it processes the control ut. It

oes so by calculating a belief over the state xt based on the prior
elief over state xt and the control ut. ut in our case is the motion cap-

ured from the motion model. This step of the algorithm is also called

rediction [13].

The second step of Bayes filter is called the measurement update.

n line 3, the Bayes filter algorithm multiplies the belief bel(xt) by the

robability that measurement zt may have been observed. It does so

or each hypothetical posterior state xt. To compute the posterior be-

ief recursively, the algorithm requires an initial belief bel(x0) at time

= 0. If we are ignorant about the initial condition we can initialize

sing the uniform distribution.

.1. Design overview

Fig. 1 shows the block diagram of our proposed system. In our lo-

alization scheme we divided our map into a grid. The center of these

rid cells are referred to as anchor points which have known physical

oordinates (x, y). The grid space between two anchor positions de-

ermines the resolution or granularity of the positioning system. The

ystem state variable xt indicates the anchor point that is closest to

he current position. The initial belief of the system is assumed to be

niform as the system will not know where the user is positioned.

he on-board magnetometer is noisier compared to gyroscope when

iving heading estimation [15]. Therefore, we only use the magne-

ometer to initialize the orientation of the user and calibrate the gy-

oscope. This is one of the assumptions of our system that we ask the

ser to face one of the corridors (potential path where the user can

alk). After this initialization/calibration process we keep track of the

eading using the gyroscope. We use the step counter [15] to estimate

he distance travelled and the gyroscope to estimate the direction in

hich this distance is travelled. As shown in Fig. 1, accelerometers

re used to detect the steps taken.

.2. Motion model

Using a step counter and gyroscope one can estimate the user’s

ecent trajectory and then predict bel(xt). Step detection is the auto-

atic determination of the moments in time at which footsteps oc-

ur. If one wants to use accelerometer data to detect just the instant
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Fig. 2. Block Diagram of the Wi-Fi Rank based fingerprinting.

s

d

s

i

r

f

t

w

l

l

b

r

e

m

m

p

t

p

t

m

S

D

p

m

t

p

b

e

s

F

c

b

i

o

F

s

i

a

i

motion of the device, one needs to be able to isolate sudden changes

in the movement from the constant effect of gravity.

Peak detection is a method which calculates the steps from the 3-

axis accelerometer readings. A threshold value can be used to detect

a peak. If changes in acceleration are too small, the step counter will

discard them. The step counter can work well using this algorithm,

but sometimes it can be over sensitive. The algorithm that we chose

for our step counter is inspired by an analog pedometer [17]. The al-

gorithm used for our step counter using mobile phone accelerometer

is available in [15]. There are several other algorithms available for

step counters but most of them are primarily for accelerometers at-

tached to the foot, hip or other body part.

The iPhone 4 has a 3-axis gyroscope which can measure angular

velocities about the axes. The Core Motion Framework of the Apple

iOS SDK also provides us access to built in functions which manage

and keep track of the device’s attitude after the application starts.

Rotation around the z-axis is called yaw and at the start of the ap-

plication it is calibrated with the initial stable magnetic heading. The

comparison and performance of estimating direction with gyroscope

compared with magnetometer is discussed in [15].

3.2.1. Belief update strategies

To study our motion model, a set of anchor points is maintained

and the probability distribution over this set is represented by bel(xt).

Figs. 11 and 12 show the test environments and the positions of all

anchor points.

In the time interval [t − 1, t] the user advances from position xt−1

to position xt. The step counter and gyroscope report back the rela-

tive change in position (xrel, yrel). As we know the initial heading and

current heading of the user, we can determine the user’s direction of

travel. So from the last position and the new position we can deter-

mine xrel and yrel which are distances travelled in the x-direction and

the y−direction with respect to our map.

xrel = α cos (θ + β) (1)

yrel = α sin (θ + β) (2)

where θ is the initial orientation of the device during initialization, β
is the yaw of the device and α is the step length.

The corresponding relative motion parameters (x∗, y∗) for the

given poses xt−1 and xt are calculated in lines 1 and 2. These basically

come from the known positions in the map. The function norm(a, b)

implements an error distribution over a with zero mean and stan-

dard deviation of b which was empirically chosen as 4m. The motion

model is used as step 2 in our Bayes filter implementation.

