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Abstract—Sensor placement of a wireless sensor network beginning. This initial random placement does not usuallg g

has a significant impact on the network performance, such as g good coverage and, thus automated adjustments is ngcessar
sensing coverage, communication costs and connectivity. De--l—his is the post-deployment approach.

pending on the application domains, the deployment method
of sensor networks may vary. In autonomous sensor networks, Research on pre-deployment approach Of_ SEnsors mostly
the deployment is typically realized via cooperative movement takes a centralized approach, because distributed dgusit
among the nodes themselves. In this paper, we propose a sensoare not necessary since a computer program can be run
deployment protocol, LODICO, to optimize the sensor placement on a powerful computer before physical deployment. For

with qrbltrary |n|t|_al positions. In essence, it is a distributed example, in Isler et al. [4], two characteristics of sensor
evolutionary algorithm executed cooperatively among all sensor

nodes via local information exchange. The simulation results show networks, coverage and connectivity, are CQnSIdered in the
that LODICO can provide a very high coverage rate in a short Pre-deployment process. They use computational geometry t
convergence time. deploy sensors and guarantee the coverage. Once the sensors
are deployed, a suitable communication range is calculated
in order to guarantee the network connectivity. Jourdan and
A wireless sensor network consists of a large numbde Weck [5] study the deployment problem using a multi-
of small sensor nodes distributed over an area of interestbjective genetic algorithm. Their goal is to balance two
Such networks are capable of observing and sensing thanflicting objectives, maximizing the network coveragelah
environment and sending the collected data to a data siknimizing the energy consumption in the network. A Pareto
for further processing. Sensors must be deployed befose tHeont is generated after the execution of the algorithm and
can provide useful data. Therefore the deployment of staticproduces a solution set for users to choose from. Hu et
mobile sensors is an important basis for sensor networking.al. [3] considered a hybrid sensor network which consists of
good placement yields a high utilization of network resegrc a mixture of regular small sensors and more powerful micro-
Various techniques have been proposed to optimize senservers. They employed tabu search to decide where the-micro
placement. The primary consideration of node placement servers should be placed so that the lifetime of the network
sensor networks is sensing coverage. It is the area thatecarchn be maximized.
monitored collectively by the sensors in the network. Eperg Post-deployment approach of sensors has been studied us-
conservation is another critical issue in sensor netwgrKiie ing a variety of techniques. Howard et al. [2] described an
energy costs in operating a sensor network include moviimgcremental algorithm which deploys one sensor at a time.
nodes, sensing events in the environment, and transferrtegch sensor node uses the positions of previously deployed
information. The lifetime of a sensor network is limited bynodes to determine its own position. Zou and Chakrabartly [11
the battery capacity of the nodes. In many applications &hgsropose a virtual force based algorithm to enhance the €over
the replacement of power is impossible, minimizing energyge after an initial random deployment. Their algorithm is a
consumption is extremely important during the deploymént aluster-based algorithm, and the clusterheads are rebmns
Sensors. for coordinating the distributed computation. The aldorit
Deployment of sensor networks can be carried out in twemmbines attractive and repulsive forces to determineiafirt
major ways: pre-deployment and post-deployment. The gaabtion paths, and a one-time movement is carried out when
of both approaches is to meet certain critical networkindpe positions of sensors are identified to conserve energggW
objectives, such as maximizing coverage or lifetime. Pret al. [9] focuses on the coverage holes when calculatirggtar
deployment approach calculates or estimates the numbemositions of sensors. They optimize the coverage withinoatsh
positions of the sensors before they are actually deployeid. deploying time and limited movement using three Voronoi
is typically used for static sensors in a known environmerdiagram based deployment protocols, VEC, VOR, and Mini-
In contrast, in some dangerous or unaccessible envirosmeMax. Chellappan et al. [1] propose a flip-based algorithm and
mobile sensors are placed randomly in the network at tbetimize both the coverage and the total number of flips. More

I. INTRODUCTION



recently, it has also been demonstrated that computatiottedrein represents a solution to this subproblem. Only the
intelligence techniques, such as fuzzy logic [8] and swarimdividuals of the same species can mate to produce offgprin

intelligence [10] can be effective in sensor deployment.

