
1

Fast Switched Backplane for a
Gigabit Switched Router

Nick McKeown
Department of Electrical Engineering

Stanford University, Stanford, CA 94305-9030

1 Table of Contents

1 Table of Contents ...1

2 Abstract ..2

3 The Architecture of Internet Routers ...2

4 Why we need fast backplanes..6

5 Switched Backplanes: An Overview ...7
5.1 Crossbar Switch...7

5.2 Fixed vs. Variable Length Packets...9

5.3 Input Queueing and Virtual Output Queueing... 11

5.4 Crossbar Scheduling Algorithms...13

5.5 The iSLIP Algorithm...13

6 Unicast Traffic: Performance Comparison...15

7 Controlling Packet Delay...15

8 Supporting Multicast Traffic..19
8.1 Scheduling Multicast Traffic ...21

8.2 ESLIP: Combining Unicast and Multicast ..22

9 Concluding Remarks..27

10 References..29

2

2 Abstract

There is a new trend in the architecture of high performance Internet routers: congested,shared

backplanes are being replaced by much fasterswitched backplanes that allow multiple packets to be

transferred simultaneously.

In this paper, we’ll see why the demand for router performance means that switched backplanes

are needed now, and study the technical problems that must be solved in their design. In particular,

we focus on the switched backplane developed for the Cisco 12000 GSR. This router has a high-

performance switched backplane architecture capable of switching 16-ports simultaneously, each

with a line rate of 2.4Gb/s. The backplane uses a number of new technologies that enable a parallel,

compact design providing extremely high throughput for both unicast and multicast traffic. Inte-

grated support for priorities on the backplane allows the router to provide distinguished qualities of

service for multimedia applications.

3 The Architecture of Internet Routers

We begin by revisiting the general architecture of an IP router, as illustrated in a simplified form

in Figure 1. We find it convenient to separate the router’s functions into two types:

Figure 1: The key common architectural components of a router. In high performance systems, the
forwarding decision, backplane and output link scheduling must be performed in hardware, while the less
timely management and maintenance functions are performed in software.

Forwarding
Decision

Forwarding
Decision

Output Link
Scheduling

Output Link
Scheduling

Forwarding Table Management,
Network Management, and
System Management

Backplane

3

1. Datapath Functions: operations that are performed on every datagram that passes through the
router. These are most often implemented in special purpose hardware, and include the forward-
ing decision, the backplane and output link scheduling.

2. Control Functions: operations that are performed relatively infrequently. These are invariably
implemented in software, and include, the exchange of routing table information with neighbor-
ing routers, as well as system configuration and management.

Therefore, when trying to improve the per-packet performance of a router, we naturally focus on

thedatapath functions. Let’s take a closer look at the datapath functions by tracing the typical path

of a packet through an IP router:

The Forwarding Decision: When a datagram arrives, its destination address is looked up in a for-

warding table. If the address is found, a next-hop MAC address is appended to the front of the data-

gram, the time-to-live (TTL) field of the IP datagram header is decremented, and a new header

checksum is calculated.

The Backplane:The datagram is then forwarded across the backplane to its outgoing port (or

ports). While waiting its turn to be transferred across the backplane, the datagram may need to be

queued: if insufficient queue space exists, the datagram may need to be dropped, or it may be used

to replace other datagrams.

The Output-link Scheduler: When it reaches the outgoing port, the datagram waits for its turn to

be transmitted on the output link. In most routers today, the outgoing port maintains a single first-

come-first-served queue, and transmits datagrams in the order that they arrive. More advanced rout-

ers distinguish datagrams into different flows, or priority classes, and carefully schedule the depar-

ture time of each datagram in order to meet specific quality of service guarantees.

Over the years, there have been many different architectures used for routers. Particular archi-

tectures have been selected based on a number of factors, including cost, number of ports, required

performance and currently available technology. The detailed implementation of individual com-

mercial routers have generally remained proprietary, but in broad terms, all routers have evolved in

similar ways. They have evolved similarly overtime: as time has progressed, they have followed a

common trend of development. They have also evolved inperformance: at any one time, the higher

performance routers differ from the lower-performance devices in similar ways. The first trend in

their evolution has been the implementation of more and more of the datapath functions in hard-

ware. In recent years, improvements in the integration of CMOS technology has made it possible to

implement a larger number of functions in ASIC components, moving functions that were once per-

4

formed in software to special purpose hardware. Increased integration serves two purposes: on one

hand, the same functions can often be performed at similar speed for a lower cost. On the other

hand, with sufficient hardware it is often possible to significantly improve the system performance.

The second evolutionary trend has been towards parallelism to either achieve higher performance,

or to allow the use of lower cost components. Third, and most important to our discussion here,

there has been a trend away from the use of shared buses. Buses that are shared between multiple

functions often become congested, limiting the performance of the system.

The evolution in the architecture of routers is illustrated in Figure 2(a)-(d). The original routers

were built around a conventional computer architecture, as shown in Figure 2(a): a shared central

Line Card
#1

Fwd
Engine

Line Card
#2 Engine

Line Card
#3

Fwd
Engine

CPU
Memory

Line Card
#1

Line Card
#2

Line Card
#3

Line Card
#4

Line Card
#5

Line Card
#6

CPU
Memory

Line Card
#1

Line Card
#2

Line Card
#3

CPU
Memory

CPU
Memory

CPU
Memory

CPU
Memory

Line Card
#1

CPUMemory

Line Card
#2

CPUMemory

Line Card
#3

CPUMemory

CPU
Memory

Figure 2: The basic architectures of packet-processors. Over time, or to enhance performance, more
hardware is used on the main datapath; and more parallelism is employed.

(a) (b)

(c) (d)

Fwd

Packet Packet

Packet Packet

5

bus, with a central CPU, memory and peripheral Line Cards. Each Line Card performs the MAC

layer function, connecting the system to each of the external links. Packets arriving from a link are

transferred across the shared bus to the CPU, where a forwarding decision is made. The packet is

then transferred across the bus again to its outgoing Line Card, and onto the external link.

The main limitation of the architecture in Figure 2(a) is that the central CPU must process every

packet, ultimately limiting the throughput of the system. This limitation prompted the architecture

in Figure 2(b), in which multiple CPUs process packets in parallel. Incoming packets are forwarded

to a CPU as before, but this time there is a choice. For example, the packet could be sent to the first

available CPU, or packets with the same detination address could always be sent to the same CPU.

