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Abstract—Sensor placement of a wireless sensor network
has a significant impact on the network performance, such as
sensing coverage, communication costs and connectivity. De-
pending on the application domains, the deployment method
of sensor networks may vary. In autonomous sensor networks,
the deployment is typically realized via cooperative movement
among the nodes themselves. In this paper, we propose a sensor
deployment protocol, LODICO, to optimize the sensor placement
with arbitrary initial positions. In essence, it is a distributed
evolutionary algorithm executed cooperatively among all sensor
nodes via local information exchange. The simulation results show
that LODICO can provide a very high coverage rate in a short
convergence time.

I. I NTRODUCTION

A wireless sensor network consists of a large number
of small sensor nodes distributed over an area of interests.
Such networks are capable of observing and sensing the
environment and sending the collected data to a data sink
for further processing. Sensors must be deployed before they
can provide useful data. Therefore the deployment of staticor
mobile sensors is an important basis for sensor networking.A
good placement yields a high utilization of network resources.

Various techniques have been proposed to optimize sensor
placement. The primary consideration of node placement in
sensor networks is sensing coverage. It is the area that can be
monitored collectively by the sensors in the network. Energy
conservation is another critical issue in sensor networking. The
energy costs in operating a sensor network include moving
nodes, sensing events in the environment, and transferring
information. The lifetime of a sensor network is limited by
the battery capacity of the nodes. In many applications where
the replacement of power is impossible, minimizing energy
consumption is extremely important during the deployment of
sensors.

Deployment of sensor networks can be carried out in two
major ways: pre-deployment and post-deployment. The goal
of both approaches is to meet certain critical networking
objectives, such as maximizing coverage or lifetime. Pre-
deployment approach calculates or estimates the number or
positions of the sensors before they are actually deployed.This
is typically used for static sensors in a known environment.
In contrast, in some dangerous or unaccessible environments,
mobile sensors are placed randomly in the network at the

beginning. This initial random placement does not usually give
a good coverage and, thus automated adjustments is necessary.
This is the post-deployment approach.

Research on pre-deployment approach of sensors mostly
takes a centralized approach, because distributed algorithms
are not necessary since a computer program can be run
on a powerful computer before physical deployment. For
example, in Isler et al. [4], two characteristics of sensor
networks, coverage and connectivity, are considered in the
pre-deployment process. They use computational geometry to
deploy sensors and guarantee the coverage. Once the sensors
are deployed, a suitable communication range is calculated
in order to guarantee the network connectivity. Jourdan and
de Weck [5] study the deployment problem using a multi-
objective genetic algorithm. Their goal is to balance two
conflicting objectives, maximizing the network coverage while
minimizing the energy consumption in the network. A Pareto
front is generated after the execution of the algorithm and
produces a solution set for users to choose from. Hu et
al. [3] considered a hybrid sensor network which consists of
a mixture of regular small sensors and more powerful micro-
servers. They employed tabu search to decide where the micro-
servers should be placed so that the lifetime of the network
can be maximized.

Post-deployment approach of sensors has been studied us-
ing a variety of techniques. Howard et al. [2] described an
incremental algorithm which deploys one sensor at a time.
Each sensor node uses the positions of previously deployed
nodes to determine its own position. Zou and Chakrabarty [11]
propose a virtual force based algorithm to enhance the cover-
age after an initial random deployment. Their algorithm is a
cluster-based algorithm, and the clusterheads are responsible
for coordinating the distributed computation. The algorithm
combines attractive and repulsive forces to determine virtual
motion paths, and a one-time movement is carried out when
the positions of sensors are identified to conserve energy. Wang
et al. [9] focuses on the coverage holes when calculating target
positions of sensors. They optimize the coverage within a short
deploying time and limited movement using three Voronoi
diagram based deployment protocols, VEC, VOR, and Mini-
Max. Chellappan et al. [1] propose a flip-based algorithm and
optimize both the coverage and the total number of flips. More



recently, it has also been demonstrated that computational
intelligence techniques, such as fuzzy logic [8] and swarm
intelligence [10] can be effective in sensor deployment.

