
IsLayering Hamful?
Remote Procedure Call mechanisms over TCP can produce
behavior analagous to the Silly Window Syndrome because of a
mismatched interface between the socket and the TCP modules.
m m m m m m m m m m
Jon Crowcroft, Ian Wakeman, Zheng W a n g , and Dejan Sirovica

Jon Crowcrofr is R senior lec-
turer in the Department of
Computer Science, Universib
College London.

Ian Wakeman U- with UCL
as a researcher.

Zheng Wang is working
toward his Ph.D at Universi-
ty College London.

Dr. Sirovica is R member of

Advanced Technologies.

TMSun Micro Systems and
Network File System (NFS)
are trademarks of Sun Micro
Systems.

technical Staff at USU/EsT

3 hen invoking an operation on
aremote machine, the paradigm
with which programmers are
most comfortable is the Remote
Procedure Call (RPC). In this
operation, the local process

invokes a stub procedure, which marshalls the param-
eters to be passed to the remote operation into a
machine-independent format, then sends the param-
eters and a request identifying the operation to
be invoked to the remote machine. The operation
is performed, and the results are returned to the local
stub procedure, which passes the results to the invok-
ing program. If the link to the remote machine is
not totally reliable, then in order to create the
once-only semantics that most calls require ,
mechanisms that guarantee the correct delivery
of the data must be invoked. Where these mecha-
nisms are placed is amatter of debate; the Sun Micro
Systems Network File SystemTM is best known
for using its own reliability mechanisms over the User
Datagram Protocol (UDP) [l]. However, build-
ing reliable delivery mechanisms that can cope
with arbitrary message sizes as well as the prob-
lems of duplicates, missing messages and out-of-
o rde r delivery is not a trivial task, and if it is
constructed wrongly, performance suffers-not only
that of the operation invoking the messages, but that
of the other denizens of the network as well.

An alternative approach is to use the reliable
delivery mechanisms that already exist in most
systems, such as the Open Systems Interconnect
(OSI) Class 4 Transport Protocol (TP4) [2], or
the Department of Defense (DoD) Transmission
Control Protocol (TCP) [11. These protocols ensure
not only reliable delivery of data, but also respon-
sible use of the network resource.

There are concerns that RPC is not the cor-
rect mechanism to use in a distributed system
that runs over high bandwidth-delay-product net-
works, as the block-on-response semantics of the call
are an inefficient use of resources. However, it is
an easy mechanism for programmers raised on
single-processor systems to use in building distributed
systems, and it will be sufficiently pervasive to
make optimizing its performance worthwhile.

As part of an investigation into the perfor-
mance of the Sun Micro Systems RPC mecha-
nism [3] over TCP, we found unexpected glitches
in the performance of R P C calls as their size
increased. This aroused curiosity about where these
glitches were arising from. Eventually, investigations
led to a mismatched interface between layers of a
protocol stack, and an inappropriate buffering strat-
egy between the socket code and the TCP code. A
diagram of the protocol stack can be seen in Table 1.

Although correcting these deficiencies is an impor-
tant result in its own right, we feel that the prob-
lems we have uncovered illustrate the deficiencies
in the models used to implement communications
systems. The concentration on a layered architec-
ture in which the functions of each layer are inde-
penden t of each o t h e r resul ts in a common
processing path for incoming and outgoing data,
which passes along a path with crevasses and
cliffs between layers. Instead, we recommend the
use of a separate model for designing and imple-
ment ing a real system, in which the focus of
design is on supporting the requirements of the appli-
cations' data unit.

The first part of this article shows the detec-
tion and diagnosis of the problem, and the sec-
ond part provides some pointers to a design approach
that could avoid the problems of mismatched
communications layers.