The advantage is clear: parallelism can increase the system throughput, or allow the use of lower

cost CPUs.

The architecture in Figure 2(c) takes parallelism one stage further, placing a separate CPU at

each interface. A local forwarding decision is made in a dedicated CPU, and the packet is immedi-

ately forwarded to its outgoing interface. This has the additional benefit that each packet need only

traverse the bus once, thus increasing the system throughput. The central CPU is needed to maintain

the forwarding tables in each of the other CPUs, and for centralized system management functions.

The performance of the architecture in Figure 2(c) is ultimately limited by two factors. First,

forwarding decisions are made in software, and so are limited by the speed of a general purpose

CPU. But general purpose CPUs are not well suited to applications in which the data (packets) flow

through the system; CPUs are better suited to applications in which data is examined multiple

times, thus allowing the efficient use of a cache. Carefully designed, special purpose ASICs can

readily outperform a CPU when making forwarding decisions, managing queues, and arbitrating

access to the bus. Hence, CPUs are being replaced increasingly by specialized ASICs. The second

factor that limits the performance is the use of a shared bus — only one packet may traverse the bus

at a time between two Line Cards. Performance can be increased if multiple packets can be trans-

ferred across the bus simultaneously. This is the reason that a crossbar switch is increasingly used in

place of a shared bus. In a crossbar switch, multiple Line Cards can communicate with each other

simultaneously greatly increasing the system throughput.

So, by introducing a hardware forwarding engine and replacing the bus with a crossbar switch,

we reach the architecture shown in Figure 2(d). Today, the very highest performance Routers are

designed acccording to this architecture.

Our work is motivated by the following configuration, and so we will use it as an example

throughput this paper: a 16-port IP router, with each port operating at 2.4Gb/s. Let’s consider how

6

fast each of the datapath functions must operate in our example router, starting with theforwarding

decision. A new forwarding decision must be made for every arriving datagram, and so with an

average datagram length today of 250bytes, each port of our router must make a forwarding deci-

sion every 800ns. This corresponds to approximately 1.2million decisions per second. Although

performing a router lookup in such a short time may sound like a difficult goal to achieve, in prac-

tice, it is quite stratighforward. In fact, it is a common misconception that routers today — operating

at much lower data rates than our example — are limited by their ability to forward packets. This is

not so. Techniques for making over a million forwarding decsions per second have been known for

sometime. And more recently, a variety of techniques operating at 5-20 million forwarding deci-

sions per second have been described [2][1][18][19][20].

Now let’s take a look at the performance we need for our router’s backplane. In the worst case,

all of the line cards may wish to transfer datagrams simultaneously, requiring a backplane with an

aggregate bandwidth of . If the backplane cannot keep up, the shared

bus becomes congested and buffers overflow. As we will see, it is impractical today to build shared

backplanes operating at 38.4Gb/s. But fortunately, switched backplanes provide a simple, and effi-

cient alternative, and can easily operate at these rates.

The Cisco 12000 router uses the architecture in Figure 2(d) allowing multiple packets to be

transferred simultaneously.

4 Why we need fast backplanes

If backplanes are congested, why don’t we just make them faster? After all, the computer indus-

try has introduced faster and faster buses over the past few years: from ISA, to EISA, and now PCI.

Unfortunately, while the need for routing bandwidth is growing exponentially, bus bandwidth is

growing much more slowly.

When the highest performance is required, shared backplanes are impractical for two reasons.

First, is congestion: the bandwidth of the bus is shared among all the ports, contention leads to addi-

tional delay for packets. If the arrival rate of packets exceeds the bus bandwidth for a sustained

period, buffers will overflow and data will be lost. Second, high speed shared busses are difficult to

design. The electrical loading caused by multiple ports on a shared bus, the number of connectors

that a signal encounters, and reflections from the end of unterminated lines leads to limitations on

16 2.4Gb/s× 38.4Gb/s=

7

the transfer capacity of a bus. State of the art shared buses today can achieve a maximum capacity

today of about 20Gb/s [3]. This is more than adequate for bridges and routers with a few 100Mb/s

Ethernet ports. But for our router with line-rates of 2.4Gb/s, we need an aggreagte bandwidth of

40Gb/s, and so a shared backplane cannot keep up.

5 Switched Backplanes: An Overview

5.1 Crossbar Switch

The limitations of a shared backplane are being increasingly overcome by use of a switched

backplane. Figure 3 makes a simplified comparison between a conventional shared backplane and a

switched backplane comprised of multiple line cards arranged around a centralcrossbar switch.

Crossbar switches are widely used for switched backplanes because of their simplicity.

Line

#1

Router
Card

Figure 3: A comparison of conventional and switched backplane designs for a high performance router.

Card
Line

#2
Card

Line

#N
Card

Line

#1

Router
Card

C
ard

Line

#3
Card

Line

#2
C

ard

Line

#4
Card

Li
ne #NC
ar

d
Li

ne

#N
-1

C
ar

d

(a) Conventional shared backplane. (b) Switched backplane.

8

The crossbar switch enables high performance for two reasons: first, connections from Line

Cards to the central switch are now simple point-to-point links, which means that they can operate

at very high speed. In the last couple of years, semiconductor companies have developed chip-to-

chip serial links operating at over 1Gb/s using a conventional CMOS process. These serial links are

now being deployed in a number of commercial switches and routers. And laboratory results sug-

gest that links operating at 4-10Gb/s will be available in the next few years. With only one transmit-

ter on each wire, reflections can be controlled allowing signals to settle in a shorter time. Short

point-to-point links also help control clock skew, signal integrity, and reduce electromagnetic inter-

ference.

The second reason that a crossbar switch can provide higher performance is because it can sup-

portmultiple bus transactions simultaneously. This greatly increases the aggregate bandwidth of the

system. A crossbar switch is shown in Figure 4; by closing several crosspoints at the same time, the

switch can transfer packets between multiple ports simultaneously. In fact, we say that a crossbar is

internallynon-blocking because it allowsall inputs and outputs to transfer packets simultaneously.

Note thatall crossbar switches are internally non-blocking.

Figure 4: A 4-input crossbar interconnection fabric.