In this paper, we propose LODICO, a localized distributed
algorithm, to maximize sensor network coverage. The algo-
rithm facilitates sensors to construct their partial solutions
based on local information exchange within neighborhood.
This is a powerful extension of the existing framework of co-
operative coevolutionary algorithms [7]. The rest of the paper
is organized as follows. We first give a brief background of
evolutionary algorithms in Section II. Then, in Section IIIthe
features of LODICO are highlighted, followed by a detailed
description in Section IV. Simulation studies are presented
and explained in Section V. Last, we conclude this paper with
discussion on some future research in Section VI.

II. B RIEF BACKGROUND OFEVOLUTIONARY

ALGORITHMS

An evolutionary algorithm (EA) is a search method based
on the idea of the Darwinian principle of survival of the
fittest. It is a powerful optimization technique for finding
a global solution to, typically, extremely complex problem
where finding a solution is very time-consuming. EAs solve
a problem by first generating a large number ofindividuals,
each of which represents a candidate solution to the problem.
The set of individuals are grouped in apopulation. An
individual can be represented using various data structures,
which is its genotype. A genotype can contain one or more
chromosomes. This study will use two-chromosome for each
genotype. Usually, a linear structure is employed to resemble
the biological chromosome in natural systems. The fitness of
an individual is evaluated by afitness functionthat takes the
genotype as an input and yields a scalar value. A number
of operations can be applied to one or multiple individuals,
such ascrossoverandmutation, in order to produce modified
individuals. These modified individuals are calledoffspring
and the original ones areparents. A crossover involves ex-
changing the genetic materials in the genotypes of two or more
parents. A mutation on an individual is a random change in
its genotype with a small probability. An EA is essentially an
iterative reproduction of generations of individuals. A parent
generation produces a set of offspring, and fitter individuals
among the parents and offspring are selected to survive for
the next generation. Frequently, the fitness of the population
improves as the evolution continues until certain termination
conditions are met. See [6] for more details.

Cooperative coevolutionary algorithm (CCEA) is a special
evolutionary algorithm proposed in Potter [7]. Unlike the
traditional EA which solves a problem by searching the whole
solution space, CCEA divides the problem into subproblems
and search the subsolution space simultaneously. Since the
subsolution space is smaller, the algorithm may find better
solutions faster. Multiple separate populations are created
with their genotypic representations having no functional
overlapping. Each population represents a different species
corresponding to one solution component and an individual

therein represents a solution to this subproblem. Only the
individuals of the same species can mate to produce offspring.
Each species evolves for a certain number of generations,
after which genetic information is shared among all species
via a representative from each species. This period of time is
called anecosystem generation. Using the most recent genetic
information shared by other species, another ecosystem gener-
ation can be evolved by all species in parallel. An individual
in a population is evaluated based on the combination of
genotype and the representatives from other species. Fig. 1
gives an illustration of the idea. The outer evolutionary process
is terminated when a certain termination condition is met.
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Fig. 1. A high-level view of CCEA

III. F EATURES

The proposed sensor deployment protocol, LODICO, has
two important features that identify itself as a localized dis-
tributed evolutionary algorithm:

1) LODICO is a completely localized distributed algorithm
in that it requires each sensor to use and process
information within its neighborhood. This is an essen-
tial requirement of distributed computing because every
node in the system only has a local view of the envi-
ronment. Global broadcasting of messages is possible
but is considered infeasible due to the high computation
overhead in such an environment. Sensor networks have
limited resources and communication should be carried
out locally to reserve energy. LODICO cooperates sensor
nodes for self-deployment through localized information
exchange and distributed evolutionary computing.