This Graph Looks Strange . . .
The RPC program used to construct the test

was a very simple echo program, where the data
passed was turned around and echoed back. We
ran the program for a fixed number of procedure
calls and recorded the time taken while varying
the size of the data to be echoed. The machineswere
Sun SLCs running SunOs 4.1, connected via an
E the rne t . Since the T C P connection is main-
tained while the calls are being made, the latency
of connection setup and teardown is amortised
over all the calls. A graph showing the perfor-
mance we discovered can be seen in Fig. 1. Simi-
lar behavior was observed on Sun3 and HP400
machines. The variations in thresholds and per-

20 IEEE Network Magazine January 1992 0163-6804/92/$03.00 1992O IEEE

Authorized licensed use limited to: Memorial University. Downloaded on January 7, 2009 at 10:11 from IEEE Xplore. Restrictions apply.

formance between thevarious machineswere minor.
Wewerevery puzzled by the order-of-magnitude

glitch that started at around 4,000 bytes of data
and finished 1,000 bytes later, and by the irregu-
lar graph of the subsequent behavior.

Our initial thoughts were that the problem
was an aberrant interaction between the window-
ing flow control of TCP and the buffer sizes of
the RPC call. To investigate this, we ran tcpdump
on a third machine on the same ethernet as the
machines carrying the aberrant conversation.
Tcpdump is a traffic-monitoring program written by
Van Jacobsonetal. [4], which can capture traffic and
print out the constituent packets with the follow-
ing information (shown pictorially in Table 2):

*Time: This is the time in which the packet
traversed the Ethernet, accurate to about +/- 10
ms using the Network Interface T a p in Sunos
4.1.1.

*src, dst: These are the source and destination
Internet Protocol (IP) address and TCP/UDP
port number, and can be used to deduce applica-
tion in most cases using thewell known port concept
in the IP Architecture.

Oflgs: These flags indicate whether the packet
is the start or end of a connection, or whether the
packet has a PUSH bit set if TCP data.

*seq: If TCP, the s tar t and ending (byte)
sequence number of this packet.

01th: The packet length in bytes.
*ack: IfTCP, the sequence number that thispack-

et acknowledges.
-win: The size of the receive window in bytes that

the sender of this packet is advertising.
The sample trace displayed in Table 3 shows

the pattern of packet transmission for data sizes
of 4,800 bytes. The initial UDP packets query the
portmapper as to which port to use. The trace is
displayed in a time sequence diagram in Fig. 2.
The other tool we used to investigate the prob-
lem was the trace facility, which intercepts the
system calls and signals of a program and displays
their arguments and results [5]. In this way, we
discovered that the rpcgenl-generated code uses
user space buffers of 4,000 bytes for External
Da ta Representat ion (X D R) conversion [6].
These buffers are then submitted to the kernel
for copying to mbufs and then onto the socket queue.
A curtailedversion of the output from the trace com-
mand is shown in Table 4. The write and read
calls are shown in bold.

As can be seen in Table 3, the default window size
of the TCP connection is 4,096 bytes. If the buffer
used to pass data were 4,096 bytes as well, then
each buffer would be sent as a full window, and
we would have seen a smoother graph for the
transfer of data. However, theywere not, andwe saw
suboptimal behavior when the sizes of the buffers
were not matched. Thus, t he first lesson is t o
match buffer sizes whenever possible, so that
there are never any small amounts of space left over.
(Of course, we could not possibly speculate that
the reason for having 4,000-byte buffers in the XDR
code was because someone interpreted “4K” as
meaning “4,000” and not “4,096.”) However, the
behavior still required a deeper explanation, so we
started looking at the tcpdump traces more closely.

T h e length of t he R P C call was extended
beyond that expected by the delays between the small
packet in Fig. 2, carrying sequence numbers

]client caller coue
Client Stub
XDR

SOCKCt code
TCP code
IP
Net

Presentation

bession
Transport
Network
Data Link

user space

Kernel

rn Table 1. Protocol Shck of the RPC call
1 time 1 src 1 dst I flgs I seq I lth 1 ack 1 win I