Input 1

Input 2

Input 3

Input 4

O
ut

pu
t 1

O
ut

pu
t 2

O
ut

pu
t 3

O
ut

pu
t 4

9

A centralized scheduler considers all of the packets waiting to be transferred across the switch

fabric and selects a configuration of the crossbar ensuring that at any one instance each input is con-

nected to at most one output, and each output is connected to at most one input.

The simple structure of a crossbar switch allows it to be readily implemented in silicon. Further-

more, we can boost performance by using multiple crossbar switches in parallel. Figure 5 shows a

system with multiple line cards connected to a four-way parallel crossbar. During each time slot, all

of the crossbar “slices” are set to the same configuration, presenting a 4-bit wide bus from each line

card to the switch core. If the connection from each Line Card to each slice of the crossbar switch

uses one of the fast serial links described above, we can readily build a switched backplane with a

very high aggregate bandwidth.

5.2 Fixed vs. Variable Length Packets

Packets may be transferred across the switched backplane in small fixed sized units, or as vari-

able length packets. As we shall see shortly, there are significant disadvantages against using vari-

able length packets. And so the highest-performance routers segment variable length packets into

fixed sized units, or “cells”†, before transferring them across the backplane. The cells are reassem-

Line CardLine Card

Figure 5: A four-way parallel crossbar switch, interconnecting three line cards. A centralized scheduler
connects to each line card, and determines the configuration of the crossbar switch for each time slot.

Line Card

Line CardLine Card

Centralized

Scheduler

10

bled back into variable length packets at the output before being transmitted on the outgoing line.

Let’s examine the choice between using fixed, and variable length packets.

Life is simple if we use fixed size cells. We can think of time progressing in fixed size incre-

ments, which we call “time slots”. All outputs and inputs become free at the same time — at the end

of every time slot. At the end of the time slot, the scheduler examines the packets that are waiting to

be tranferred across the crossbar switch. It then selects a configuration, deciding which inputs will

be connected to which outputs in the next time slot. As we shall see later, it is possible to make this

scheduling decision in a way that is fair among connections, never starves an input or output, and

maintains highly efficient use of the crossbar switch. Efficiency is important — the crossbar switch

is a central resource shared among all of the Line Cards. If we don’t use it efficiently, and waste its

bandwidth, the performance of the whole system will be degraded. Finally, from the perspective of

hardware design, experience shows that processing fixed size cells is simpler and faster than han-

dling variable length packets.

Life is much harder if we use variable length packets; in particular, things are made difficult for

the scheduler. Because variable length packets may finish traversing the crossbar switch atany

time, the scheduler must keep constant track of those outputs that are busy and those that are idle.

As soon as an output becomes idle, the scheduler must quickly choose which input is allowed to

connect to it next. Unfortunately, the choice is not straightforward as there can be several inputs

waiting for the same output. The problem for the scheduler is this: if an idle input has packets for

several different outputs, should it make the input wait for a busy output to become free (for a pos-

sibly long time), or should it immediately connect to an idle output? If it does not wait for busy out-

puts, it can perpetually starve packets to that output, placing the switch at the mercy of the arriving

traffic. For this reason, switches that use variable length packet generally have lower throughput,

and are able to use only about half the system bandwidth. The rest of the bandwidth is wasted by the

scheduling mechanism.

Because of their superior performance, we choose to use switched backplanes withfixed size

cells. We will make this assumption throughout the rest of this paper.

†. The name is obviously borrowed from ATM. From now on, we will refer to all fixed length packets as cells. Note
that they can be of any length, or format. In particular, they will not necessarily have the same length or format as
ATM cells.

11

5.3 Input Queueing and Virtual Output Queueing

Even though a crossbar switch is always internally non-blocking, there are three other types of

blocking that can limit its performance. Understanding these blocking mechanisms is important —

our goal is to build a very high performance switched backplane using a crossbar switch and so we

must take steps to avoid blocking mechanisms wherever possible. As we will see, we adopt differ-

ent mechanisms to eliminate or mitigate each type of blocking in a systematic way.

The first type of blocking is calledhead-of-line (HOL) blocking;the second and third are very

closely related to each other, and we call them input-blockingand output-blocking, respectively. As

we shall see shortly,HOL-blockingcan significantly reduce the performance of a crossbar switch,

wasting nearly half of the switch’s bandwidth. Most routers today that use crossbar switches suffer

from HOL-blocking. Fortunately, there is a solution for this problem calledvirtual output queueing,

that eliminatesHOL-blocking entirely and makes 100% of the switch bandwidth available for trans-

ferring packets. Our switch will use virtual output queueing, and so we will examine this method in

the next section. The other types of blocking,input- andoutput-blocking, are present in all crossbar

switches. They arises because of contention for access to the crossbar: each input line and each out-

put line of a crossbar can only transport one cell at a time. If multiple cells wish to access a line

simultaneously, only one will gain access while the others will be queued. Fortunately, as we shall

see later,input- andoutput-blocking do not reduce thethroughput of a crossbar switch. Instead, they

increase thedelay of individual packets through the system, and perhaps more importantly make the

delay random and unpredictable. Fortunately, we can reduce this problem with two techniques: the

first is to use aprioritization mechanism in the crossbar switch, and the second is to use a technique

calledspeedup.Our switch uses both methods to control packet delay, and so we will examine these

methods in detail in Section 7.

Overcoming HOL-blocking: In the very simplest crossbar switches, all of the cells waiting at each

input are stored in a single FIFO queue. When a cell reaches the head of its FIFO queue, it is con-

sidered by the centralized scheduler. The cell contends for its output with cells destined to the same

output, but currently at the HOL of other inputs. It is the job of the centralized scheduler to decide

which cell will go next. Eventually, each cell will be selected and will be delivered to its output

across the crossbar switch. Although FIFO queueing is widely used, it has a problem: cells can be

held up by cells ahead of them that are destined to a different output. This phenomenon is called

12

HOL-blocking. The centralized scheduler only “sees” the cell at the head of the FIFO queue, and so

the HOL cell blocks packets behind it that need to be delivered to different outputs. A good analogy

is a traffic-light in which traffic turning to the right is allowed to proceed even when the light is red.

If there is only a single lane and you wish to turn right, but the car ahead of you wants to go straight-

ahead, you are blocked: with a single lane you can’t pass the car in front to reach your “free” output.