3.3. Wi-Fi fingerprinting

In classic fingerprinting algorithms, vectors of Received Signal

Strength (RSS) measured in online phase and offline phase are di-

rectly compared to each other. The nearest neighbor method sim-

ply calculates the Euclidean distance in signal space between the live

RSS reading and the fingerprint. A major drawback of using this tech-

nique is that different devices, because of their hardware and soft-

ware (sometimes devices of the same make and model), report differ-

ent RSS values which may differ from the RSS stored in the database.

This will degrade the performance of the positioning system. In con-

trast, rank based localization [8] uses only ranks of the RSS values

because the rank information is less sensitive to any bias and scale.

Fig. 2 shows the block diagram of the rank based fingerprinting

algorithm. In this algorithm, first the RSS values measured in the on-

line phase from different APs are first sorted from strongest to weak-

est. Ranks (1, 2, 3, . . . ) are assigned to APs based on the position in

the sorted vector. Rank 1 is given to the strongest AP, meaning with

the highest RSS value. Rank vectors are created from the fingerprints
tored in the database. Ranks are assigned based on the MAC ad-

ress and rank of AP in the online phase. Then this vector is also

orted strongest to weakest keeping the rank assigned to them. In

deal cases, the sorted ranked vector from online phase and sorted

anked vector from offline phase will be identical hence showing per-

ect similarity.

In case an AP which was in the online phase was not found in

he database, the rank vector created from the database is padded

ith 0, to achieve the same length as the rank vector from the on-

ine. Other techniques, including via Gaussian kernel [4] which calcu-

ates the likelihood of an anchor point using the RSS value similarity

etween two vectors, also face the dimension mismatch problem. In

eal indoor environments the dimension of the fingerprints of differ-

nt anchor points vary considerably. If simple likelihood calculation

echanism (e.g., Euclidean distance or cosine similarity) is used, mis-

atching could lead to large positioning errors.

Spearman’s footrule distance measures total elementwise dis-

lacement between two vectors. It is similar to the Manhattan dis-

ance for quantitative variables. According to [7] Spearman’s footrule

erform the best amongst other similarity measures. Assuming uk is

he rank of the kth element in vector U, vk is the rank of the kth ele-

ent in vector V and n is the number of elements in vectors U and V,

pearman’s footrule distance can be computed as follows:

s =
n∑

k=1

|uk − vk|.

The similarity measure above return the scores for every anchor

oint. The anchor point with the lowest score is considered the best

atch. Ideally using k smallest reference points to calculate the es-

imated position yields a better result. The author In [7] proposed a

-center problem to estimate the final position estimate. In the rank

ased technique the distribution of scores will differ because of sev-

ral reasons. The number of APs visible in the querying scan and po-

ition where the scan was done affects the distribution of the scores.

or instance if the scan is done at a corner where 20 APs are visible

ompared to another location where only 5 APs are visible, the distri-

ution of scores will differ a lot. The random test on 13 anchor points

n the Engineering Building was done. It was noted that the accuracy

f the position estimate was independent from the score distribution.

ig. 3 shows the maximum and minimum score distribution and Fig. 4

hows the normalized entropy of the score distribution. As the user

nitiates the application, the belief is uniformly distributed. Entropy is

measure of the uncertainty associated with a random variable and

s also referred to as the expected value of the information contained
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Fig. 3. The minimum and maximum scores at different anchor points.

Fig. 4. After normalizing the scores, entropy is calculated.
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n a message, which in our case is the belief. At position 5 to 9 the ac-

uracy was under 8 m whereas 1–4 and 10–13 the error was greater

hen 8 m. The best match at positions 6 and 8 were estimated the

orrect position but both the entropy and min-max distribution does

ot infer a trend. The distribution of scores tells us that our certainty

f our position estimate is not dependent on the score distribution.

ence we used a different approach to use Wi-Fi for position correc-

ion. We assign weights w1, w2, and w3 to the best 3 matched anchor

oints only if they are all within 2 hop neighbors to each other. Other-

ise we ignore the Wi-Fi scan. It means that when the Wi-Fi localiza-

ion module estimates the best 3 matches, the weights are assigned

nly if each anchor point is at least 2-anchor point distance to any of

he other two. For our experiments we assign 0.4, 0.3 and 0.2 weight

o the three best matched positions.