‘
w Table 2. Format of tcpdurnp trace

0.140000 camus.l096>sartre.sunrpc:udp 56
0.1 50000 sartre.sunrpc>camus.1096:udp 28
0.150001 camus.l043>sartre.l055:S 1:1(0) win 4096<mss 1 4 6 0 ~
0.150002 sartre.l055>camus.l043:S 1:1(0) ack 1 win 4096 cmss 1460>
0.150003 camus.1043>sartre.l055:.ack 1 win 4096
0.160000 camus.l043>sartre.l055:.1:1461(1460) ack 1 win 4096
0.1 60001 camus.1043>sartre.1055:.1461:2921(1460) ack 1 win 4096
0.160002 camus.l043>sartre.l055: P 2921:4001(1080) ack 1 win 4096
0.1 60003 sartre.l055>camus.l043:.ack 4001 win 4096
0.1 60004 camus.l043>sartre.l055:P4001:4097(96)ack 1 win 4096
0.1 70000 sartre.l055>camus.l043:.ack4097 win 4000
0.180000 camus 1043>sartre.l055:P 4097:4853(756)ack 1 win 4096
0.230000 sartre.l055>camus.l043:.1:1461(1460)ack 4853 win 4096
0.230001 sartre.l055>camus.l043:.1461:2921(1460)ack4853 win 4096
0.230002 sartre.1055>camus.1043:P2921:4001(1080) ack 4853 win 4096
0.230003 camus.l043>sartre.l055:.ack 4001 win 1568
0.230004 camus.l043>sartre.l055:.ack4001 win 4096
0.230005 sartre.l055>camus.l043:P4001:4097(96) ack 4853 win 4096
0.430000 camus.l043>sartre.l055:.ack4097 win 4096
0.430001 sartre.l055>camus.l043:P 4097:4837(740) ack 4853 win 4096
0.490000 camus.l043>sartre.l055:F 4853:4843(0) ack 4837 win 4096
0.490001 sartre.l055>camus.l043:.ack 4854 win 4096
0.490002 sartre.l055>camus.l043:F 4837:4837(0) ack 4854 win 4096
0.490003 camus.l043>sartre.l055:.ack 4838 win 4096

w Table 3. tcpdump traces for buffer size of 4800 bytes (with 52 bytes of rpc
overhead)

socket (2,1,6) = 4
bind (4,””..,16) = -1 EACCES (Permission denied)
connect (4,“”.., 16) = 0
gettimeofday (Oxf7fff8c0.0) = 0
getpid () = 865
brk (0xd4c0) = 0
gettimeofday (Oxf7fff9c0,O) = 0
write (4””.., 4000) = 4000
write (4“200 3Paaaaaaaaaaaaaaaaaaaaaaaaaaaa”..,852) = 852
select (64, Oxf7fffSc8, 0, 0, Oxac40) = 1
read (4, ””.., 4000) = 4000
brk (0xf4c)) = 0
select (64, 9xf7fff5c8, 0, 0, Oxac40) = 1
read (4,”200 3@aaaaaaaaaaaaaaaaaaaaaaaaaaaa1’..,4OO0) = 96
select (64, Oxf7fff650.0.0, Oxac40) = 1
read (4, “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa”.., 4000) = 740
gettimeofday (oxf7fff9c0.0) = 0
close (0) = 0
close (1) = 0
close (2) = 0
exit (0) = ?

w Table 4. Sample trace output for the RPC call with 4800 bytes

4001 :4097, its corresponding acknowledgement, and
then the larger data packet carrying sequence
numbers 4,097:4,837. These packets are highlight-
ed in bold in Fig. 2. The gaps in between sending
the small packet and the succeedingpacketwas long
enough to force the data to be read in two sepa-
rate reads, one of 96 bytes and the other of 756 bytes.

lrpcgen is a tool that gener-
atesthestubroutinesforthe
rpc code, and incorporates
thefunctions necessary for
Sun XDRprocessing (presen-
tation conversion) and com-
municationprogramming.

IEEE Network Magazine January 1992 21

Authorized licensed use limited to: Memorial University. Downloaded on January 7, 2009 at 10:11 from IEEE Xplore. Restrictions apply.