Each species evolves for a certain number of generations,

In this paper, we propose LODICO, a localized distributeafter which genetic information is shared among all species
algorithm, to maximize sensor network coverage. The algeia a representative from each species. This period of téne i
rithm facilitates sensors to construct their partial Sohg called anecosystem generatiolsing the most recent genetic
based on local information exchange within neighborhoothformation shared by other species, another ecosysteer-gen
This is a powerful extension of the existing framework of caation can be evolved by all species in parallel. An individua

operative coevolutionary algorithms [7]. The rest of thegra in a

population is evaluated based on the combination of

is organized as follows. We first give a brief background afenotype and the representatives from other species. Fig. 1
evolutionary algorithms in Section Il. Then, in Sectiontlie gives an illustration of the idea. The outer evolutionanryqess
features of LODICO are highlighted, followed by a detaileis terminated when a certain termination condition is met.

description in Section IV. Simulation studies are presgnte
and explained in Section V. Last, we conclude this paper with
discussion on some future research in Section VI.

Il. BRIEF BACKGROUND OF EVOLUTIONARY
ALGORITHMS

An evolutionary algorithm E A) is a search method based
on the idea of the Darwinian principle of survival of the
fittest. It is a powerful optimization technique for finding
a global solution to, typically, extremely complex problem
where finding a solution is very time-consuming. EAs solve
a problem by first generating a large numberirdividuals
each of which represents a candidate solution to the problem
The set of individuals are grouped in opulation An
individual can be represented using various data strugture
which is its genotype. A genotype can contain one or more
chromosomes. This study will use two-chromosome for each
genotype. Usually, a linear structure is employed to re¢emb
the biological chromosome in natural systems. The fitness of
an individual is evaluated by fitness functiorthat takes the
genotype as an input and yields a scalar value. A number
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Fig. 1. A high-level view of CCEA

Ill. FEATURES

of operations can be applied to one or multiple individuals, The proposed sensor deployment protocol, LODICO, has
such ascrossoverand mutation in order to produce modified two important features that identify itself as a localizeg-d
individuals. These modified individuals are calleffspring tributed evolutionary algorithm:

and the original ones arparents A crossover involves ex-
changing the genetic materials in the genotypes of two oemor
parents. A mutation on an individual is a random change in
its genotype with a small probability. An EA is essentially a
iterative reproduction of generations of individuals. Argyat
generation produces a set of offspring, and fitter indivislua
among the parents and offspring are selected to survive for
the next generation. Frequently, the fitness of the popuati
improves as the evolution continues until certain terndmat
conditions are met. See [6] for more details.

Cooperative coevolutionary algorithr@CE A) is a special
evolutionary algorithm proposed in Potter [7]. Unlike the
traditional EA which solves a problem by searching the whole 2)
solution space, CCEA divides the problem into subproblems
and search the subsolution space simultaneously. Since the
subsolution space is smaller, the algorithm may find better
solutions faster. Multiple separate populations are erbat
with their genotypic representations having no functional
overlapping. Each population represents a different sgeci
corresponding to one solution component and an individual

1)

LODICO is a completely localized distributed algorithm
in that it requires each sensor to use and process
information within its neighborhood. This is an essen-
tial requirement of distributed computing because every
node in the system only has a local view of the envi-
ronment. Global broadcasting of messages is possible
but is considered infeasible due to the high computation
overhead in such an environment. Sensor networks have
limited resources and communication should be carried
out locally to reserve energy. LODICO cooperates sensor
nodes for self-deployment through localized information
exchange and distributed evolutionary computing.
LODICO is a powerful extension of the existing CCEA
framework in two important areas. First, the division
of the general problem is flexible and dynamic. That
is, every sensor node is responsible for dividing the
global problem into a subproblem according to the most
current sensor positions. In addition, as the deployment
changes, so does the network structure. As a result, the
division must be redone iteratively. Second, due to the



localized nature of the protocol, each sensor can only

assume the availability of local information within its
proximity. The fitness evaluation during the evolutionary
process must tolerate the missing input from beyond the [excnange curentpostons

neighborhood. This is a salient contrast to the traditional
CCEA, where fitness cannot be calculated without the
information of all other subsolutions. The extended
framework is depicted in Fig. 2.
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Fig. 2. High-level description of the localized distribdt€ CEA
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IV. ALGORITHM DESIGN Fig. 3. LODICO flow chart

