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3 hen invoking an operation on 
aremote machine, the paradigm 
with which programmers are  
most comfortable is the Remote 
Procedure Call (RPC). In this 
operation, the local process 

invokes a stub procedure, which marshalls the param- 
eters to be passed to the remote operation into a 
machine-independent format, then sends the param- 
eters and a request identifying the operation to 
be invoked to the remote machine. The operation 
is performed, and the results are returned to the local 
stub procedure, which passes the results to the invok- 
ing program. If the link to the remote machine is 
not totally reliable, then in order to  create the 
once-only semantics  that  most calls require ,  
mechanisms that guarantee the correct delivery 
of the data must be invoked. Where these mecha- 
nisms are placed is amatter of debate; the Sun Micro 
Systems Network File SystemTM is best known 
for using its own reliability mechanisms over the User 
Datagram Protocol (UDP) [l]. However, build- 
ing reliable delivery mechanisms that can cope 
with arbitrary message sizes as well as the prob- 
lems of duplicates, missing messages and out-of- 
o rde r  delivery is not a trivial task, and if it is 
constructed wrongly, performance suffers-not only 
that of the operation invoking the messages, but that 
of the other denizens of the network as well. 

An alternative approach is to use the reliable 
delivery mechanisms that already exist in most 
systems, such as the Open Systems Interconnect 
(OSI) Class 4 Transport Protocol (TP4) [2], or  
the Department of Defense (DoD) Transmission 
Control Protocol (TCP) [ 11. These protocols ensure 
not only reliable delivery of data, but also respon- 
sible use of the network resource. 

There are concerns that RPC is not the cor- 
rect mechanism to  use in a distributed system 
that runs over high bandwidth-delay-product net- 
works, as the block-on-response semantics of the call 
are an inefficient use of resources. However, it is 
an easy mechanism for programmers raised on  
single-processor systems to use in building distributed 
systems, and it will be sufficiently pervasive to  
make optimizing its performance worthwhile. 

As part of an investigation into the perfor- 
mance of the Sun Micro Systems RPC mecha- 
nism [3] over TCP, we found unexpected glitches 
in the performance of R P C  calls as  their  size 
increased. This aroused curiosity about where these 
glitches were arising from. Eventually, investigations 
led to a mismatched interface between layers of a 
protocol stack, and an inappropriate buffering strat- 
egy between the socket code and the TCP code. A 
diagram of the protocol stack can be seen in Table 1. 

Although correcting these deficiencies is an impor- 
tant result in its own right, we feel that the prob- 
lems we have uncovered illustrate the deficiencies 
in the models used to implement communications 
systems. The concentration on a layered architec- 
ture in which the functions of each layer are inde- 
penden t  of each o t h e r  resul ts  in a common 
processing path for incoming and outgoing data, 
which passes along a path with crevasses and  
cliffs between layers. Instead, we recommend the 
use of a separate model for designing and imple- 
ment ing a real  system, in which the  focus of 
design is on supporting the requirements of the appli- 
cations' data unit. 

The first part of this article shows the detec- 
tion and diagnosis of the problem, and the sec- 
ond part provides some pointers to a design approach 
that could avoid the problems of mismatched 
communications layers. 

This Graph Looks Strange . . . 
The RPC program used to construct the test 

was a very simple echo program, where the data 
passed was turned around and echoed back. We 
ran the program for a fixed number of procedure 
calls and recorded the time taken while varying 
the size of the data to be echoed. The machineswere 
Sun SLCs running SunOs 4.1, connected via an 
E the rne t .  Since the T C P  connection is main- 
tained while the calls are being made, the latency 
of connection setup and teardown is amortised 
over all the  calls. A graph showing the perfor- 
mance we discovered can be seen in Fig. 1. Simi- 
lar behavior was observed on Sun3 and HP400 
machines. The variations in thresholds and per- 
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formance between thevarious machineswere minor. 
Wewerevery puzzled by the order-of-magnitude 

glitch that started at  around 4,000 bytes of data 
and finished 1,000 bytes later, and by the irregu- 
lar graph of the subsequent behavior. 