. Performance evaluation

We will explain our experimental methodology, settings, scenar-

os, and results in this section. Our main experimental goal is to mea-

ure the benefit of using motion information to track and position the

ser in an indoor environment.

.1. Methodology

The system evaluation contains multiple phases. The first phase is

o test the performance of our step counter which is a major part of

ur motion model. After checking the accuracy we can determine if

t is good enough to be used in our motion model. The accuracy and

recision of our motion model is then tested in two different indoor

nvironments.

The second phase is the evaluation of our measurement model.

y analyzing the performance metrics, we can determine if it can be
sed for opportunistic measurement update. Furthermore, it is im-

ortant to test our system in an environment which has sparse Wi-Fi

overage. Next, we explore the benefit of using motion for localization

nd tracking and analyse the advantages of using rank based Wi-Fi in

parsely distributed Wi-Fi environment. We measure the benefit in

he following aspects:

• System performance

Hypothesis 1: The system accuracy and precision of motion assisted

indoor positioning is better than other localization systems in sparse

Wi-Fi environment. Most of the current indoor technologies used

are essentially Wi-Fi only. Their performance is related to very la-

borious training of the environment. Our system’s motion model

should be able to accurately position and track a user walking in

an indoor environment. The turns in the environment are help-

ful in shortlisting the user’s possible positions. Although the error

while walking in the same direction accumulates, turning into an-

other corridor should reduce this error. We argue that using the

motion model alone is sufficient for short-term user tracking. Wi-

Fi based corrections are beneficial, especially in sparse Wi-Fi envi-

ronments where there are only a few APs. Our system will require

only few Wi-Fi training points in these environments and would

perform much better than other Wi-Fi dependent indoor localiza-

tion schemes.

• Cost

Hypothesis 2: The system training and maintenance cost can be re-

duced. The system training effort is reduced in a sparse Wi-Fi en-

vironment as fewer survey points are needed for data collection.

The motion model does not need any training. More importantly,

if the environment has unique features in terms of corridor layout

and number of turns, the system will require fewer Wi-Fi land-

marks and can be more dependent on the motion model alone.

When the indoor environment changes (e.g., Wi-Fi infrastructure

or environment layout alteration), the RSSI fingerprints database

has to be updated or even re-generated from scratch in order to

adapt to such changes. If the number of such survey points are

fewer the cost to update will be lower compared to other Wi-Fi

based systems.

• Scalability

Hypothesis 3: The system can work in different indoor environ-

ments. The system is scalable as it can be quickly adapted to any

environment, both with dense Wi-Fi and with limited Wi-Fi cov-

erage. Only environment maps are needed with internal repre-

sentation of possible user position points. Moreover the resolu-

tion of the grids can also vary and the accuracy would not directly

depend on the grid resolution. As accuracy depends more on the

stepcounter rather than how dense the grid is.

• Robustness

Hypothesis 4: The system can recover from false position estimates.

Unusual movement of the user may confuse the system. For ex-

ample, if the user is walking in a circle, it is possible the system

might become more uncertain about its position. We argue that

our system over time can recover from this uncertainty.

.2. Experimental settings

Experiments and evaluations of our motion model, measurement

odel and hybrid localization scheme were carried out in two con-

rasting environments at Memorial University. The first was part of

he 2nd floor of the Engineering Building. The space was divided into

grid using a 3 × 3 m cell size. 42 positions were selected within

he hallways for the anchor points. 33 of these anchor points were

urveyed for Wi-Fi data and a fingerprint was created for each an-

hor points. The survey points are those anchor points where Wi-Fi

raining was done and we have a Wi-Fi fingerprint available. The an-

hor points are possible locations the user can be in the environment.
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Fig. 5. Map of the Engineering Building. Green triangles are the anchor points where

data has been collected and the system has fingerprints for those locations. Red circles

are untrained areas.

Fig. 6. Map of part of the university tunnel. Green triangles are the points where Wi-Fi

is sporadically available and red discs are positions where no Wi-Fi is available. Finger-

prints for locations with green triangles are available.

Fig. 7. Number of steps detected when walked 500 steps .

Fig. 8. Magnetic heading readings when walking from a center of a corridor to the

intersection of corridors in the Engineering Building. .
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The distance between two anchor points is nearly 6 steps (3.5 m), so

belief is chosen to be updated after every 6 steps in this environment.