LODICO is executed on all sensors of the network in
parallel for a number of iterations until a coverage requiat
is met. In each cycle, a sensor first exchanges its locatfon-in ary algorithm. To do that, it needs to know the positions of
mation with others within its communication range. Using ththe neighboring nodes, i.e., those within its communicatio
information, it prescribes a search space within its pratyim range, and to define a search space centered around itstcurren
in which it will find a target position and move to it at the engposition. The position information of each node is exchange
of the current ecosystem generation cycle. Within the $earifirough a reliable wireless communication channel. Thecbea
space, the sensor executes a local evolutionary algorithmspace of a sensor is a limited scope within which the sensor
calculate the best target position using a fitness calalilagan move in the current cycle.
from local information. Each sensor node then moves to itsThe search space limit is important because excessive
target position once it is calculated. As the network stiets  moving in a single cycle can make it hard for the algorithm
altered, LODICO starts the next cycle by exchanging pasitido find good sensor locations. The reason is that sensors
information within neighborhoods. We make the followinghould cooperate with each other when positioning them-

assumptions: selves. A target position is calculated using the latesttipos
« Each sensor knows its own location. information within a neighborhood, so a drastic alteration
« An sufficient number of sensors are deployed so that thef the neighborhood structure can invalidate the previous
can fully cover the entire area. computation. In this work, we define the search space of a
« Each sensor has a sensing ranffg, a communication Sensor to be equal to its sensing region, i.e. the circle of
range,R., and R, > 3R,. radius R, centered at the node itself. Under the assumption

The LODICO algorithm consists of 3 major steps: planninghat fic > 3R, the search space limit ok, ensures that
computing, and moving. We explain each step in the followin§j€ néw coverage at a target position will not overlap with
sub-sections and the general flow of LODICO is given iH1at of any node beyond its communication rangg, This is

Fig. 3. important for the fitness evaluation described in SectioB!V
) The idea can be illustrated by the diagram in Fig. 4. Suppose
A. Planning nodea has a communication range. = 3R,. Centered at

At the beginning of the cycle, a sensor determines a patrtitidself are these concentric circles of radii, 2R, and 3R,
of the entire deployment region to execute its local evohuti denoted byC,, C3, and Cs, respectively. The search space



limit restricts nodea’s move within Cy, which implies that arithmetic crossover, where the location value of an ofifgpr
its new coverage will be restricted t@,. For a non-neighbor is the mid-point of the gene values of its parents.

nodebd, which is out ofCj, its coverage will not overlap with
the new coverage of node, no matter where it moves to
within the range of its search space.

Xp | Y1 | X2 | Y2 | X3 | Y3

R N N N

Fig. 5. The 2-chromosome genotype representation

The fitness of an individual is determined by the total cov-
erage area induced by the new position and the total distance
to travel to the new position. The goal is to find a target
Fig. 4. Analysis of potential movement and overlaps position with good coverage without excessive movement for
energy conservation. And this should be evaluated using onl
local information. Assume that the sensing region of node
i1is A; (1 = 1,2,...,n), each of which is a subset of the
entire deployment ared, i.e. the universe. For a given node,