Even under benign traffic patterns, HOL blocking limits the throughput to just 60% of the aggregate

bandwidth for fixed [4] or variable length packets. When the traffic is bursty, or favors some output

ports the throughput can be much worse.

Fortunately, there is a simple fix to this problem known as virtual output queueing (VOQ), first

proposed in [5]. At each input, a separate FIFO queue is maintained for each output, as shown in

Figure 6. After a forwarding decision has been made, an arriving cell is placed in the queue corre-

Input 1
Q(1,1)

Q(1,N)

InputN
Q(N,1)

Q(N,N)

Output 1

OutputN

Matching,M

 A1,1(n)

Figure 6: A model of anN-port input-queued switch with virtual output queueing (VOQ). Cells arrive at inputi, and are
placed into the appropriate VOQ. At the beginning of each time slot, the centralized scheduler selects a configuration for the
crossbar, by matching inputs to outputs. Head of line blocking is eliminated by using a separate queue for each output at each
input.

Crossbar
Switch

Centralized
Scheduler

Data H

Data H

13

sponding to its outgoing port. At the beginning of each time slot, a centralized scheduling algorithm

examines the contents of all the input queues, and finds a conflict-free match between inputs and

outputs. In theory, a scheduling algorithm can increase the throughput of a crossbar switch from

60% with FIFO queueing to a full 100% if VOQs are used [6]. This is because HOL blocking has

been eliminated entirely: no cell is held up by a cell in front of it that is destined to a different out-

put. In our traffic-light example, this is the equivalent to having a dedicated right turn lane: the car

in front of you no longer blocks you, and you are free to proceed to your free output.

Our switched backplane will use virtual output queueing to boost performance.

5.4 Crossbar Scheduling Algorithms

In recent years, there has been a significant amount of research work on scheduling algorithms

for crossbar switches that use virtual output queueing. Scheduling algorithms have been developed

by a number of researchers [23][24][25][26], for research prototypes [2][10], and commercial prod-

ucts [7].

What makes a good crossbar scheduling algorithm for the backplane of a router? We desire

algorithms with the following properties:

• High Throughput — An algorithm that keeps the backlog low in the VOQs. Ideally, the
algorithm will sustain an offered load up to 100% on each input and output.

• Starvation Free — The algorithm should not allow any VOQ to be unserved indefinitely.

• Fast — To achieve the highest bandwidth switch, it is important that the scheduling algo-
rithm does not become the performance bottleneck. The algorithm should therefore select a
crossbar configuration as quickly as possible.

• Simple to implement— If the algorithm is to be fast in practice, it must be implemented
in special-purpose hardware; preferably within a single chip.

5.5 The iSLIP Algorithm

The iSLIP algorithm is designed to meet our goals.iSLIP is an iterative algorithm — during

each time slot, multiple iterations are performed to select a crossbar configuration, matching inputs

to outputs. TheiSLIP algorithm uses rotating priority (“round-robin”) arbitration to schedule each

active input and output in turn. The main characteristic ofiSLIP is its simplicity; it is readily imple-

14

mented in hardware and can operate at high speed. A prototype version of iSLIP is currently being

implemented that makes a new scheduling decision every 40ns [10].

iSLIP attempts to quickly converge on a conflict-free match in multiple iterations, where each

iteration consists of three steps. All inputs and outputs are initially unmatched and only those inputs

and outputs not matched at the end of one iteration are eligible for matching in the next. The three

steps of each iteration operate in parallel on each output and input and are shown in Figure 5. The

steps of each iteration are:

Step 1. Request. Each input sends a request to every output for which it has a queued cell.

Step 2. Grant. If an output receives any requests, it chooses the one that appears next in a fixed,
round-robin schedule starting from the highest priority element. The output notifies each input
whether or not its request was granted.

Step 3. Accept. If an input receives a grant, it accepts the one that appears next in a fixed, round-
robin schedule starting from the highest priority element. The pointer to the highest priority ele-
ment of the round-robin schedule is incremented (modulo N) to one location beyond the accepted
output. The pointer to the highest priority element at the corresponding output is incremented
(modulo N) to one location beyond the granted input. The pointers are only updated after the first
iteration.

By considering only unmatched inputs and outputs, each iteration matches inputs and outputs

that were not matched during earlier iterations.

Despite its simplicity, the performance ofiSLIP is surprisingly good. A detailed study of its per-

formance and implementation can be found in [8], and more briefly in [9]. In brief, its main proper-

ties are:

Property 1. High Throughput — For uniform, and uncorrelated arrivals, the algorithm enables
100% of the switch capacity to be used.

Property 2. Starvation Free — No connection is starved. Because pointers are not updated after
the first iteration, an output will continue to grant to the highest priority requesting input until it is
successful. FurthermoreiSLIP is in some sense fair: with one iteration and under heavy load, all
queues with a common output have identical throughput.

Property 3. Fast — The algorithm is guaranteed to complete in at most N iterations. However, in
practice the algorithm almost always completes in fewer than iterations. i.e. for a switch
with 16 ports, four iterations will suffice.

Property 4. Simple to implement — An iSLIP scheduler consists of 2N programmable priority
encoders. A scheduler for a 16-port switch is readily implemented on a single chip†.

ai

gi

log2 N()

15

To benefit from these properties, our switched backplane will use VOQs and the iSLIP schedul-

ing algorithm.

6 Unicast Traffic: Performance Comparison

It is worth pausing to consider our choices so far, and compare the performance with some alter-

native approaches. The graph in Figure 7 plots the average delay seen by cells waiting to traverse

backplane against the amount of traffic arriving to the system. In each case, there is an offered load

at which the system saturates, and the delay grows very rapidly. It is at this operating point that the

backplane becomes so severely congested that it must start dropping packets. We can easily infer

from this graph how much of the system bandwidth is available for transferring useful packets. For

example, let’s first consider the bandwidth available for the shared bus. We see that even though the

bus is running at four times the speed of each Line Card, it saturates when the offered load at each

2.4Gb/s input line is just 600 Mb/s. If we move to a switched backplane with VOQs and theiSLIP

scheduling algorithm, we see that the maximum achievable throughput jumps all the way to 100%.