~ ~

0.920001 camus.l047>sartre.discard: S 1:1(0) win 4096
0.920002 sartre.discard>camus.1047:5 1:1(0) ack 1 win 4096 <mss
1460>
0.920003 camus.l047> sartre.discard:.ack 1 win 4096
0.950000 camus.l047>sartre.discard:.l:1461(1460) ack 1 win 4096
0.950001 camus.1047> sartre.discard:.l461:2921(1460) ack 1 win 4096
0.950002 camus.l047> sartre.discard: P 2921:4096(1175) ack 1 win
4096
0.960000 sartre.discard>camus.l047:.ack 4096 win 2049
0.960001 camus.lO47csartre.discard: P 4096:4097(1) ack 1 win 4096
0.960002 sartre.discard>camus.l047:.ack4096 win 4096
1.010000 camus.l047>sartre.discard: FP 4097:5119(1022) ack 1 win
4096
1.010001 sartre.discard>camus.l047:.ack 5120 win 3074
1.020001 sartre.discard>camus.1047:F1:1(0) ack 51 20 win 4096
1.020002 camus.l047>sartre.discard:.ack 2 win 4096

0.470001 camus.l048>sartre.discard:S 1:1(0) win 4096 <mss 1460>
0.470002 sartre.discard>camus.l048:S 1:1(0) ack 1 win 4096 <mss
1460>
0.470003 camus.l048>sartre.discard:.ack 1 win 4096
0.500000 camus.l048>sartre.discard:.l:1461(1460) ack 1 win 4096
0.500001 camus.l048~sartre.discard:.1461:2921(1460) ack 1 win 4096
0.500002 camus.l048>sartre.discard:P 2921 :4096(1175) ack 1 win 4096
0.500003 sartre.discardxamus.l048:.ack 4096 win 4096
0.510000 sartre.discard>camus.l048:.ack 4096 win 4096
0.510001 camus.l048>sartre.discard:P 4096:5121 (1025) ack 1 win 4096
0.550000 camus.l048>sartre.discard:F 5121:5121 (0) ack 1 win 4096
0.550001 sartre.discard>camus.1048:.ack 51 22 win 4096
0.570000 sartre.discard>camus.1048: F 1:1(0) ack 5122 win 4096
0.570001 camus.l048>sartre.discard:.ack 2 win 4096

w Table 5. tcpdump traces for a buffer size of 4095 bytes, and data sizes of
51 I 8 bytes and 51 20 bytes

0.144713 spasky.l160>fischer.discard: S 1:1(0) win 4096 cmss 1460>
0.145877 fischer.discard>spasky.l160: S 1:1(0) ack 1 win 4096 emss
1460 >
0.146467 spasky.l160>fischer.discard:.ack 1 win 4096
0.155208 spasky.l160>fischer.discard:.l:l461(1460) ack 1 win 4096
0.1 56432 spasky.l160>fischer.discard:.1461:2921(1460) ack 1 win 4096
0.1 57292 spasky.1160>fischer.discard:P2921:4096(1175)ack 1 win 4096
0.1 57642 spasky.1160>fischer.discard:P4096:4097(1) ack 1 win 4096
0.180476 fischer.discard>spasky.l160:.ack 4097 win 2048
0.181374 fischer.discard>spasky.l160:.ack 4097 win 4096
0.182697 spasky.l160>fischer.discard:P 4097:5119(1022) ack 1 win 4096
0.195328 spasky.l160>fischer.discard: F 51 19:5119(0) ack 1 win 4096
0.195798 fischer.discard>spasky.l160:.ack 5120 win 4906
0.204607 fischer.discardrspasky.1160: F 1:1(0) ack 5120 win 4096
0.205308 spasky.1160 > fischer.discard:.ack 2 win 4096