Our initial thoughts were that the problem 
was an aberrant interaction between the window- 
ing flow control of TCP and the buffer sizes of 
the RPC call. To investigate this, we ran tcpdump 
on a third machine on the same ethernet as the 
machines carrying the  aberrant conversation. 
Tcpdump is a traffic-monitoring program written by 
Van Jacobsonetal. [4], which can capture traffic and 
print out the constituent packets with the follow- 
ing information (shown pictorially in Table 2): 

*Time: This is the time in which the packet 
traversed the Ethernet, accurate to about +/- 10 
ms using the Network Interface T a p  in Sunos 
4.1.1. 

*src, dst: These are the source and destination 
Internet Protocol (IP) address and TCP/UDP 
port number, and can be used to deduce applica- 
tion in most cases using thewell known port concept 
in the IP Architecture. 

Oflgs: These flags indicate whether the packet 
is the start or end of a connection, or whether the 
packet has a PUSH bit set if TCP data. 

*seq:  If TCP,  the  s tar t  and  ending (byte) 
sequence number of this packet. 

01th: The packet length in bytes. 
*ack: IfTCP, the sequence number that thispack- 

et acknowledges. 
-win: The size of the receive window in bytes that 

the sender of this packet is advertising. 
The sample trace displayed in Table 3 shows 

the pattern of packet transmission for data sizes 
of 4,800 bytes. The initial UDP packets query the 
portmapper as to which port to use. The trace is 
displayed in a time sequence diagram in Fig. 2. 
The other tool we used to investigate the prob- 
lem was the trace facility, which intercepts the 
system calls and signals of a program and displays 
their arguments and results [5]. In this way, we 
discovered that the rpcgenl-generated code uses 
user space buffers of 4,000 bytes for  External 
Da ta  Representat ion ( X D R )  conversion [6]. 
These buffers are  then submitted to the kernel 
for copying to mbufs and then onto the socket queue. 
A curtailedversion of the output from the trace com- 
mand is shown in Table  4. The  write and read 
calls are shown in bold. 

As can be seen in Table 3, the default window size 
of the TCP connection is 4,096 bytes. If the buffer 
used to pass data were 4,096 bytes as well, then 
each buffer would be sent as a full window, and 
we would have seen a smoother  graph for the 
transfer of data. However, theywere not, andwe saw 
suboptimal behavior when the sizes of the buffers 
were not matched. Thus,  t he  first lesson is t o  
match buffer sizes whenever possible, so that 
there are never any small amounts of space left over. 
(Of course, we could not possibly speculate that 
the reason for having 4,000-byte buffers in the XDR 
code was because someone interpreted “4K” as 
meaning “4,000” and not “4,096.”) However, the 
behavior still required a deeper explanation, so we 
started looking at the tcpdump traces more closely. 

T h e  length of t he  R P C  call was extended 
beyond that expected by the delays between the small 
packet in Fig. 2, carrying sequence numbers  
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rn Table 1. Protocol Shck  of the RPC call 
1 time 1 src 1 dst I flgs I seq I lth 1 ack 1 win I 