In other words, the switched backplane can support all of its lines even when they are fully loaded.

The situation is not nearly so good if we don’t use VOQs, or if we use variable length packets

instead of fixed length packets. The graph shows that in this case, only about 60% of the system

bandwidth is available. Put another way, about 15Gb/s is wasted due to HOL blocking. We sum-

marise these results in Table 1.

7 Controlling Packet Delay

Up until now, we have concentrated on how to overcome HOL blocking, and increase the sys-

tem throughput from 60% to 100% of the available switching bandwidth. While this is a major

improvement over existing switched backplanes, there is another problem faced by crossbar

†. In [10], a 32-portiSLIP scheduler is implemented on a single chip.

TABLE 1.

Architecture Shared Bus Switched Backplane

9.6Gb/s bus FIFO Queues
Variable Length
Packets VOQs & iSLIP

Maximum Throughput 9.6 Gb/s (25%) 23 Gb/s (60%) 23 Gb/s (60%) 38 Gb/s (100%)

16

switches: it is difficult to control the delay of packets across the backplane. This can be a great dis-

Figure 7: Graph comparing the performance of a variety of switched backplanes for a router, with
each port operating at 2.4Gb/s. The traffic is benign: random, but uniform traffic is applied to each input of the
router. The graph plots aggregate traffic load at all the ports against packet delay, (inµs). In each case, there is a
traffic load which saturates the router, and the packet delay grows without bound. Lines (a) and (d) show the two
extremes: line (a) is for a conventional router with a shared bus operating at four times the line rate. This router can
only support a total aggregate traffic load of 9Gb/s. Line (b) on the other hand represents the maximum theoretical
throughput achievable byany router. Inbetween these two extremes lie two alterantive crossbar designs. Line (c)
shows what happens if we use a crossbar switch, but with FIFO queues. The performance is limited to about 22Gb/
s, and is well short of the theoretical maximum. But if we use VOQs and the iSLIP scheduling algorithm, line (d)
shows that the throughput comes close to the maximum achievable: 38.4Gb/s.

16 16×

10 20 308 38.4
0

100

200

300

400

500

600

700

800

900

1e+03

Maximum Throughput (Gb/s)

A
ve

ra
ge

 D
el

ay
 (

us
)

Shared Bus

FIFO/Variable

VOQ+iSLIP

Theoretical Max

(a) Shared Bus

(b) Theoretical

(c) FIFO/Variable

(d) VOQ+iSLIP

 Length Packets

 Maximum

17

advantage for routers that attempt to control packet delay as part of their support for multimedia

traffic.

Before considering this problem, let’s revisit the way in which packet delay is controlled in a

router. Arriving packets are delivered across the switched backplane to their outgoing port where an

output-link schedulerdetermines the exact time that a packet will be transmitted on the outgoing

line. If, however, the time that it takes for the packet to reach the outgoing port is unpredictable and

uncontrollable, then the output link scheduler cannot precisely schedule the packet’s departure time.

As we shall see, bothinput- andoutput-blocking make a packet’s delay unpredictable. But fortu-

nately, two methods can help us overcome this problem:prioritization, andspeedup.

Input-Blocking: To understand how input-blocking occurs, consider again the VOQ switch illus-

trated in Figure 6. At the end of each cell time, theiSLIP scheduler selects at most one VOQ to be

served at each input. Input-blocking arises because VOQs at one input can be blocked by other

VOQs at the same input that receive preferential service. Consider now what happens when a VOQ

at one input is selected to be serviced by the scheduler: other non-empty VOQs at the same input

must wait until a later cell-time to receive service. In fact, it is very difficult to predict exactlywhen

a non-empty VOQ will receive service. This is because it depends on the occupancy of other VOQs

at the same input. The VOQ must contend for access to the crossbar switch with other VOQs that

mayblock it for an unpredictable number of cell times.

Output-Blocking: Output-blocking occurs because each output line from the crossbar switch can

only transfer one cell at a time. Consider two cells at different inputs that are both waiting to be

transferred to the same output. Only one cell can be transferred at a time, while the other cell will be

blocked until a later cell time. As with input-blocking,output-blocking makes it very difficult to

predict when a cell will be delivered to its output.

In our switched backplane, we use two techniques to control the delay of packets. The first tech-

nique is to separate packets into differentpriority classes according to their urgency; packets with a

higher priority are given preferential access to the crossbar switch. Although this does not reduce

the total amount ofinput- or output-blocking, it prevents low priority packets from affecting the

delay of high priority packets. In essence, high priority cells see a less-congested switch — a high

priority cell can only be blocked by another high-priority cell. This simple prioritization technique

18

is found to be very effective, as can be easily seen from Figure 7. We use a reservation protocol such

as RSVP to limit the amount of high priority traffic entering the switch. Figure 7 clearly shows that

if the amount of traffic in the highest priority class is kept relatively small, the queueing delay is

close to zero. High priority cells will therefore be transferred to the output port with almost constant

(and negligible) delay. Once they reach the output port, their departure time can be strictly con-

trolled to meet the quality of service requirements.

Prioritization works well when the amount of high-priority traffic is kept small. However, with

the fraction of multimedia traffic growing in the Internet, we would like to offer multiple priority

classes, and be able to control the delay in each class. This is why we use our second technique:

speedup.

Speedup:A common way to reduceinput- andoutput-blocking is to run the crossbar switch faster

than the external line rate. For example, if we operate the crossbar switch twice as fast as the exter-

nal line, we can transfertwo cells from each input port, andtwo cells to each output port during

each cell time. In this case, we say that the switch has a speedup of two. The advantage of speedup

is obvious: delivering more cells per cell time reduces the delay of each cell through the switch. In

fact, with sufficient speedup, we can guarantee that every cell isimmediately transferred to the out-

put port, where its departure time can be precisely scheduled.

So why not determine how much speedup is needed, and always run the backplane at that

speed?

Unfortunately, if we want to ensure that no packets are queued at the input, it is generally

believed to require a speedup ofN, whereN is the number of ports. This is very unfortunate: it

means that the queue memories and links connecting the memories to the crossbar must runN times

faster than for a conventional system with a speedup of just one. This is totally impractical for high-

performance routers: their performance is invariably limited by the availability of fast memories.