0.381148 spasky.1161 >fischer.discard:S 1:1(0) win 4096 <mss 1460>
0.382277 fischer.discardzspasky.ll61:S 1:1(0) ack 1 win 4096 cmiss
1460 >
0.382906 spasky.1161 >fischer.discard:.ack 1 win 4096
0.391533 spasky.1161 >fischer.discard:.l:1461(1460)ack 1 win 4096
0.392763 spasky.1161 >fischer.discard:.1461:2921(1460) ack 1 win 4096
0.393605 spasky.1161 >fischer.discard:P 2921:4096(1175) ack 1 win 4096
0.41 6785 fischer.discardrspasky.1161 :.ack 4096 win 2049
0.41 7739 fischer.discard>spasky.l161 :.ack 4096 win 4096
0.418893 spasky.1161 >fischer.discard:P 4096:5121(1025) ack 1 win 4096
0.431728 spasky.1161 >fischer.discard:F 5121:5121(0) ack 1 win 4096
0.432271 fischer.discard>spasky.l161:.ack 5122 win 4096
0.441032 fischer.discard>spasky.l16l:Fl:l(O) ack 5122 win 4096
0.441 761 spasky.1161 >fischer.discard:.ack 2 win 4096

I Table 6. tcpdump traces for a buffer size of 4095 bytes, and data sizes of
5118 bytes and 5120 bytes with NO-TCPDELAY

The cost of the additional system call and its con-
comitant context switches accounted for the addi-
tional time spent servicing the RPC call. It thus
appeared that the performance glitchwas caused by
problems in the send and receive paths of the

This is to be erpcected as
the TCPcode has been heavi-
ly optimized for bulk through-
put transfers.

operating system, and not necessarily by the rpc-
gen code. In particular, the problems seemed to
be caused by the splitting of the second data
buffer written to the send code into a small and
larger packet, even though the total data to be
sent is less than the maximum size of an Ethernet
packet.

To ensure that the problem was independent
of the rpcgen code, we hacked a program that
wrote avariable size ofbuffer and avariable amount
of data to the discard port, and used this to dis-
cover what was happening at the TCP level. Inves-
t igation of the per formance showed that the
fallingedgeon theglitchlaybetween5,118 and5,120
bytes of data being sent.

As shown in Table 5 and pictorially in Figs. 3
and 4, it is only the smaller of two data sizes that
generates a small packet, which causes a slow-
down of the data flow due to use of the Nagle
algorithm [7]. This algorithm attempts to reduce the
congestion in the network by only allowing one unac-
knowledged small packet in the network at any
one time. Unfortunately, this algorithm interacts
quite badly with the delayed acknowledgment
processing that occurs at the other end of the
connection. After the small packet is sent, we
have insufficient data remaining to make a “large”
packet, so this packet cannot be sent until the
previous small packet is acknowledged, thus
obeying Nagle’s edict. However, the receive side
of TCP processing delays generation of acknowl-
edgements when data is received, since there is
likely to be more data following soon. So, when a
small packet is sent (and no other data), there
will be a longwait before the acknowledgment is gen-
erated and the throughput will suffer. When we
repeated the experiment with the Nagle delay turned
off at the sender (TCP-NODELAY as a socket
option), we gained the results in Table 6.

As can be seen, although the delay betweenpack-
ets has been reduced, the data is still transferred
for the smaller data size in a small and a big pack-
et. In addition, the delayed acknowledgment poli-
cy is not configurable, so the overall time spent
transferring the data is still dominated by the
timeout for the generation of the acknowledg-
ment and only slightly improved by the faster
generation of the larger packet. This is confirmed by
repeating the initial RPC experiment, which showed
little improvementwith using theTCP-NODELAY
option.

However, this effect is only apparent for trans-
ferring small amounts of data, as the graph in Fig.
5 shows. This graph tracks sequence number ver-
sus time for buffer sizesof 4,095 bytes and 4,096 bytes,
over a transfer of one million bytes (Nagle is on). The
gradient shows the throughput achieved in the trans-
fer, which is identical in both cases.2 Obviously,
the problem we are searching for is a boundary effect,
with no impact on large transfers but important
for RPC calls.