‘ 
w Table 2. Format of tcpdurnp trace 

0.140000 camus.l096>sartre.sunrpc:udp 56 
0.1 50000 sartre.sunrpc>camus.1096:udp 28 
0.150001 camus.l043>sartre.l055:S 1:1(0) win 4096<mss 1 4 6 0 ~  
0.150002 sartre.l055>camus.l043:S 1:1(0) ack 1 win 4096 cmss 1460> 
0.150003 camus.1043>sartre.l055:.ack 1 win 4096 
0.160000 camus.l043>sartre.l055:.1:1461(1460) ack 1 win 4096 
0.1 60001 camus.1043>sartre.1055:.1461:2921(1460) ack 1 win 4096 
0.160002 camus.l043>sartre.l055: P 2921:4001(1080) ack 1 win 4096 
0.1 60003 sartre.l055>camus.l043:.ack 4001 win 4096 
0.1 60004 camus.l043>sartre.l055:P4001:4097(96)ack 1 win 4096 
0.1 70000 sartre.l055>camus.l043:.ack4097 win 4000 
0.180000 camus 1043>sartre.l055:P 4097:4853(756)ack 1 win 4096 
0.230000 sartre.l055>camus.l043:.1:1461(1460)ack 4853 win 4096 
0.230001 sartre.l055>camus.l043:.1461:2921(1460)ack4853 win 4096 
0.230002 sartre.1055>camus.1043:P2921:4001(1080) ack 4853 win 4096 
0.230003 camus.l043>sartre.l055:.ack 4001 win 1568 
0.230004 camus.l043>sartre.l055:.ack4001 win 4096 
0.230005 sartre.l055>camus.l043:P4001:4097(96) ack 4853 win 4096 
0.430000 camus.l043>sartre.l055:.ack4097 win 4096 
0.430001 sartre.l055>camus.l043:P 4097:4837(740) ack 4853 win 4096 
0.490000 camus.l043>sartre.l055:F 4853:4843(0) ack 4837 win 4096 
0.490001 sartre.l055>camus.l043:.ack 4854 win 4096 
0.490002 sartre.l055>camus.l043:F 4837:4837(0) ack 4854 win 4096 
0.490003 camus.l043>sartre.l055:.ack 4838 win 4096 

w Table 3. tcpdump traces for buffer size of 4800 bytes (with 52 bytes of rpc 
overhead) 

socket (2,1,6) = 4 
bind (4,””..,16) = -1 EACCES (Permission denied) 
connect (4,“”.., 16) = 0 
gettimeofday (Oxf7fff8c0.0) = 0 
getpid () = 865 
brk (0xd4c0) = 0 
gettimeofday (Oxf7fff9c0,O) = 0 
write (4””.., 4000) = 4000 
write (4“200 3Paaaaaaaaaaaaaaaaaaaaaaaaaaaa”..,852) = 852 
select (64, Oxf7fffSc8, 0, 0, Oxac40) = 1 
read (4, ””.., 4000) = 4000 
brk (0xf4c)) = 0 
select (64, 9xf7fff5c8, 0, 0, Oxac40) = 1 
read (4,”200 3@aaaaaaaaaaaaaaaaaaaaaaaaaaaa1’..,4OO0) = 96 
select (64, Oxf7fff650.0.0, Oxac40) = 1 
read (4, “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa”.., 4000) = 740 
gettimeofday (oxf7fff9c0.0) = 0 
close (0) = 0 
close (1) = 0 
close (2) = 0 
exit (0) = ? 

w Table 4. Sample trace output for the RPC call with 4800 bytes 

4001 :4097, its corresponding acknowledgement, and 
then the larger data  packet carrying sequence 
numbers 4,097:4,837. These packets are highlight- 
ed in bold in Fig. 2. The gaps in between sending 
the small packet and the succeedingpacketwas long 
enough to force the data to be read in two sepa- 
rate reads, one of 96 bytes and the other of 756 bytes. 

lrpcgen is a tool that gener- 
atesthestubroutinesforthe 
rpc code, and incorporates 
thefunctions necessary for 
Sun XDRprocessing (presen- 
tation conversion) and com- 
municationprogramming. 
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0.920001 camus.l047>sartre.discard: S 1:1(0) win 4096 
0.920002 sartre.discard>camus.1047:5 1:1(0) ack 1 win 4096 <mss 
1460> 
0.920003 camus.l047> sartre.discard:.ack 1 win 4096 
0.950000 camus.l047>sartre.discard:.l:1461(1460) ack 1 win 4096 
0.950001 camus.1047> sartre.discard:.l461:2921(1460) ack 1 win 4096 
0.950002 camus.l047> sartre.discard: P 2921:4096(1175) ack 1 win 
4096 
0.960000 sartre.discard>camus.l047:.ack 4096 win 2049 
0.960001 camus.lO47csartre.discard: P 4096:4097(1) ack 1 win 4096 
0.960002 sartre.discard>camus.l047:.ack4096 win 4096 
1.010000 camus.l047>sartre.discard: FP 4097:5119(1022) ack 1 win 
4096 
1.010001 sartre.discard>camus.l047:.ack 5120 win 3074 
1.020001 sartre.discard>camus.1047:F1:1(0) ack 51 20 win 4096 
1.020002 camus.l047>sartre.discard:.ack 2 win 4096 