Significant speedup is either uneconomical, or simply impossible. For example, if the Cisco 12000

were to have a speedup ofN, the memory bandwidth at each output port would increase from

2.4Gb/s to 38.4Gb/s. Even if the memories were arranged to be one cell wide, the memory devices

would have to perform a read or write operation every 5ns.

19

However, research work in recent years has suggested that a crossbar switch with a speedup of

two behavesalmost identically to a crossbar switch with a speedup ofN; independently ofN. This

has been confirmed quite recently with the following results: (i) If a crossbar switch maintains only

a single FIFO queue, then a speedup ofN is required for the cells to experience predictable delay.

(ii) If instead VOQs are used, then a speedup of justfour will suffice. In fact, results suggest that it

will soon be possible to precisely control delay through a switch with VOQs and a speedup of just

two.

We summarize the effect of speedup in Figure 8,where we see that if VOQs are used, then a

speedup of just 2 is sufficient to achieve minimum delay. This result clearly demonstrates the bene-

fit of using VOQs rather than FIFO queues.

8 Supporting Multicast Traffic

So far we have focussed on how a switched backplane can efficiently transfer unicast packets.

But it is becoming increasingly important for a router to efficiently support multicast traffic. In this

section, we consider how our switched backplane can be modified to support multicast traffic at

very high performance. As we will see, we can achieve very high performance using the same

crossbar switch, and a modified version of theiSLIP scheduling algorithm, called ESLIP.

A simple way to service the input queues is to replicate the input cell over multiple cell times,

generating one output cell per time slot. However, this approach has two disadvantages. First, each

input must be copied multiple times, increasing the required memory bandwidth. Second, input

cells contend for access to the switch multiple times, reducing the bandwidth available to other traf-

fic at the same input. Higher throughput can be attained if we take advantage of the natural multi-

cast properties of a crossbar switch. So instead, we will design our system to copy an input cell to

any number of idle outputs in a single cell time.

In our combined switch, we maintain two types of queues: unicast cells are stored in VOQs, and

multicast cells are stored in a separate multicast queue. By closing multiple crosspoints simulta-

20

Figure 8: The effect of speedup on the delay of packets through a switched backplane. (a) If VOQs are used
along with the iSLIP scheduling algorithm, the throughput can achieve 100%, but the delay is larger than the
theoretical minimum delay. (b) With a speedup of just 1.8, the delay is reduced to close to the minimum. (c) When
the speedup equals 2, the performance is indistinguishable from the minimum achievable delay.

20 3015 38.4
0

100

200

300

400

Aggregate Throughput (Gb/s)

A
ve

ra
ge

 D
el

ay
 (

us
)

FIFO/Variable

S=1

S=1.8

S=2 & Theoretical Maximum

(a) Speedup=1 (VOQ+iSLIP)

(b) Speedup=1.8

(c) Speedup=2

(d) Theoretical
 Minimum Delay

(e) FIFO

21

neously, the crossbar switch is used to perform cell replication within the fabric, as shown in Figure

8. As before, at the beginning of each time slot, a centralized scheduling algorithm decides which

crosspoints to close.

As a simple example of how a crossbar switch can support multicast, consider the 2 input andN

output switch shown in Figure 9. Queue has an input cell destined for outputs {1,2,3,4} and

queue has an input cell destined for outputs {3,4,5,6}. The set of outputs to which an input cell

wishes to be copied is called thefanout of that input cell. For example, in Figure 9, the input cell at

the head of each queue is said to have a fanout of four.

For clarity, we distinguish an arrivinginput cell from its correspondingoutput cells. In the fig-

ure, the single input cell at the head of queue will generate four output cells. For practical rea-

sons, an input cell waits in line until all of the cells ahead of it have departed.

8.1 Scheduling Multicast Traffic

There are two different service disciplines that we can use. The first is calledno fanout-splitting

in which all of the copies of a cell must be sent in the same cell time. If any of the output cells loses

contention for an output port, none of the output cells are transmitted and the cell must try again in

the next cell time. The second discipline is calledfanout-splitting, in which output cells may be

Figure 9: In a crossbar fabric, multicast packets can be sent to multiple outputs simulatneously by
“closing” multiple crosspoints at the same time. This example shows a 4-input switch forwarding a
multicast packet to two destinations.

Packet

QA

QB

QA

22

delivered to output ports over any number of cell times. Only those output cells that are unsuccess-

ful in one cell time continue to contend for output ports in the next cell time.† Research has shown

that fanout-splitting enables a higher switch throughput for little increase in implementation com-

plexity. For example, Figure 10 compares the average cell latency (via simulations) with and with-

out fanout-splitting of a random scheduling algorithm. The figure demonstrates that fanout-splitting

can lead to approximately 40% higher throughput. Because of its simplicity, and performance bene-

fits, we use fanout-splitting in our multicast scheduling algorithms.‡

8.2 ESLIP: Combining Unicast and Multicast

To support multicast, we need a new scheduling algorithm — one that can examine the contents

of the multicast queues at each input, and select which output cells will be delivered in each time

†. It might appear thatfanout-splitting is difficult to implement. However this is not the case. In order to support
fanout-splitting, we need one extra signal from the scheduler to inform each input port when a cell at its HOL is
completely served.

‡. For an in-depth comparison of a variety of scheduling algorithms with and without fanout-splitting, the reader is
referred to [12][29][30]

Figure 10: A crossbar switch that supports multicast. Each input maintains a special FIFO
queue for multicast cells.

2 N×

6
5
4
3

2
3
4

1

Q
A

Q
B

2 2 2

5 5 5

1

3 3

1 1

3

4

6

4

6

4

6

23

slot. Furthermore, the algorithm needs to choose between competing unicast and multicast cells,

each with its own priority.

For this purpose, we have devised a novel algorithm, ESLIP, that efficiently schedules unicast

and multicast traffic simultaneously, and is able to provide preferential service to cells with higher

priority. ESLIP is an enhanced version of the unicastiSLIP algorithm.

The queues maintained by a16-port switch supporting four priority levels are illustrated in Fig-

ure 11. At the beginning of each time slot, the ESLIP scheduler examines the contents of all the

0.1

1

10

100

1000

10000

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Fanout-splitting
No Fanout-splitting

Figure 11: Graph of average cell latency (in number of cell times) as a function of offered load for a 8-port switch
(with uniform input traffic and average fanout of four). The graph compares a random scheduling policy with and
without fanout-splitting.