Tracking the Small Packet
Looking through the TCP code to trace where

a small packet could have been sent, we noticed
that the PUSH bit is only set on a packet when it
is the last data left in the send queue. Now, since
the small packet has the PUSH bit set, we logical-
ly deduced that the socket code had placed a

~ ~

22 January 1992 IEEE Network Magazine

Authorized licensed use limited to: Memorial University. Downloaded on January 7, 2009 at 10:11 from IEEE Xplore. Restrictions apply.

small amount of data in the send queue for the
case when it had less than a certain threshold amount
of data to send, and had not placed any data in
the queue when it had more than the threshold
amoun t of data . This explains why bulk d a t a
transfers are not affected by this phenomenon, since
each wri te f rom user space will have a large
amount of data for the sosend code to place in
the queue, and the amount of user data should
not drop below the threshold.

T o confirm this, we went t o the BSD socket
code t o see when da ta is placed o n the send
queue. First we looked at the Tahoe release of
the 4.3 BSD code, in which we found the code in
Table 7.

This appeared to be the root of our problems,
in that a small fraction of data can be writ ten
when the total data is less than the size of an
mbuf cluster. We found this t o be analagous to
the Silly Window Syndrome for TCP described in
[8], where throughput of a connection is limited
by only having a small window open in the flow
control mechanism, so that less-than-optimal-size
packets of data are sent throught the network.
The problem is solved for TCP by preventing receivers
from advertising small increases in receive windows,
and by transmitters refraining from sending if the
advertised window is too small. In the problem
presented here, the flow control is between the sock-
et layer and the TCP layer, and it is the sender-
the socket layer-who is misbehaving and sending
small chunks of datawhen it is more efficient to send
larger chunks. T h e socket layer should refrain
from placing more data into the buffer until there
is sufficient space3 to send a larger chunk of data.

It is important to realize the significance ofwhere
this error originated and, in particular, how the
layered structure of the software contributed to
the problem. The communications software is imple-
mented in a layered fashion, where each layer
contains functionality independent of that in the
other layers. Thus, the application processes are inde-
pendent of the presentation processing and the
semantics of the data passed to the XDR routines
are hidden from the XDR processing layer. Each
layer “does its thing” o n the data to be trans-
ferred, and then moves it down to the layer below.
In this way, we get the time sequence diagram
show in Fig. 6, where the data passes from application
to RPC stub routine to XDR routine (presenta-
tion layer in the International Standards Organi-
zation-ISO-Reference Model) to socket (session
layer) to TCP (transport layer) and so on.

The most recent release of the BSD socket
code (Reno) corrects the problem by the use of a
low-water mark, in which data is only appended
to the send queue when the space remaining is above
a settable low-water mark (through the setting of
socket opt ions) . I t appea r s t ha t t he cu r ren t
default is 0 bytes, but it is suggested that this is
increased to at least the default maximum seg-
ment size for TCP sockets. Users cannot be relied
upon to set the proper sizes for common working
of their code. A somewhat terse explanation of
the thinking behind the BSD communications
code can be found in [9].

T o test out our hypothesis, we rebuilt a UNIX
kernel with a modified sosend function that only
placed partial user data into the send queue if
therewas more space in the send queue than the size

I*
*Copyright (c) 1982, 1986 Regents of the University of California
*All rights reserved.

*Redistribution and use in source and binary forms are permitted
*provided that the above copyright notice and this paragraph are
*duplicated in all such forms and that any documentation,
*advertising materials, and other materials related to such
*distribution and use acknowledge that the software was developed
*by the University of California, Berkeley. The name of the
*university may not be used to endorse or promote products derived
*from this software without specific prior written permission.
*THIS SOFMIARE IS PROVIDED ”AS IS“ AND WITHOUT ANY
*EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
*LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
*AND FITNESS FOR A PARTICULAR PURPOSE.

*@(#uipc-socket.c7.1 O(Berkeley) 6/29/88

*Code to decide whether to write data to the send queue or not
*Nb This code has been edited to show the required features of it-
*no guarantees are given regarding its completeness
*/
/*find out how much space there is in the buffer *I

space = sbspace(&so->so-snd);

I*
*Block if we want to send all at once, and there is not
*enough room
*I
if ((sosendallatonce(so)&&
spacecuio->uio-resid + rlen)OO
/* Or if we have more than MCLBYTES of data and less than
*MCLBMES of space and there’s already data in the queue
*I
(uio->uio-resid> =MCLBYTES && space <MCLBYTES &&
so- > so-sndsb-co = MCLBYTES &&
(so->so-state & SS-NBIO)= = O)) {

sbunlock(&so- > so-snd);
sbwa it(&so- > so-snd);
splx(s);
goto restart;
1

*

*

*

Table 7. Old sosend code that decides whether to wait on a socket buffer

of an mbuf cluster. The code is shown in Table 8. The
result of running the same experiment as previ-
ously is shown in Fig. 7. The resultant curve is
gratifyingly smooth compared to the previous result,
shown by the dotted line.