0.470001 camus.l048>sartre.discard:S 1:1(0) win 4096 <mss 1460> 
0.470002 sartre.discard>camus.l048:S 1:1(0) ack 1 win 4096 <mss 
1460> 
0.470003 camus.l048>sartre.discard:.ack 1 win 4096 
0.500000 camus.l048>sartre.discard:.l:1461(1460) ack 1 win 4096 
0.500001 camus.l048~sartre.discard:.1461:2921(1460) ack 1 win 4096 
0.500002 camus.l048>sartre.discard:P 2921 :4096(1175) ack 1 win 4096 
0.500003 sartre.discardxamus.l048:.ack 4096 win 4096 
0.510000 sartre.discard>camus.l048:.ack 4096 win 4096 
0.510001 camus.l048>sartre.discard:P 4096:5121 (1025) ack 1 win 4096 
0.550000 camus.l048>sartre.discard:F 5121:5121 (0) ack 1 win 4096 
0.550001 sartre.discard>camus.1048:.ack 51 22 win 4096 
0.570000 sartre.discard>camus.1048: F 1:1(0) ack 5122 win 4096 
0.570001 camus.l048>sartre.discard:.ack 2 win 4096 

w Table 5. tcpdump traces for a buffer size of 4095 bytes, and data sizes of 
51 I 8  bytes and 51 20 bytes 

0.144713 spasky.l160>fischer.discard: S 1:1(0) win 4096 cmss 1460> 
0.145877 fischer.discard>spasky.l160: S 1:1(0) ack 1 win 4096 emss 
1460 > 
0.146467 spasky.l160>fischer.discard:.ack 1 win 4096 
0.155208 spasky.l160>fischer.discard:.l:l461(1460) ack 1 win 4096 
0.1 56432 spasky.l160>fischer.discard:.1461:2921(1460) ack 1 win 4096 
0.1 57292 spasky.1160>fischer.discard:P2921:4096(1175)ack 1 win 4096 
0.1 57642 spasky.1160>fischer.discard:P4096:4097(1) ack 1 win 4096 
0.180476 fischer.discard>spasky.l160:.ack 4097 win 2048 
0.181374 fischer.discard>spasky.l160:.ack 4097 win 4096 
0.182697 spasky.l160>fischer.discard:P 4097:5119(1022) ack 1 win 4096 
0.195328 spasky.l160>fischer.discard: F 51 19:5119(0) ack 1 win 4096 
0.195798 fischer.discard>spasky.l160:.ack 5120 win 4906 
0.204607 fischer.discardrspasky.1160: F 1:1(0) ack 5120 win 4096 
0.205308 spasky.1160 > fischer.discard:.ack 2 win 4096 

0.381148 spasky.1161 >fischer.discard:S 1:1(0) win 4096 <mss 1460> 
0.382277 fischer.discardzspasky.ll61:S 1:1(0) ack 1 win 4096 cmiss 
1460 > 
0.382906 spasky.1161 >fischer.discard:.ack 1 win 4096 
0.391533 spasky.1161 >fischer.discard:.l:1461(1460)ack 1 win 4096 
0.392763 spasky.1161 >fischer.discard:.1461:2921(1460) ack 1 win 4096 
0.393605 spasky.1161 >fischer.discard:P 2921:4096(1175) ack 1 win 4096 
0.41 6785 fischer.discardrspasky.1161 :.ack 4096 win 2049 
0.41 7739 fischer.discard>spasky.l161 :.ack 4096 win 4096 
0.418893 spasky.1161 >fischer.discard:P 4096:5121(1025) ack 1 win 4096 
0.431728 spasky.1161 >fischer.discard:F 5121:5121(0) ack 1 win 4096 
0.432271 fischer.discard>spasky.l161:.ack 5122 win 4096 
0.441032 fischer.discard>spasky.l16l:Fl:l(O) ack 5122 win 4096 
0.441 761 spasky.1161 >fischer.discard:.ack 2 win 4096 