2) LODICO is a powerful extension of the existing CCEA
framework in two important areas. First, the division
of the general problem is flexible and dynamic. That
is, every sensor node is responsible for dividing the
global problem into a subproblem according to the most
current sensor positions. In addition, as the deployment
changes, so does the network structure. As a result, the
division must be redone iteratively. Second, due to the



localized nature of the protocol, each sensor can only
assume the availability of local information within its
proximity. The fitness evaluation during the evolutionary
process must tolerate the missing input from beyond the
neighborhood. This is a salient contrast to the traditional
CCEA, where fitness cannot be calculated without the
information of all other subsolutions. The extended
framework is depicted in Fig. 2.
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Fig. 2. High-level description of the localized distributed CCEA

IV. A LGORITHM DESIGN

LODICO is executed on all sensors of the network in
parallel for a number of iterations until a coverage requirement
is met. In each cycle, a sensor first exchanges its location infor-
mation with others within its communication range. Using this
information, it prescribes a search space within its proximity
in which it will find a target position and move to it at the end
of the current ecosystem generation cycle. Within the search
space, the sensor executes a local evolutionary algorithm to
calculate the best target position using a fitness calculated
from local information. Each sensor node then moves to its
target position once it is calculated. As the network structure is
altered, LODICO starts the next cycle by exchanging position
information within neighborhoods. We make the following
assumptions:

• Each sensor knows its own location.
• An sufficient number of sensors are deployed so that they

can fully cover the entire area.
• Each sensor has a sensing range,Rs, a communication

range,Rc, andRc ≥ 3Rs.
The LODICO algorithm consists of 3 major steps: planning,
computing, and moving. We explain each step in the following
sub-sections and the general flow of LODICO is given in
Fig. 3.

A. Planning

At the beginning of the cycle, a sensor determines a partition
of the entire deployment region to execute its local evolution-
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Fig. 3. LODICO flow chart

ary algorithm. To do that, it needs to know the positions of
the neighboring nodes, i.e., those within its communication
range, and to define a search space centered around its current
position. The position information of each node is exchanged
through a reliable wireless communication channel. The search
space of a sensor is a limited scope within which the sensor
can move in the current cycle.

The search space limit is important because excessive
moving in a single cycle can make it hard for the algorithm
to find good sensor locations. The reason is that sensors
should cooperate with each other when positioning them-
selves. A target position is calculated using the latest position
information within a neighborhood, so a drastic alteration
of the neighborhood structure can invalidate the previous
computation. In this work, we define the search space of a
sensor to be equal to its sensing region, i.e. the circle of
radiusRs centered at the node itself. Under the assumption
that Rc ≥ 3Rs, the search space limit ofRs ensures that
the new coverage at a target position will not overlap with
that of any node beyond its communication range,Rc. This is
important for the fitness evaluation described in Section IV-B.
The idea can be illustrated by the diagram in Fig. 4. Suppose
nodea has a communication rangeRc = 3Rs. Centered at
itself are these concentric circles of radiiRs, 2Rs and 3Rs,
denoted byC1, C2, and C3, respectively. The search space



limit restricts nodea’s move within C1, which implies that
its new coverage will be restricted toC2. For a non-neighbor
nodeb, which is out ofC3, its coverage will not overlap with
the new coverage of nodea, no matter where it moves to
within the range of its search space.
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C

Fig. 4. Analysis of potential movement and overlaps

B. Computing

Each sensor executes an instance of a local EA to compute
where it will move to at the end of the cycle. The local EA
maintains a set of individuals,P , each of which corresponds
to a positioning solution of the network. Here, an individual
encodes its own position and those of its neighbors. To initiate
these individuals, the sensor generates|P | random positions
uniformly distributed in its search space. Each position, along
with those of the neighbors, is included in the genotype of an
individual. Among these individuals, the|Q| fittest are selected
as parents, denoted byQ, to reproduce the same number of
offspringQ′. Out ofP ∪ Q′, the|P | fittest individuals survive
and are carried over to the next generation. This local EA
continues fork generations to determine the target position
of the sensors, wherek is a small integer as part of the EA
configuration. The details of individual representation and its
fitness evaluation are described at the following paragraph.