24

queues. LikeiSLIP, it is an iterative algorithm: all inputs and outputs are initially unmatched, with

each successive iteration adding additional connections. To keep track of which connection to favor

next, each output maintains a separate grant pointer for each priority level. For example, outputj

keeps pointers through . In addition, all the outputs share common pointers for multicast:

through . Likewise, each input maintains a separate accept pointer for each priority level, and

share common pointers through for multicast traffic. Each iteration consists of three steps:

Step 1. Request. Each input sends a request to every output for which it has a queued unicast cell.
The request if prioritized; the input sends a priority equal to the highest priority cell that it has for
each output. Likewise, each input sends a prioritized request to every output for which it has a
queued multicast cell.

Figure 12: The queues maintained by each input for a 16-port combined unicast-multicast switch, with four priority
levels {a,b,c,d}. Each input maintains 16 VOQs for unicast traffic and 1 for multicast traffic, for each priority level.
Hence, there are 68 queues per input.

Unicast Queues

Multicast Queues

1

16

abcd

abcd

a’b’c’d’

Unicast Queues

Multicast Queues

1

16

abcd

abcd

a’b’c’d’

crossbar

A
rr

iv
in

g
 C

e
lls

A
rrivin

g
 C

e
lls

gj
a

gj
d

gM
a′

gM
d′

aM
a′

aM
d′

25

Step 2. Grant. If an output receives any requests, it must choose just one. First, it considers all the
unicast and multicast requests, keeping those equal to the highest priority, and discarding the rest.
The remaining requests are either all unicast, or all multicast. If they are unicast requests at priority
k, it chooses the input that appears next in a fixed, round-robin schedule starting from its unicast

pointer value . This is the same as the grant procedure foriSLIP. If they are multicast requests, it

chooses the input that appears next in a fixed, round-robin schedule starting from the global multi-

cast pointer . The output notifies each input whether or not its request was granted.

Step 3. Accept. If an input receives any grants, it accepts just one. First, it considers all the unicast
and multicast grants, keeping those equal to the highest priority, and discarding the rest. If they are
unicast grants at priority levelk, it chooses the output that appears next in a fixed, round-robin

schedule starting from its unicast pointer value . The pointers and are both incremented as

for iSLIP. If they are multicast grants, it chooses the output that appears next in a fixed, round-robin

schedule starting from the global multicast pointer . If this connection completes the fanout, the

global multicast pointers and are updated. Finally, to avoid starvation, the pointers are only

updated after the first iteration.

Although the ESLIP algorithm is more complex than theiSLIP algorithm, it is surprisingly sim-

ple to implement in hardware. A schematic implementation is shown in Figure 12. The scheduler

consists of two sets of arbiters — grant arbiters that implement Step 2, and accept arbiters that

implement Step 3. An enlarged drawing of an arbiter shows how the arbiter selects between unicast

and multiple traffic, and determines the priority level of the selected request.

gi
k

gM
k

ai
k

ai
k

gi
k

aM
k

aM
k

gM
k

26

The ESLIP algorithm has the following features:

Property 1. High Throughput — For unicast traffic, ESLIP performs as well as iSLIP, and hence

Input
Arbiter

1

Output
 Arbiter

1

Input
Arbiter

2

Input
Arbiter

N

Output
 Arbiter

2

Output
 Arbiter

N

Unicast
Priority
Filter

Multicast
Priority
Filter

Select
Grant

U/M ?

priority

priority

R
eq

ue
st

s

D
ec

is
io

ns

Figure 13: A schematic implementation of the ESLIP algorithm.

Grant
Arbiters

Accept
Arbiters

27

for uniform, and uncorrelated unicast arrivals, the algorithm enables 100% of the switch capacity to
be used. Because fanout-splitting is used for multicast traffic, a high throughput is possible. In addi-
tion, the global multicast pointer helps clear backlog quickly — all of the outputs tend to favor the
same input, reducing the need to split fanout.

Property 2. Starvation Free — No connection is starved.

Property 3. Fast — The algorithm is guaranteed to converge in at most N iterations. However, in
practise the algorithm generally converges in fewer than iterations. i.e. for a switch with
16 ports, four iterations will suffice. Although the algorithm will not necessarily converge to a max-
imum sized match, it will find amaximal match: the largest size match without removing connec-
tions made in earlier iterations.

Property 4. Simple to implement — Like iSLIP, an ESLIP scheduler consists of 2N programmable
priority encoders. A scheduler for a 16-port switch can readily be implemented on a single chip.

The Cisco 12000 router uses the ESLIP algorithm to schedule unicast and multicast cells across

its backplane.

9 Concluding Remarks

Using the Cisco 12000 as an example, we have seen that a switched backplane based on a cross-

bar switch offers significant performance advantages over a conventional router with a centralized

shared bus. Furthermore, we can expect this architecture to scale well into the future.

However, care must be taken when designing a switched backplane to achieve high throughput

and predictable delay. We can summarize our design choices as follows:

Use Fixed Length Packets:Using fixed length packets (“cells”) allows up to 100% of the switch

bandwidth to be used for transferring cells. If variable lentgh packets are used, the system through-

put is limited to approximately 60%.

Use Virtual Output Queueing: If VOQs are used, instead of the conventional FIFO queues, then

head of line blocking can be eliminated entirely. Again, this raises the system throughput from 60%

to 100%.

Use Priority Levels and Speedup:Priority levels can make packet delay more predictable, allow-

ing the router to control delay for multimedia traffic. If VOQs and a moderate speedup are

employed, then the delay can be made precisely predictable.

log2 N()

28

Use Separate Multicast Queues: If multicast traffic is queued separately, then the crossbar may

be used to replicate cells, rather than wasting precious memory bandwidth at the input.

Use Fanout-Splitting for Multicast Packets:tIf the crossbar implementsfanout-splitting for mul-

ticast packets, then the system throughput can be increased by 40%.

Use a Combined Unicast and Multicast Scheduler: If a single scheduler is used to schedule both

unicast and multicast traffic, then: (a) the scheduling decisions can be made at greater speed, and (b)

the relative priority of unciast and multicast traffic can be maintained, preventing either type of traf-

fic from starving the other.