I Table 6. tcpdump traces for a buffer size of 4095 bytes, and data sizes of 
5118 bytes and 5120 bytes with NO-TCPDELAY 

The cost of the additional system call and its con- 
comitant context switches accounted for the addi- 
tional time spent servicing the RPC call. It thus 
appeared that the performance glitchwas caused by 
problems in the send and receive paths of the 

This is to be erpcected as 
the TCPcode has been heavi- 
ly optimized for bulk through- 
put transfers. 

operating system, and not necessarily by the rpc- 
gen code. In particular, the problems seemed to 
be  caused by the splitting of the second data  
buffer written to the send code into a small and 
larger packet, even though the total data  to be 
sent is less than the maximum size of an Ethernet 
packet. 

To ensure that the problem was independent 
of the rpcgen code, we hacked a program that 
wrote avariable size ofbuffer and avariable amount 
of data to the discard port, and used this to dis- 
cover what was happening at the TCP level. Inves- 
t igation of the per formance  showed that  the 
fallingedgeon theglitchlaybetween5,118 and5,120 
bytes of data being sent. 

As shown in Table 5 and pictorially in Figs. 3 
and 4, it is only the smaller of two data sizes that 
generates a small packet, which causes a slow- 
down of the data  flow due  to use of the Nagle 
algorithm [7]. This algorithm attempts to reduce the 
congestion in the network by only allowing one unac- 
knowledged small packet in the network at any 
one time. Unfortunately, this algorithm interacts 
quite badly with the delayed acknowledgment 
processing that occurs at the other end of the 
connection. After the small packet is sent, we 
have insufficient data remaining to make a “large” 
packet, so this packet cannot be sent until the 
previous small packet is acknowledged, thus 
obeying Nagle’s edict. However, the receive side 
of TCP processing delays generation of acknowl- 
edgements when data is received, since there is 
likely to be more data following soon. So, when a 
small packet is sent (and no other data), there 
will be a longwait before the acknowledgment is gen- 
erated and the throughput will suffer. When we 
repeated the experiment with the Nagle delay turned 
off at the sender (TCP-NODELAY as a socket 
option), we gained the results in Table 6. 

As can be seen, although the delay betweenpack- 
ets has been reduced, the data is still transferred 
for the smaller data size in a small and a big pack- 
et. In addition, the delayed acknowledgment poli- 
cy is not configurable, so the overall time spent 
transferring the data is still dominated by the 
timeout for the generation of the acknowledg- 
ment and only slightly improved by the faster 
generation of the larger packet. This is confirmed by 
repeating the initial RPC experiment, which showed 
little improvementwith using theTCP-NODELAY 
option. 

However, this effect is only apparent for trans- 
ferring small amounts of data, as the graph in Fig. 
5 shows. This graph tracks sequence number ver- 
sus time for buffer sizesof 4,095 bytes and 4,096 bytes, 
over a transfer of one million bytes (Nagle is on). The 
gradient shows the throughput achieved in the trans- 
fer, which is identical in both cases.2 Obviously, 
the problem we are searching for is a boundary effect, 
with no impact on large transfers but important 
for RPC calls. 

Tracking the Small Packet 
Looking through the TCP code to trace where 

a small packet could have been sent, we noticed 
that the PUSH bit is only set on a packet when it 
is the last data left in the send queue. Now, since 
the small packet has the PUSH bit set, we logical- 
ly deduced that  the socket code had placed a 

~ ~ 
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small amount of data in the send queue for the 
case when it had less than a certain threshold amount 
of data to send, and had not placed any data in 
the queue when it had more than the threshold 
amoun t  of data .  This  explains why bulk d a t a  
transfers are not affected by this phenomenon, since 
each wri te  f rom user  space will have a large 
amount of data for the sosend code to place in 
the queue, and the amount of user data should 
not drop below the threshold. 

T o  confirm this, we went t o  the BSD socket 
code  t o  see  when da ta  is placed o n  the  send  
queue. First we looked at  the Tahoe release of 
the 4.3 BSD code, in which we found the code in 
Table 7. 