As a part of the network configuration, each sensor is given
the information of the total number of sensors (n) in the
network. We use a fixed length array ofn elements to represent
the genotype of an individual. Elementi (i = 1, 2, . . . , n) is
the position{xi, yi} of sensori in the deployment area (top
diagram of Fig. 5). Note that for any given sensor, it only
knows its own position and those of its neighbors. The ele-
ments in the genotype corresponding to non-neighbors contain
invalid values. We use a second non-evolvable chromosome
of length n to store the information of whether a sensor
is inside or outside its neighborhood. Each element of this
second chromosome can take a value from{0, 1, ⋆}, where
0 stands for non-neighbors, 1 stands for neighbors, and⋆

stands for itself. Note that there is exactly one element with
value ⋆ and that the number of 1’s equals to the number
of neighbors (bottom diagram of Fig. 5). Notice that we
would use a variable-length genotype representation. However,
our fix-length approach allows us to work on the problem
under a much more general framework (Section VI). In this
work, the only evolvable part of the genotype is its own
position, but this can be naturally extended so that a sensorcan
“help to compute” the target positions of its neighbors. Using
the described genotype, an offspring can be reproduced via

arithmetic crossover, where the location value of an offspring
is the mid-point of the gene values of its parents.

......1 y1x 2x2 y x3 y x ynn3

1 1 0* ......

Fig. 5. The 2-chromosome genotype representation

The fitness of an individual is determined by the total cov-
erage area induced by the new position and the total distance
to travel to the new position. The goal is to find a target
position with good coverage without excessive movement for
energy conservation. And this should be evaluated using only
local information. Assume that the sensing region of node
i is Ai (i = 1, 2, . . . , n), each of which is a subset of the
entire deployment areaU , i.e. the universe. For a given node,
only the sensing areas of its neighbors can be considered.
To do that, we use the second chromosome in the genotype
to filter the global information. LetH = 〈h1, h2, . . . , hn〉
be the second chromosome of the sensor node. We define a
companion vectorH = 〈h1, h2, . . . , hn〉, wherehi ∈ {∅, U},
for eachH. Specifically,hi = U if hi ∈ {1, ⋆} and hi = ∅
if hi = 0. Thus, the coverage unioned over a neighborhood of
sensors is

n
⋃

i=1

(

hi ∩ Ai

)

For an individual represented byH and{Ai}
n

i=1
which is of

distanced away from the current position, its fitness is

F =

∣

∣

∣

∣

∣

n
⋃

i=1

(

hi ∩ Ai

)

∣

∣

∣

∣

∣

− w × d,

wherew is a weight parameter for coverage-movement trade-
off purposes.

Although the fitness evaluation of LODICO only uses
local information from its neighboring nodes, the computed
fitness value is able to drive the evolutionary search to find
target position that gives good overall coverage and energy
consumption.

C. Moving

Once the target position of a sensor is determined, the sensor
moves to that location automatically using its actuation com-
ponent. Then it broadcasts its new position and prepares for
the next cycle. In some network scenarios, the assumption of
Rc ≥ 3Rs can not be satisfied. In this case, the local coverage
can not be calculated precisely. To alleviate this situation, an
additional broadcast of the new location is necessary before the
sensor starts to move to the new location. Further, a limited-
scope flooding could be used alternatively.

V. EXPERIMENTAL ANALYSIS

To evaluate the performance of LODICO, we implement a
computer program to simulate the deployment of autonomous



TABLE I
SIMULATION PARAMETERS

Parameters Settings
Sensing rangeRs 20m

Communication rangeRc 60m
Deployment area sizeU 1002, 2002, 3002(m2)

Number of sensor nodesn
area1002m2 10, 12, 14, 16;
area2002m2 40, 50, 60, 70;
area3002m2 70, 80, 90, 100

Population size|P | 10
Generationsg 5

Ecosystem generationsge 30
Weight w 1.0

sensor networks with various initial positions. Three perfor-
mance metrics, stable coverage, convergence time, and moving
distance, are evaluated. Our experiment takes the average
values of 20 runs and this section reports the experimental
results.