Fig. 5 shows the map of the Engineering Building field test environ-

ment.

The second environment is the Tunnel system which connects dif-

ferent buildings of the university. There is no Wi-Fi coverage provided

for the tunnels. Fig. 6 shows the map of the tunnel system. The only

Wi-Fi signals available are at entrance positions. Hence the areas of

Wi-Fi AP visibility is very limited and also sporadic in nature. The

Engineering Building has more sharp turns, whereas the tunnel has

smaller turns. The distance between two anchor points here is 5.5 m.

Therefore the belief update happens after every 9 steps. Most of the

commercial pedometers choose step length as 0.413 × h, where h

is the height of the user. In our experiments step length is kept at

0.69 m.

The major assumptions for our experiments are as follows

• The user is always located in the areas for which the anchor points

are defined in the system.

• The device is always pointing in the direction of the user’s motion.

• The user walks close to the corridor’s center.

4.3. Motion model evaluation

The step counter was evaluated by two different users by walk-

ing 500 steps holding the device in the hand. The experiment was

repeated 3 times by walking the same path. Fig. 7 shows the accuracy

of the step counter. Intuitively it can be seen that the step detection

depends a lot on human gait. Apart from this it also depends on how

a user is holding the device. Some users tend to hold the device in

a more stable manner while others sway their hands while walking.

But this problem can be solved by multiplying a user specific scal-

ing factor to the threshold of step detection. The accuracy of the step
ounter was comparable to other commercial step counters available

n Apple’s app store. Therefore it was considered reliable enough to

se in our motion model.

Fig. 9 shows the magnetic map of the environment to show more

eviations near the corners compared to the middle of the corridors.

hen the application starts, the gyroscope has to be initialized to

he orientation of the user in the environment using magnetometer.

he magnetometer is noisy, a small experiment was done to see the

tability of the magnetic heading readings in the environment. It has

een noted that there is greater magnetic instability and interference

n the corners and intersections. The standard deviation of magnetic

eadings in the major parts of the corridors is 9 degrees whereas it

s 21 degrees near or at the corners. In order to correctly identify the

nitial orientation, we set a check that in the initialization phase if the

agnetic readings have a standard deviation more than 12 degrees.

f so the initialization process is repeated. Fig. 8 shows the heading

eadings when approaching an intersection. The horizontal axis de-

cribes the time in seconds.

In order to test the motion model the user walked in the corridors

f the Engineering Building. Although in this experiment the Wi-Fi

ntegration was disabled but only those anchor points were consid-

red in which we had Wi-Fi fingerprints available. To denote the true

osition of the user in the map a small human figure marker is used

o show the true location and also the direction of walking. As the

pplication starts the algorithm first calibrates for the heading of the

evice using the magnetometer. Once the calibration is done, the

yroscope keeps track of the orientation of the user while walking.

he circles in the screenshots in Fig. 10 show the belief distribution

f the system. The anchor point with the highest probability will
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Fig. 9. Magnetic map of Engineering Building.

Fig. 10. Screenshots of motion model in Engineering Building.
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Fig. 11. Screenshots of motion model in Engineering Building continued from Fig. 10.
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how the biggest circle and all the remaining anchor points will have

ircle sizes relative to it as the probabilities are normalized before

elief distribution is shown to the screen. This way it is easier to

isualize how the belief distribution is shifting and converging. It can

e observed from Fig. 10a that all circles are of equal size as in the

eginning the belief is uniformly distributed. From Fig. 10.b it can be

bserved that during the application start-up the initial orientation

as been detected as towards the right (East) with respect to the

ap, hence the probability distribution shifts towards those corri-

ors which have a pathway towards East. Fig. 10(c–f) shows how the
robability distribution shifts along the direction where the user is

alking. Although at this point the algorithm is uncertain where the

ser is positioned. However, it can keep track if the user turns back

nd starts moving in the opposite direction.

The user keeps walking towards the end of the corridor and turns

ight. Fig. 11a shows that the probability suddenly converges to one

f the anchor points near the corner. This happens because the algo-

ithm detects that the user has taken a right turn. So that anchor point

ill have a higher probability to be the true position which will have

he same relative motion from a neighboring anchor point. Fig. 11b

hows that user is tracked as the probability shifts in the same way as

he movement of the user. In Fig. 11c two corner anchor points have

lmost equal probability as the belief was updated during the turn.

he belief is updated every 6 steps taken by the user. This update

requency was chosen to correspond with the distance between two

nchor points. The user then turns back start walking the same path

he user came from. Fig. 10(d–f) shows that the belief of the system

hifts correctly with the motion of the user.