Each sensor executes an instance of a local EA to compgifty the sensing areas of its neighbors can be considered.
where it will move to at the end of the CyCle. The local EN—O do that, we use the second chromosome in the genotype
maintains a set of individuals?, each of which correspondsto filter the global information. LetH = (hy, hs, ..., k)
to a positioning solution of the network. Here, an indiviluge the second chromosome of the sensor node. We define a
encodes its own position and those of its neighbors. Taaeiti companion vecto# = (i1, ks, . . . , hy), Whereh; € {0, U},
these individuals, the sensor generate$ random positions for each’. Specifically,h; = U if h; € {1,x} andh; = 0
uniformly distributed in its search space. Each positidon@ if ,, = 0. Thus, the coverage unioned over a neighborhood of
with those of the neighbors, is included in the genotype of &gnsors is
individual. Among these individuals, th€)| fittest are selected L
as parents, denoted ki, to reproduce the same number of U (hl N Ai)
offspring @’. Out of P U @', the|P| fittest individuals survive =1
and are carried over to the next generation. This local Bfor an individual represented ¢ and { A;}? , which is of
continues fork generations to determine the target positiodistanced away from the current position, its fitness is
of the sensors, wherk is a small integer as part of the EA
configuration. The details of individual representationl s F—
fitness evaluation are described at the following paragraph

As a part of the network configuration, each sensor is given , ,
the information of the total number of sensors) (in the wherew is a weight parameter for coverage-movement trade-

network. We use a fixed length arrayrotlements to represent©!’ PUrposes. _
the genotype of an individual. Element(i = 1,2, ...,n) is Although the fithess evaluation of LODICO only uses

the position{z,,y:} of sensori in the deployment area (toplocal information from its neighboring nodes, the computed

diagram of Fig. 5). Note that for any given sensor, it Ongness value is able to drive the evolutionary search to find

knows its own position and those of its neighbors. The elErget position that gives good overall coverage and energy
ments in the genotype corresponding to non-neighbors cont§eNsuMption.

invalid values. We use a second non-evolvable chromosorae
of length n to store the information of whether a sensor’
is inside or outside its neighborhood. Each element of thisOnce the target position of a sensor is determined, the senso
second chromosome can take a value fr{mn17*}’ where moves to that location automatica”y USing its actuatiomeo

0 stands for non-neighbors, 1 stands for neighbors, andPonent. Then it broadcasts its new position and prepares for
stands for itself. Note that there is exactly one elemenh withe next cycle. In some network scenarios, the assumption of
value x and that the number of 1's equals to the numbdfc = 3R can not be satisfied. In this case, the local coverage
of neighbors (bottom diagram of Fig. 5). Notice that wéan not be calculated precisely. To alleviate this situmatan
would use a Variab'e_'ength genotype representation_ Mm/,ve additional broadcast of the new location is necessary bafar

our fix-length approach allows us to work on the problefi€nsor starts to move to the new location. Further, a limited
under a much more general framework (Section VI). In thEcope flooding could be used alternatively.

work, the only evolvable part of the genotype is its own
position, but this can be naturally extended so that a sexasor
“help to compute” the target positions of its neighbors.ndsi  To evaluate the performance of LODICO, we implement a
the described genotype, an offspring can be reproduced e@nputer program to simulate the deployment of autonomous
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TABLE | 20000
SIMULATION PARAMETERS
300.00
dorance 20090
Parameters| Settings 1000
Sensing range?s 20m
Communication range?. 60m 000 (=S mES S e 'w@ N
Deployment area siz&/ 1002,200273002(m2) [@40sensors [29220] 47.50 | 18.40 | 1280 | 9.00 ’
Number of sensor nodes ‘-wosensors 36440| 4360 | 19.80 | 11.00 | 7.10
areal00%m? 10, 12, 14, 16;
area2002m? 40, 50, 60, 70;
area3002m? 70, 80, 90, 100 (a) Moving distance
Population sizg P| 10
Generationgy 5 30
Ecosystem generationg 30 %
Weight w 1.0 B
generations 15
10
5
= 0.0 05 1.0 15 2.0 Weight
sensor networks with various initial positions. Three perf [méosersors | 3 [1263] 790 [ 735 | o83
mance metrics, stable coverage, convergence time, anchgiovi jaicosmeor

