• Main Page
  • Classes
  • Files
  • File List

/Users/yzchen/ns/ns-allinone-2.33/ns-2.33/asim/asim.h

00001 
00002 /*
00003  * asim.h
00004  * Copyright (C) 2000 by the University of Southern California
00005  * $Id: asim.h,v 1.3 2005/08/25 18:58:01 johnh Exp $
00006  *
00007  * This program is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU General Public License,
00009  * version 2, as published by the Free Software Foundation.
00010  *
00011  * This program is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014  * GNU General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU General Public License along
00017  * with this program; if not, write to the Free Software Foundation, Inc.,
00018  * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
00019  *
00020  *
00021  * The copyright of this module includes the following
00022  * linking-with-specific-other-licenses addition:
00023  *
00024  * In addition, as a special exception, the copyright holders of
00025  * this module give you permission to combine (via static or
00026  * dynamic linking) this module with free software programs or
00027  * libraries that are released under the GNU LGPL and with code
00028  * included in the standard release of ns-2 under the Apache 2.0
00029  * license or under otherwise-compatible licenses with advertising
00030  * requirements (or modified versions of such code, with unchanged
00031  * license).  You may copy and distribute such a system following the
00032  * terms of the GNU GPL for this module and the licenses of the
00033  * other code concerned, provided that you include the source code of
00034  * that other code when and as the GNU GPL requires distribution of
00035  * source code.
00036  *
00037  * Note that people who make modified versions of this module
00038  * are not obligated to grant this special exception for their
00039  * modified versions; it is their choice whether to do so.  The GNU
00040  * General Public License gives permission to release a modified
00041  * version without this exception; this exception also makes it
00042  * possible to release a modified version which carries forward this
00043  * exception.
00044  *
00045  */
00046 
00047 // author: Debojyoti Dutta
00048 
00049 
00050 #ifndef _RED_ROUTER_H_
00051 #define _RED_ROUTER_H_
00052 
00053 #include <assert.h>
00054 #include <stdio.h>
00055 #include <math.h>
00056 
00057 
00058 class RedRouter {
00059   double MinTh, MaxTh, MaxP;
00060   double Lambda_L;
00061   double Lambda_H;
00062 
00063   void Populate();
00064  public:
00065   RedRouter(int mTh, int MTh, double MP) {
00066     MinTh = mTh;
00067     MaxTh = MTh;
00068     MaxP = MP; 
00069     Populate();
00070   }
00071   double ComputeProbability(double Lambda, double &Delay);
00072   short Identical(int mTh, int MTh, double MP) {
00073     return (mTh == MinTh &&
00074             MTh == MaxTh &&
00075             MP  == MaxP);
00076   }
00077 };
00078 
00079 void RedRouter::Populate() {
00080   // rho = Lambda_L: p = 0 => rho/(1-rho) = MinTh
00081   Lambda_L = ((double)MinTh)/((double)(1+MinTh));
00082 
00083   // rho = Lambda_H: p = Max_p => rho(1-Max_p)/(1-rho(1-Max_p)) = MaxTh;
00084   if (MaxP < 1)
00085     Lambda_H = ((double)MaxTh)/((double)(1+MaxTh))/(1-MaxP);
00086 }
00087 
00088 
00089 double RedRouter::ComputeProbability(double Lambda, double &delay) {
00090   double p;
00091   
00092   if (Lambda <= Lambda_L) {
00093     delay = Lambda/(1-Lambda);
00094     return 0;
00095   }
00096 
00097   if (MaxP < 1 && Lambda > Lambda_H) {
00098     delay = MaxTh;
00099     p = (Lambda - Lambda_H*(1 - MaxP))/Lambda;
00100     return p;
00101   }
00102 
00103   // Solve the quadratic a.p^2 + b.p + c = 0
00104   double a, b, c;
00105   a = Lambda * (MaxTh - MinTh)/(MaxP);
00106   b = (MaxTh - MinTh)*(1-Lambda)/MaxP + MinTh * Lambda + Lambda;
00107   c = MinTh*(1-Lambda)-Lambda;
00108 
00109   p = (-b + sqrt(b*b - 4 * a * c))/(2 * a);
00110   delay = Lambda*(1-p)/(1-(Lambda*(1-p)));
00111   return p;
00112 }
00113 
00114 
00115 #endif
00116 
00117 
00118 
00119 
00120 
00121 

Generated on Tue Aug 10 2010 16:16:06 for ns-2.33 by  doxygen 1.7.1