What Did We Learn?
Our problem finally resolved into a data trans-

fer problem between two layers of a communications
stack implementation. It is our contention that
this problem is inherent in the design methods
that are used for implementing communications soft-
ware, where the conceptual model of a layered stack
is also used for the engineering of the implemen-
tation. Layering is about modularizing the functions
performed on data during its transfer from one
machine to another, so that the complexity of the
transfer can be managed. However, the flip side
to modularization and data-hiding is that tuning
the efficiency of the data path for transfer of data
becomes difficult, as important details such as buffer
sizes are hidden from each layer. Vertical parti-
tioning emphasises the discontinuities in the data
path, which then obstruct the application from receiv-
ing the quality of service it requires.

3Liveness of theflow control
mechanism is given by the
liveness of the TCP imple-
mentation; as long as the
TCP mechanism works it will
eventualty deliver the data
currentb in the buffer, and
pee space for larger chunks of
data to be placed in the
buffer.

January 1992 IEEE Network Magazine 23

Authorized licensed use limited to: Memorial University. Downloaded on January 7, 2009 at 10:11 from IEEE Xplore. Restrictions apply.

*
'Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of Cali-
ornia.
'All rights reserved

'Redistribution i s only permitted until one year after the first shipment
'of 4.4BSD by the Regents. Otherwise, redistribution and use in source
md
'binary forms are permitted provided that: (1) source distributions
,etain
'this entire copyright notice and comment, and (2) distribution includ-
ng
'binaries display the following acknowledgement: This product includes
'software developed by the University of California, Berkeley and i t s
'contributors" in the documentation or other materials provided with
:he
'distribution and in all advertising materials mentioning features or use
'of this software. Neither the name of the University nor the names of
'its contributors may be used to endorse or promote products derived
'ram

'this software without specific prior written permission.
7HIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY
'EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
'LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
'AND FITNESS FOR A PARTICULAR PURPOSE.

'@(#)uipc-socket.c7.23 (Berkeley) 6/29/90

'Code to decide whether to write data to the send queue or not
'Nb this code has been edited to show the required features of it -
'no guarantees are given regarding i t s completeness
'1
'If there is less space in the send queue than we have data to send*/

'

'

if (space <resid +den &&
I*
* and either mustn't be broken up OR
* less space than the low water mark ie avoid Silly Window
* Syndrome

*I
(atomic 00 space < so->so-snd.sb-lowat (({
/*release lock on state */
sbunlock (&so- >so-snd);
/*wait until there is more space *I
error = sbwait(&so-snd);
splx(s);
if (error)
got0 out:
goto restart;
1

U Table 8. New sosend code that decides whether to wait on a socket buffer
The inadequacies of the layered model for imple-

mentation receive attention from Clark and Ten-
nenhouse [101. They propose that communications
architectures move away from layers and focus on
the requirements of the application as the basis. The
application data unit is used as the basis for con-
structing the communications software from
plug-in data transfer functions for presentation pro-
cessing, encryption, checksumming, etc., and con-
trol functions such as flow control are done "out
of band," rather like moving from stepwise decom-
position to object-oriented design, where the required
functions are put together with the application
data unit to create the required implementation.