This appeared to be the root of our problems, 
in that a small fraction of data  can be writ ten 
when the  total  data  is less than the  size of an  
mbuf cluster. We found this t o  be analagous to 
the Silly Window Syndrome for TCP described in 
[8], where throughput of a connection is limited 
by only having a small window open in the flow 
control mechanism, so that less-than-optimal-size 
packets of data are  sent throught the network. 
The problem is solved for TCP by preventing receivers 
from advertising small increases in receive windows, 
and by transmitters refraining from sending if the 
advertised window is too small. In the problem 
presented here, the flow control is between the sock- 
et  layer and the TCP layer, and it is the sender- 
the socket layer-who is misbehaving and sending 
small chunks of datawhen it is more efficient to send 
larger chunks. T h e  socket layer should refrain 
from placing more data into the buffer until there 
is sufficient space3 to send a larger chunk of data. 

It is important to realize the significance ofwhere 
this error originated and, in particular, how the 
layered structure of the software contributed to 
the problem. The communications software is imple- 
mented in a layered fashion, where each layer 
contains functionality independent of that in the 
other layers. Thus, the application processes are inde- 
pendent of the presentation processing and the 
semantics of the data passed to the XDR routines 
are hidden from the XDR processing layer. Each 
layer “does its thing” o n  the  data  to  be trans- 
ferred, and then moves it down to the layer below. 
In  this way, we get the time sequence diagram 
show in Fig. 6, where the data passes from application 
to RPC stub routine to XDR routine (presenta- 
tion layer in the International Standards Organi- 
zation-ISO-Reference Model) to socket (session 
layer) to TCP (transport layer) and so on. 

The  most recent release of the BSD socket 
code (Reno) corrects the problem by the use of a 
low-water mark, in which data is only appended 
to the send queue when the space remaining is above 
a settable low-water mark (through the setting of 
socket  opt ions) .  I t  appea r s  t ha t  t he  cu r ren t  
default is 0 bytes, but it is suggested that this is 
increased to  at  least the default maximum seg- 
ment size for TCP sockets. Users cannot be relied 
upon to set the proper sizes for common working 
of their code. A somewhat terse explanation of 
the thinking behind the BSD communications 
code can be found in [9]. 

T o  test out our hypothesis, we rebuilt a UNIX 
kernel with a modified sosend function that only 
placed partial user data  into the send queue if 
therewas more space in the send queue than the size 

I* 
*Copyright (c) 1982, 1986 Regents of the University of California 
*All rights reserved. 

*Redistribution and use in source and binary forms are permitted 
*provided that the above copyright notice and this paragraph are 
*duplicated in all such forms and that any documentation, 
*advertising materials, and other materials related to such 
*distribution and use acknowledge that the software was developed 
*by the University of California, Berkeley. The name of the 
*university may not be used to endorse or promote products derived 
*from this software without specific prior written permission. 
*THIS SOFMIARE IS PROVIDED ”AS IS“ AND WITHOUT ANY 
*EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT 
*LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY 
*AND FITNESS FOR A PARTICULAR PURPOSE. 

*@(#uipc-socket.c7.1 O(Berkeley) 6/29/88 

*Code to decide whether to write data to the send queue or not 
*Nb This code has been edited to show the required features of it- 
*no guarantees are given regarding its completeness 
*/ 
/*find out how much space there is in the buffer *I 

space = sbspace(&so->so-snd); 

I* 
*Block if we want to send all at once, and there is not 
*enough room 
*I 
if ( (sosendallatonce(so)&& 
spacecuio->uio-resid + rlen)OO 
/* Or if we have more than MCLBYTES of data and less than 
*MCLBMES of space and there’s already data in the queue 
*I 
(uio->uio-resid> =MCLBYTES && space <MCLBYTES && 
so- > so-sndsb-co = MCLBYTES && 
(so->so-state & SS-NBIO)= = O ) ) {  

sbunlock(&so- > so-snd); 
sbwa it(&so- > so-snd); 
splx(s); 
goto restart; 
1 

* 

* 

* 

Table 7. Old sosend code that decides whether to wait on a socket buffer 

of an mbuf cluster. The code is shown in Table 8. The 
result of running the same experiment as previ- 
ously is shown in Fig. 7. The  resultant curve is 
gratifyingly smooth compared to the previous result, 
shown by the dotted line. 