In a similar experiment, we also considered other anchor points

n the area which were depicted as red circles in Fig. 5. These an-

hor points do not have fingerprints as no Wi-Fi data was collected at

hese points. Other Wi-Fi only based solutions would not work very

ell in these conditions. Luo et al. [7] did experiments under same

onditions. Their error increased from 2 to 9 m when they moved

rom trained area to untrained area. Fig. 12(a–f) and Fig. 13(a–f) de-

icts the screenshots of the positioning application when it walks in

he untrained area.
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Fig. 12. Screenshots of motion model in Engineering Building in unmapped regions.

Fig. 13. Screenshots of motion model in Engineering Building in unmapped regions

continued from Fig. 12.

Fig. 14. (a) Motion model heat map at Engineering Building with dense Wi-Fi cover-

age. Black annotations describing actual user position. (b) Entropy in the Engineering

Building .
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4.4. Entropy of belief

In another experiment the user was asked to walk in the corridor

with our localization app in the trained areas of Engineering Building.

Fig. 14a shows the heat map of the probability distribution over time.

The x-axis describe the ith update of belief. The position IDs are listed

on y-axis where the color intensity shows the probability of being

at each location. The belief at x36, x64 and x88 are examples where
he position correction happens due to turning. Overall it can be seen

hat the position is tracked pretty well along the path of the user.

rom belief update x112 to x128 the user changed his direction of

alking after a few steps a couple of times creating a to-and-fro user

rail. It can be observed in the heat map that the uncertainty starts to

ncrease as the probability distribution spreads out. Thus, a malicious

ehavior by the user in terms of walking in circles and moving to-

nd-fro in the corridor over short distances might confuse the belief

ystem.

Fig. 14b shows the entropy of the same heat map. At x5 the en-

ropy falls greatly due to a turn. Initially the probability was uniform

o the entropy was maximum but as soon as the user turned the be-

ief became more certain due to the recognition of a corner. Every

ime the user turns a corner, the uncertainty decreases and we can

ee a drop in entropy. After x112 the entropy increases, showing the

onfusion caused by user motion.

.5. Rank based Wi-Fi measurement model

Our Wi-Fi localization scheme returns similarity scores between

he current measurement and every anchor point which has been

urveyed for stored Wi-Fi data. The lowest score is considered the

est match. To test the rank based fingerprinting technique we as-

umed that the best match anchor point is the estimated position.

e tested this in our Engineering Building at each anchor point. The

rror was recorded by logging the distance between the ground truth

nd the estimated output position. Fig. 15 shows the cumulative error

istribution. The mean error was about 4.1 m. We compared our sys-

em with the Wi-Fi based localization scheme by Luo et al. [7] which

ses a different fingerprinting approach for localization. They employ

he Gaussian kernel, which is commonly used to calculate the likeli-

ood between an RSSI fingerprint in system anchors and the live RSSI

easurement to generate likelihood candidates. The top-k candidates
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Fig. 15. Cumulative error distribution of the rank based fingerprinting in Engineering

building.

Fig. 16. Recovering from an erroneous position estimate due to motion model.

a

p

u

B

i

v

A

r

w

a

b

b

F

s

o

w

4

e

Fig. 17. Heatmap of motion model in the tunnel.

Fig. 18. Entropy in the tunnel.
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re then used to determine a final position using the vertex p-centers

roblem.

Fig. 16 describes a situation in which the Wi-Fi measurement was

pdated to a wrong location. This test was done in the Engineering

uilding, where the Wi-Fi APs are denser and the Wi-Fi environment

s not sparse, meaning that at most of the locations, similar APs are

isible. As in our Wi-Fi positioning module we create a rank of the

Ps visible to compare it with a fingerprint, due to fluctuations of the

adio signals it is possible that it updates and positions the user at a

rong location. Similarly, there can be a scenario in which the error

ccumulates over time due to the motion of the user. In Fig. 16a, it can

e seen that, the user is present near the middle of the North corridor

ut the position 16b and Fig. 16c. But after the turn, it again converges.

ig. 16d shows that the motion model would be able to recover in this

ituation. Although in a sparse Wi-Fi environment, where the APs at

ne area are distinct compared to other areas, the error due to Wi-Fi

ill be smaller.