The initial sensor positions are uniformly generated at
random. We run simulations using various number of sensors
in fields of different sizes. We adopt, respectively, 10, 12,14,
and 16 sensors in a100× 100m2 square area, 40, 50, 60, and
70 sensors in a200 × 200m2 area, and 70, 80, 90, and 100
sensors in a300 × 300m2 area. Throughout the simulation,
we use the same configuration for parameters:Rs, Rc, |P |, g,
andge as shown in Table I.

We use a set of preliminary experiments to study the effect
of the weight parameter(w) for moving distance. The value
of w can influence the network performance considerably. As
shown in Fig. 6(a), the average moving distance of each sensor
is large without moving distance control. Even though a small
value of w can reduce the moving distance per sensor from
364.4m to 43.6m for 100 sensors deployed in a300× 300m2

square region (second series in the chart). Asw increases to
2, the moving distance per node is reduced to only about 2%
compared to settingw to 0. The same trend holds for smaller
networks such as 40 nodes in a200 × 200m2 square region
(first series in Fig. 6(a)). When the algorithm convergence time
is measured, we observe that a greater value ofw leads to a
smaller number of ecosystem generations needed to stabilize
the final coverage because it can suppress excessive node
movement effectively (see Fig. 6(b)). Note that in Fig. 6(b),
when w = 0, the number of ecosystem generations takes
to satisfy the convergence requirements is larger than 30,
but we only plot them within 30 for better readability. We
also measure the coverage of the sensors after 30 ecosystem
generations when the algorithm either converges or fluctuates
at a certain level. We see that, in Fig. 6(c), whenw = 0.5
or 1, the highest stable coverage is reached at least 98.5%.
Therefore, we setw = 1.0 in the following experiments
to strike the balance. Meanwhile, whenw = 1.0, we see
that the program takes 7.9 and 9.44 ecosystem generations,
respectively, to converge (Fig. 6(b)); Thusge = 30 is used in
the last set of experiments.
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Fig. 6. Influence of distance weight

We next study the performance of LODICO under different
network sizes. We use three configurations of smaller nodal
density (i.e. 12 sensors in a100 × 100m2 region, 50 sensors
in a 200 × 200m2 region, and 80 sensors in a300 × 300m2

region) to show coverage improvement as sensors deploy
themselves through localized interaction. Fig. 7 indicates that
the coverage improves rapidly during the first few ecosystem
generations and converges at around generation 7. When
the populations stabilize, we evaluated three performance
measurements, stable coverage (Fig. 8(a)), convergence time
(Fig. 8(b), and moving distance (Fig. 8(c)), for 3 deployment
area sizes (100×100m2, 200×200m2, and300×300m2) and
4 different number of nodes for each deployment area size
(Table I). The general observation from these experiments is
that, as the sensor nodal density increases, so does the stable
coverage, while the convergence time and moving distance
decrease. This is reasonable as a larger number of sensors
in the network makes it easier to cover a wider area of the
deployed field.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a sensor deployment protocol,
LODICO, to optimize the coverage of a wireless sensor
network. LODICO is a completely localized algorithm which
can be executed fully distributed and in parallel at each sensor
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node. The algorithm coordinates sensor nodes through local
fitness evaluation and information exchange. In the experi-
ments, we evaluate the stable coverage, convergence time,
and the moving distance. The simulation results show that
LODICO can achieve a very high coverage rate with short
moving distances in a short period of time. As part of our
future research, we plan to extend LODICO to consider the
case where each sensor not only determines its own target
position, but also suggests locations for the sensors in its
neighborhood.
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