What Did We Learn? 
Our problem finally resolved into a data trans- 

fer problem between two layers of a communications 
stack implementation. It is our contention that 
this problem is inherent in the design methods 
that are used for implementing communications soft- 
ware, where the conceptual model of a layered stack 
is also used for the engineering of the implemen- 
tation. Layering is about modularizing the functions 
performed on data during its transfer from one 
machine to another, so that the complexity of the 
transfer can be managed. However, the flip side 
to modularization and data-hiding is that tuning 
the efficiency of the data path for transfer of data 
becomes difficult, as important details such as buffer 
sizes are hidden from each layer. Vertical parti- 
tioning emphasises the discontinuities in the data 
path, which then obstruct the application from receiv- 
ing the quality of service it requires. 

3Liveness of theflow control 
mechanism is given by the 
liveness of the TCP imple- 
mentation; as long as the 
TCP mechanism works it will 
eventualty deliver the data 
currentb in the buffer, and 
pee space for larger chunks of 
data to be placed in the 
buffer. 
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* 
'Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of Cali- 
ornia. 
'All rights reserved 

'Redistribution i s  only permitted until one year after the first shipment 
'of 4.4BSD by the Regents. Otherwise, redistribution and use in source 
md 
'binary forms are permitted provided that: (1) source distributions 
,etain 
'this entire copyright notice and comment, and (2) distribution includ- 
ng 
'binaries display the following acknowledgement: This product includes 
'software developed by the University of California, Berkeley and i t s  
'contributors" in the documentation or other materials provided with 
:he 
'distribution and in all advertising materials mentioning features or use 
'of this software. Neither the name of the University nor the names of 
'its contributors may be used to  endorse or promote products derived 
'ram 

'this software without specific prior written permission. 
7HIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY 
'EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT 
'LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY 
'AND FITNESS FOR A PARTICULAR PURPOSE. 

'@(#)uipc-socket.c7.23 (Berkeley) 6/29/90 

'Code to  decide whether to  write data to  the send queue or not 
'Nb this code has been edited to  show the required features of it - 
'no guarantees are given regarding i t s  completeness 
'1 
'If there is less space in the send queue than we have data to  send*/ 

' 

' 

if (space <resid +den && 
I* 
* and either mustn't be broken up OR 
* less space than the low water mark ie avoid Silly Window 
* Syndrome 

*I 
(atomic 00 space < so->so-snd.sb-lowat (({ 
/*release lock on state */ 
sbunlock (&so- >so-snd); 
/*wait until there is more space *I 
error = sbwait(&so-snd); 
splx(s); 
if (error) 
got0 out: 
goto restart; 
1 

U Table 8.  New sosend code that decides whether to wait on a socket buffer 
The inadequacies of the layered model for imple- 

mentation receive attention from Clark and Ten- 
nenhouse [ 101. They propose that communications 
architectures move away from layers and focus on 
the requirements of the application as the basis. The 
application data unit is used as the basis for con- 
structing the  communications software from 
plug-in data transfer functions for presentation pro- 
cessing, encryption, checksumming, etc., and con- 
trol functions such as flow control are done "out 
of band," rather like moving from stepwise decom- 
position to object-oriented design, where the required 
functions are  put together with the application 
data unit to create the required implementation. 

Efficient data transfer requires the common pro- 
cessing path, from application to wire to application, 
to beexaminedand takenasanintegratedpath. Clark 
uses the concept of "Integrated Layer Process- 
ing" to  cover the integration of the data path so 
tha t  the d a t a  transfer is efficient. In  the  case 
above, this would require the sizes of the buffers 

at each stage of the transfer to be matched to the size 
of the application data units, i.e., the size of the RPC 
parameters and their associated control informa- 
tion. To do this requires that communications 
software have control paths both up and down, so 
that  the requirements  of t he  application and 
higher functions can be met by the lower func- 
tions, and the constraints of the lower parts of the 
da t a  pa th  can shape  the requirements  of the 
application. 