.6. Performance in a sporadic Wi-Fi environment

To test our system in an environment which has sparse Wi-Fi cov-

rage, we chose the university tunnel system which has no Wi-Fi
vailable but sporadic signals are available at the different entrances

f the tunnels from different buildings. Fig. 6 shows the map of one

uch section of the tunnel. This figure shows 16 anchor points from

ne entrance to another. All neighboring anchor points are equally

istant from each other. It is assumed that initially the system does

ot know the user’s true position. Initializing with a Wi-Fi scan can

nitialize user position if the user is in one of the entrance areas.

Fig. 17 shows the heat map of the user’s walk in the tunnel. On

orizontal-axis we have the belief updates and on vertical-axis we

ave the 16 anchor points. We annotated the map with approximate

ctual position of the user to compare the belief distribution with the

ovement of the user. At x0 the belief is uniformly distributed but

rom x0 to x12 we can see that the belief slowly converges. From x12

o x45 the probability distribution is not that scattered and position

stimates are more confident. From x45 to x60 the probability distri-

ution becomes less reliable as the user changes his direction more

requently similar to the test done in Engineering Building. At x60 the

i-Fi measurement update is triggered. At this point it detects P001

s the most likely position. The probability distribution shifts heavily

owards that position as we give higher weight to the anchor points

ith higher Wi-Fi similarity. In the tunnels the Wi-Fi is sporadically

vailable in only P001–P004 and then P015-P016 as described before.

o Wi-Fi is detected in any anchor points between them. Hence when

he Wi-Fi update step is triggered, due to the diversity of visible AP’s

etween these two regions, the position correction has smaller error.

Fig. 8 shows the entropy of the belief in the tunnel. If we com-

are the entropy plotting of Engineering Building and tunnel it can

e observed that the entropy in the tunnel does not drop as much as

ompared to the entropy in the Engineering Building. This is because

he tunnel lacks sharp turns as compared to the Engineering Build-

ng. Although the accuracy from the most probable position estimate

s comparable in both locations the certainty is less because of the

bsence of sharp turns. At x51 to x59 it can be observed that due to

he to-and-fro motion in the same corridor the entropy increases. It

harply decreases again at x60 when Wi-Fi measurement update is

riggered Fig. 18.
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Next, we will consider the hypotheses mentioned in Section 4.1 in

light of our experimental results.

• System performance

Hypothesis 1: The system accuracy and precision of motion as-

sisted indoor positioning is better than other Wi-Fi only localization

systems in sparse Wi-Fi environment. As it can be seen from the

heatmaps of both environments that the system tracks and po-

sitions the user with fairly good accuracy regardless of the den-

sity of Wi-Fi coverage. For our experiments the accuracy in the

Engineering Building was under 4 m whereas in the tunnels it

was around 6 m on average. The best-performing but intensively

trained Horus system [16] has a 0.7 to 4 m average positioning er-

ror using 100 Wi-Fi scans and much smaller grid space (1.52 m

and 2.13 m). Generally for our system a single accuracy figure can

not be given as it depends upon the shape and size of the envi-

ronment. Sharp turns help reduce positioning error estimates and

long corridors accumulate errors. The second factor is the amount

of Wi-Fi landmarks available for position correction.

• Cost

Hypothesis 2: The system training and maintenance cost can be re-

duced. We tested our system in two different environments. One

had dense Wi-Fi coverage and had training data available for all

the anchor points. On the other hand in the tunnel environment,

the Wi-Fi was sporadically available at only 6 locations. No sur-

vey was done for those anchor points which had no Wi-Fi cov-

erage so they were treated as untrained anchor points. As differ-

ent areas in such environments have distinct Wi-Fi visibility, this

can be exploited to our advantage to correct the position only and

rely more on human motion for positioning. In our motion model

evaluation, we observed that in the environment where there are

more turns, the position estimate is better than the environment

with less turns. Turns help the motion model to detect change

in orientation and inherent map matching in the motion model

help to converge the belief. Due to less reliance on Wi-Fi, mi-

nor changes in Wi-Fi infrastructure will have less impact on the

system performance.