29

10 References
[1] W. Doeringer; G. Karjoth; M. Nassehi, “Routing on Longest-Prefix Matches,” IEEE Transactions on Networking,

Vol.4 No.1, pp. 86-97, Feb 1996.

[2] C. Partridge; P. Carvey et al. “A Fifty-Gigabit per Second IP Router,” Submitted to IEEE/ACM Transactions on
Networking, 1996.

[3] A. Singhal et al., “Gigaplane (TM): A High Performance Bus for Large SMPs,” Proc. of Hot Interconnects ‘96,
Stanford, CA..

[4] M. Karol; M. Hluchyj; S. Morgan, “Input versus output queueing on a space-division switch,” IEEE Transactions
on Communications, vol. 35, pp. 1347-1356, Dec 1987.

[5] Y. Tamir; G. Frazier, “High Performance Multiqueue Buffers for VLSI Communication Switches,“ Proc. of 15th
Annual Symp. on Computer Arch, June 1988.

[6] N. McKeown; V. Anantharam; J. Walrand, “Achieving 100% Throughput in an input-queued switch,” Proceedings
of IEEE Infocom ‘96.

[7] T. Anderson et al. “High Speed Switch Scheduling for Local Area Networks,” ACM Trans. on Computer Systems,
Nov 1993, pp. 319-352.

[8] N. McKeown, “Scheduling Cells in an input-queued switch,” PhD Thesis, University of California at Berkeley,
May 1995.

[9] N. McKeown, “iSLIP: A Scheduling Algorithm for Input-Queued Switches,” Submitted to IEEE Transactions on
Networking.

[10] N. McKeown et al. “The Tiny Tera: A small high-bandwidth packet switch core,” IEEE Micro, Jan-Feb 1997.

[11] S. Deering, “Multicast Routing in a Datagram Internetwork,” Ph.D. Thesis, Stanford University, CA, 1991.

[12] B. Prabhakar et al. “Multicast Scheduling for Input-Queued Switches,” To appear in IEEE JSAC, June 1997.

[13] H. Ahmadi; W. Denzel, “A Survey of Modern High-Performance Switching Techniques,” IEEE JSAC, vol. 7, no.
7, pp1091-1103, Sept 1989.

[14] A. Demers, S. Keshav; S. Shenker, “Analysis and Simulation of a Fair Queueing Algorithm,” J. of Internetwork-
ing : Research and Experience, pp.3-26, 1990.

[15] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for Packet Switching Networks,” ACM Transactions
on Computer Systems, vol.9 no.2, pp.101-124, 1990.

[16] D. Clark; S.Shenker; L. Zhang, “Supporting Real-Time Applications in an Integrated Services Packet Net-
work:Architectures and Mechanisms,” Proc. SIGCOMM ‘92, August 1992.

[17] H. Zhang, “Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks,” Proc. of the
IEEE, vol. 83, no. 10, pp.1374-1396.

[18] A. Brodnik , S. Carlsson, M. Degermark , and S. Pink, “Small Forwarding Tables for Fast Routing Lookups,” Pro-
ceedings of Sigcomm ‘97, France, September 1997.

[19] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High Speed IP Routing Lookups,” Proceedings
of Sigcomm ‘97, France, September 1997.

[20] S. C. Lin, P. Gupta, N. McKeown, “Fast Routing Lookups in Hardware,” submitted to IEEE Infocom ‘98. Pre-
print available on request.

[21] S. C. Lin, and N. McKeown, “A Simulation Study of IP Switching,” Proceedings of Sigcomm ‘97, France, Sep-
tember 1997.

[22] Tamir, Y.; and Chi, H-C.;“Symmetric Crossbar Arbiters for VLSI Communication Switches,”IEEE Trans on Par-
allel and Dist. Systems, Vol. 4, No.1, pp.13-27, 1993.

[23] LaMaire, R.O.; Serpanos, D.N.; “Two-dimensional round-robin schedulers for packet switches with multiple
input queues,”IEEE/ACM Transactions on Networking, Oct. 1994, vol.2, (no.5):471-82.

[24] Lund, C.; Phillips, S.; Reingold, N.; “Fair prioritized scheduling in an input-buffered switch,”Proceedings of the
IFIP-IEEE Conf. on Broadband Communications ‘96, Montreal, April 1996. p. 358-69.

[25] Hui, J.; Arthurs, E. “A broadband packet switch for integrated transport,”IEEE J. Selected Areas Communica-
tions, 5, 8, Oct 1987, pp 1264-1273.

[26] Ali, M.; Nguyen, H. “A neural network implementation of an input access scheme in a high-speed packet switch,”
Proc. of GLOBECOM 1989, pp.1192-1196.

[27] ATM Forum, “ATM User-Network Interface (UNI) Signalling Specification,” Version 4.0, April 1996.

30

[28] Hopcroft, J.E.; Karp, R.M. “An algorithm for maximum matching in bipartite graphs,”Society for Indus-
trial and Applied Mathematics J. Comput., 2 (1973), pp.225-231.

[29] J.F. Hayes, R. Breault, and M. Mehmet-Ali, “Performance Analysis of a Multicast Switch”,IEEE Trans. Com-
mun., vol.39, no.4, pp. 581-587. April 1991.

[30] J.Y. Hui, and T. Renner, “Queueing Analysis for Multicast Packet Switching’’,IEEE Transactions on Communi-
cations, vol.42, no.2/3/4}, pp.723-731, Feb 1994.

n
5/2

Nick McKeown is a Professor of Electrical Engineering and Computer Science
at Stanford University. He received his Phd from the University of California
at Berkeley in 1995. From 1986-1989 he worked for Hewlett-Packard Labs, in
their network and communications research group in Bristol, England.

During the Spring of 1995, he worked for Cisco Systems as an architect of the
Cisco 12000 GSR router.

Nick serves as an Editor for the IEEE Transactions on Communications. He is
the Robert Noyce Faculty Fellow at Stanford, and recipient of a fellowship
from the Alfred P. Sloan Foundation.

Nick researches techniques for high speed networks, including high speed
Internet routing and architectures for high speed switches. More recently, he
has worked on the analysis and design of cell scheduling algorithms, memory
architectures, and the economics of the Internet.

His research group is currently building the Tiny Tera; an all-CMOS Terabit
per second network switch.