Conclusion 
We have exposed a design flaw in the commu- 

nications software of most UNIX systems, positioned 
at  t he  interface between the  socket code and 
TCP,  a l though upcoming releases  of U N I X  
should not have this problem. In doing this, we 
used the trace tool to discover the interactionsof the 
interlayer communications, from user space to  
kernel, and the  tcpdump tool to  discover the 
interactions of the interpeer communications. 

The advent of high-bandwidth networks, as 
well as an increased range of applications fromvideo 
and voice to  more traditional data transfer, is 
likely to increasingly reveal the inadequacies of 
the layered communications architecture as a model 
for constructingreal systems. We haveshownadesign 
fault at a layer boundary that reduced efficiency; 
at higher speeds and with more demanding appli- 
cations, anydiscontinuityin the data pathwill reduce 
the performance to below that which the user will 
find acceptable. We believe it is necessary to start 
adopting new models for designing communications 
models  such as  those in [ lo],  which allow an 
application to specify its requirements and have them 
met by an integrated data transfer path. 

References 
[11 D. Comer, Interworking with TCPIIP, Prentice Hall International, 1988. 
[ 2 ]  ISO, "Information Processing Systems-Transport Service Defini- 

[3] Sun MicrosystemsInc.,"RPC: RemoteProcedureCall Protocol,"rfcl057, 

[41 V. Jacobson et al.. "TCPDUMP(1). BPF ...," UNlX Manual Page, 1990. 
I51 Sun Microsystems Inc., "Trace," Manual Page, Aug. 1989. 
161 Sun Microsystems Inc., "XDR: External Data Representation Standard," 

[7] J. Nagle, "Congestion Control in IP/TCP Internetworks," rfc896, SRI-NIC. 

[E] D. Clark, "Window and Acknowledgment Strategy in TCP," rfc813, 

[9] V. Jacobson. "Tutorial on Efficient Protocol Implementation," SlG- 

(1 01 D. Clarkand D. Tennenhouse. "Architectural Considerationsfora New 

tion," Int'l. Std. 8072, June 1986. 

SRI-NIC, June 1988. 

rfclOl4, SRI-NIC. June 1987. 

Jan. 1984. 

SRI-NIC, July 1982. 

COMM '90, ACM, Sept. 1990. 

Generation of Protocols." SIGCOMM '90, ACM, Sept. 1990. 

Biographies 
Jon Crowcroft is a senior lecturer in the Department of  Com- 

puter Science, University College London, where he is responsible for a 
numberof Europeanand USfunded research projectsin Multi-mediacorn- 
munications. For the last t w o  years he has been consulting t o  the 
Bloomsbury Computing Consortium as a Senior Systems Analyst on 
the installation of a multi-campus distributed system. He graduated in 
Physics f rom Trinity College, Cambridge University in  1979, and 
gained his MSc in Computing in 1981. 

Ian Wakeman gained degrees in  electrical engineering from 
Cambridge and Stanford in 1987 and 1988. then worked at the GEC 
Hirst Research Centreon high speed networksand theirprotocols. In 1991 
he joined UCL as a researcher, and he is currently interested in the 
problems of transmitting video over packet switched networks and 
other areas of multi-media communications. 

Zheng Wang received his B. Eng. degree in Electronic Engineer- 
ing f rom Zhejiang University. China, in  1985. He is n o w  working 
toward his Ph.D at University College London, UK. 

Dejan Sirovica received his BSc. and D. Phil. degrees from the 
University of  Sussex, England, in 1982 and 1988, respectively. From 
1982 to 1990, he worked on SERC, ALVEY, and RACE research projects 
at the University College London respectively. Dr. Sirovica i s  currently a 
member of  technical staff at USWESTAdvanced Technologies, Boul- 
der, Colorado. 

24 January 1992 IEEE Network Magazine 

Authorized licensed use limited to: Memorial University. Downloaded on January 7, 2009 at 10:11 from IEEE Xplore.  Restrictions apply.