distance, are evaluated. Our experiment takes the average

values of 20 runs and this section reports the experimental (b) Ecosystem generations

results. e
The initial sensor positions are uniformly generated at s
random. We run simulations using various number of sensors Cowrege saam
in fields of different sizes. We adopt, respectively, 10, 12, 04000
and 16 sensors in B0 x 100m? square area, 40, 50, 60, and sl N WE MECBE S
70 sensors in 200 x 200m? area, and 70, 80, 90, and 100 (s 5 s o e
‘-100563”50(5 95.81% | 99.84% | 99.03% | 97.52% | 96.78%

sensors in @00 x 300m? area. Throughout the simulation,
we use the same configuration for parameté&s: R., | P|, g,
and g, as shown in Table I. (c) Coverage

We use a set of preliminary experiments to study the effect Fig. 6. Influence of distance weight
of the weight parametefw) for moving distance. The value
of w can influence the network performance considerably. As
shown in Fig. 6(a), the average moving distance of each sensoWe next study the performance of LODICO under different
is large without moving distance control. Even though a $maletwork sizes. We use three configurations of smaller nodal
value ofw can reduce the moving distance per sensor frodensity (i.e. 12 sensors in 0 x 100m? region, 50 sensors
364.4m to 43.6m for 100 sensors deployed in3a0 x 300m? in a 200 x 200m? region, and 80 sensors N30 x 300m?
square region (second series in the chart).uABicreases to region) to show coverage improvement as sensors deploy
2, the moving distance per node is reduced to only about 2#emselves through localized interaction. Fig. 7 indisateat
compared to setting) to 0. The same trend holds for smallethe coverage improves rapidly during the first few ecosystem
networks such as 40 nodes in280 x 200m? square region generations and converges at around generation 7. When
(first series in Fig. 6(a)). When the algorithm convergenoeti the populations stabilize, we evaluated three performance
is measured, we observe that a greater value ¢¢ads to a measurements, stable coverage (Fig. 8(a)), convergemee ti
smaller number of ecosystem generations needed to s&abiliEig. 8(b), and moving distance (Fig. 8(c)), for 3 deployinen
the final coverage because it can suppress excessive nadm sizesl(0 x 100m?2, 200 x 200m?, and300 x 300m?) and
movement effectively (see Fig. 6(b)). Note that in Fig. 6(b¥ different number of nodes for each deployment area size
when w = 0, the number of ecosystem generations takéFable 1). The general observation from these experiments i
to satisfy the convergence requirements is larger than 3Bat, as the sensor nodal density increases, so does tle stab
but we only plot them within 30 for better readability. Wecoverage, while the convergence time and moving distance
also measure the coverage of the sensors after 30 ecosysiesrease. This is reasonable as a larger number of sensors
generations when the algorithm either converges or fluetuain the network makes it easier to cover a wider area of the
at a certain level. We see that, in Fig. 6(c), when= 0.5 deployed field.
or 1, the highest stable coverage is reached at least 98.5%.
Therefore, we setv = 1.0 in the following experiments
to strike the balance. Meanwhile, when = 1.0, we see In this paper, we propose a sensor deployment protocol,
that the program takes 7.9 and 9.44 ecosystem generaticrt@PICO, to optimize the coverage of a wireless sensor
respectively, to converge (Fig. 6(b)); Thys= 30 is used in network. LODICO is a completely localized algorithm which
the last set of experiments. can be executed fully distributed and in parallel at eacls@en

VI. CONCLUSIONS ANDFUTURE WORK
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g. 8. Influence of number of sensors

node. The algorithm coordinates sensor nodes through local
fitness evaluation and information exchange. In the experi-
ments, we evaluate the stable coverage, convergence time,
and the moving distance. The simulation results show that
LODICO can achieve a very high coverage rate with short
moving distances in a short period of time. As part of our
future research, we plan to extend LODICO to consider the
case where each sensor not only determines its own target
position, but also suggests locations for the sensors in its
neighborhood.
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