Efficient data transfer requires the common pro-
cessing path, from application to wire to application,
to beexaminedand takenasanintegratedpath. Clark
uses the concept of "Integrated Layer Process-
ing" to cover the integration of the data path so
tha t the d a t a transfer is efficient. In the case
above, this would require the sizes of the buffers

at each stage of the transfer to be matched to the size
of the application data units, i.e., the size of the RPC
parameters and their associated control informa-
tion. To do this requires that communications
software have control paths both up and down, so
that the requirements of t he application and
higher functions can be met by the lower func-
tions, and the constraints of the lower parts of the
da t a pa th can shape the requirements of the
application.

Conclusion
We have exposed a design flaw in the commu-

nications software of most UNIX systems, positioned
at t he interface between the socket code and
TCP, a l though upcoming releases of U N I X
should not have this problem. In doing this, we
used the trace tool to discover the interactionsof the
interlayer communications, from user space to
kernel, and the tcpdump tool to discover the
interactions of the interpeer communications.

The advent of high-bandwidth networks, as
well as an increased range of applications fromvideo
and voice to more traditional data transfer, is
likely to increasingly reveal the inadequacies of
the layered communications architecture as a model
for constructingreal systems. We haveshownadesign
fault at a layer boundary that reduced efficiency;
at higher speeds and with more demanding appli-
cations, anydiscontinuityin the data pathwill reduce
the performance to below that which the user will
find acceptable. We believe it is necessary to start
adopting new models for designing communications
models such as those in [lo], which allow an
application to specify its requirements and have them
met by an integrated data transfer path.

References
[11 D. Comer, Interworking with TCPIIP, Prentice Hall International, 1988.
[2] ISO, "Information Processing Systems-Transport Service Defini-

[3] Sun MicrosystemsInc.,"RPC: RemoteProcedureCall Protocol,"rfcl057,

[41 V. Jacobson et al.. "TCPDUMP(1). BPF ...," UNlX Manual Page, 1990.
I51 Sun Microsystems Inc., "Trace," Manual Page, Aug. 1989.
161 Sun Microsystems Inc., "XDR: External Data Representation Standard,"

[7] J. Nagle, "Congestion Control in IP/TCP Internetworks," rfc896, SRI-NIC.

[E] D. Clark, "Window and Acknowledgment Strategy in TCP," rfc813,

[9] V. Jacobson. "Tutorial on Efficient Protocol Implementation," SlG-

(1 01 D. Clarkand D. Tennenhouse. "Architectural Considerationsfora New

tion," Int'l. Std. 8072, June 1986.

SRI-NIC, June 1988.

rfclOl4, SRI-NIC. June 1987.

Jan. 1984.

SRI-NIC, July 1982.

COMM '90, ACM, Sept. 1990.

Generation of Protocols." SIGCOMM '90, ACM, Sept. 1990.

Biographies
Jon Crowcroft is a senior lecturer in the Department of Com-

puter Science, University College London, where he is responsible for a
numberof Europeanand USfunded research projectsin Multi-mediacorn-
munications. For the last t w o years he has been consulting t o the
Bloomsbury Computing Consortium as a Senior Systems Analyst on
the installation of a multi-campus distributed system. He graduated in
Physics f rom Trinity College, Cambridge University in 1979, and
gained his MSc in Computing in 1981.

Ian Wakeman gained degrees in electrical engineering from
Cambridge and Stanford in 1987 and 1988. then worked at the GEC
Hirst Research Centreon high speed networksand theirprotocols. In 1991
he joined UCL as a researcher, and he is currently interested in the
problems of transmitting video over packet switched networks and
other areas of multi-media communications.

Zheng Wang received his B. Eng. degree in Electronic Engineer-
ing f rom Zhejiang University. China, in 1985. He is n o w working
toward his Ph.D at University College London, UK.

Dejan Sirovica received his BSc. and D. Phil. degrees from the
University of Sussex, England, in 1982 and 1988, respectively. From
1982 to 1990, he worked on SERC, ALVEY, and RACE research projects
at the University College London respectively. Dr. Sirovica i s currently a
member of technical staff at USWESTAdvanced Technologies, Boul-
der, Colorado.

24 January 1992 IEEE Network Magazine

Authorized licensed use limited to: Memorial University. Downloaded on January 7, 2009 at 10:11 from IEEE Xplore. Restrictions apply.