• Scalability

Hypothesis 3: The system can work in different indoor environ-

ments. We tested our system in two completely contrasting en-

vironments. One had sharper turns with denser Wi-Fi coverage

and the other had less turns but sparse Wi-Fi environment. The

grid size in both the environment was also different as it was 3 m

in the Engineering Building and 5.5 m in tunnels. This system is

more scalable than other indoor positioning systems as it would

require less training and would even work in sporadic Wi-Fi envi-

ronments where Wi-Fi only systems would fail.

• Robustness

Hypothesis 4: The system can recover from false position estimates.

In both the environments during our field test we confused the

system by walking in to-and-from (Fig. 14b and Fig. 17) fashion to

create more uncertainty in the belief. When triggered Wi-Fi up-

dates remove this ambiguity. If Wi-Fi is updated in the wrong lo-

cation, it can be recovered in two different ways. The first one is

due to the motion model the belief starts to become more un-

certain. It starts to converge again if there is a turn which can

uniquely position it. The second way it can be recovered is when

another Wi-Fi update is triggered. Although Wi-Fi update can be

erroneous too, but there is a chance that the error is reduced.

5. Future work

Wi-Fi based localization technologies are relatively robust and ac-

curate compared to other indoor localization technologies. One of the

main factors for these technologies to be popular is that the infras-

tructure often already exist. The RSSI fingerprinting based schemes
erform better than triangulation based schemes because they do

ot depend on specific signal propagation models. However, the sys-

em performance greatly depends upon the rigorous training process

nd regular system maintenance in the form of regular fingerprint

pdates. These regular fingerprint updates are required if there has

een any changes in the environment in terms of replacing a access

oints or moving furniture etc. In addition to that, these systems do

ot work in areas where Wi-Fi coverage is sparsely distributed.

These shortcomings can disable above mentioned localization

ystems. Moreover, because of high system overhead in terms of

raining data and cost of war-driving, we believe there is a need for

ore efficient and cost effective techniques. We believe that reducing

raining and maintenance cost and increasing the system robustness

re very promising research directions.

In addition, we see that the current generation of smartphones

ave various embedded sensors including motion sensors like ac-

elerometers and gyroscope. Although GPS receivers are present in

ost smartphones, they are of no help indoors. But magnetometers

an be used to detect direction and heading. We recognize the oppor-

unities presented by these sensors to detect human motion and the

ossibility to incorporate this knowledge to help position users in an

ndoor environment. Hence, we would also not rely on any external

nfrastructure except Wi-Fi coverage which is likely to exist in many

nvironments.

In this work, the primary contributions are evaluation of a mo-

ion assisted indoor positioning system for an indoor environment

specially focused on sparse Wi-Fi coverage. We can use ideas from

obotics in which a belief is maintained about the possible position

stimate rather than relying on dead reckoning to output one final

ose estimate. The distance moved by the user is calculated by the

umber of steps taken and then estimating the user trail by calculat-

ng the direction of each step. The user trail is matched with possible

ath signatures from the environment map using the motion model.

he best match yields a higher likelihood for position estimate. Hence

ore distinct features in terms of turns and direction of corridors will

ive us higher accuracy. But in environments with similar corridors

n terms of length and orientation, we will get multiple hypotheses

or the user’s position. In this situation we use Wi-Fi based position

orrection. Our Wi-Fi position estimation techniques uses rank on the

isible APs based on their strengths rather than the actual RSSI values.

his technique has an additional benefit of being device independent

s different manufacturers of networks cards have different standards

or RSSI values but rank information is invariant to any monotonic

ncreasing transformation (bias and scale) [8]. Wi-Fi AP’s is used as

andmarks to update the position belief when it is required by the

ystem to update its position. This can happen after a fixed number

f steps to avoid error accumulation due to the motion model.

One of the major benefits of this system is cost effectiveness. The

nitial training required by doing war-driving and collecting Wi-Fi

ata decreases significantly. Although the tradeoffs between accuracy

nd cost of training will depend on the environment, we can see the

eal benefit in such a system in sparse Wi-Fi coverage area.

Based on these principles we built a prototype mobile application

or the iPhone and conducted experiments to evaluate it. Our exper-

ments showed encouraging results and indicate motion assisted po-

itioning as a viable option for indoor environments. The system is

calable and more cost effective than Wi-Fi only schemes because it

equires less training.
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