

Al in Physics

Terrence Tricco

Assistant Professor Chair, Master's of Data Science Memorial University of Newfoundland

Youssef Zaazou*, Alex Bihlo, Baasil Sanu*, Joe Fitzgerald

THE NOBEL PRIZE IN PHYSICS 2024

John J. Hopfield Geoffre

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Geoffrey E. Hinton

How is Al used in Physics?

Neutrinos

• What flavour of neutrino interaction has been observed?

Exoplanets

Which planetary system configurations are stable?

D Tamayo *et al. PNAS* **117** (31) 18194-18205 (2020) doi:10.1073/pnas.2001258117

Materials

How hard are different crystalline structures?

W Chen et al. npj Computational Methods 7:14 (2021) doi:10.1038/s41524-021-00585-7

Augmented Data Collection

- The Large Hadron Collider discards 99% of the data it collects.
- They use machine learning to help prioritize which events to store.

CMS Collaboration *Phys. Rep.* **115**, 678-772 (2025) doi:10.1016/j.physrep.2024.09.006

Al in Physics

Classification tasks

Regression tasks

Physics-Informed Neural Networks

- PINNs combine data-driven learning with physics-based constraints.
- The loss function is a combination of data loss and "physics" loss.

$$\mathcal{L} = \mathcal{L}_{ ext{data}} + \lambda \mathcal{L}_{ ext{physics}}$$

- The physics loss is the residuals from differential equations (difference between predicted and actual equation solution values).
- Curbs the problem of ML models predicting unphysical conditions (e.g., negative energy, faster than light speeds, etc.)

G Karniadakis et al. Nat. Rev. Phys. 3, 422-440 (2021) doi:10.1038/s42254-021

Infrared (Spitzer)

Optical (NOAO)

Ultraviolet (SWIFT)

Galaxy Translation

- **Objective:** Translate galaxy images from one photometric band to another (e.g., infrared to ultraviolet).
 - Band interpolation given two bands, find an intermediate band.
 - Band extrapolation extend a sequence of bands.

Galaxy Translation

 Architecture: A ResNet-like supervised model consisting of residual blocks, up-sampling and down-sampling blocks.

 Loss function: A combination of MAE and SSIM (structural similarity) index).

$$\mathcal{L} = \mathcal{L}_1 + \lambda \mathcal{L}_{\mathrm{SSIM}}$$
 where $\mathcal{L}_{\mathrm{SSIM}}$

 Adding the SSIM Loss improved all generic and domain-specific metrics.

SSIM = 1 - SSIM(Y, Y)

Training Data - Simulated

- Simulated galaxy images from the Illustris simulations.
- Includes 36 bands from 151 nm (ultraviolet) to 7090 nm (mid-Infrared).

Data: Illustris Simulations. Images: P Torrey et al. MNRAS 447, 2753-2751 (2015) doi:10.1093/mnras/stu2592

mulations. to 7090 nm (mid-Infrared).

Extrapolation on Simulated Data (Illustris)

NUV Generated

Y Zaazou*, A Bihlo, T Tricco, *ApJ* submitted (2025)

Residuals

Training Data - Real

- Galaxy images from DECaLS Dark Energy Camera Legacy Survey.
- Includes 450 nm to 900 nm (green, red, near-infrared).

Data: DECaLS/Galaxy Zoo. Images: H Leung, J Bovy MNRAS 483, 3255-3277 (2019) doi:10.1093/mnras/sty3217

Interpolation with Real Data (DECaLS)

Y Zaazou*, A Bihlo, T Tricco, ApJ submitted (2025)

Red Generated

Residuals

Infrared (Z)

.0

Residual Distributions

- Distribution of per-pixel residuals across the DECaLS testing dataset.
- Normally distributed (no skew). 99% of residuals are less than 0.09.

ECaLS testing dataset. s are less than 0.09.

Domain-Specific Metrics

- Gini coefficients quantify the per-pixel distribution of light in a galaxy.
- M20 relates the brightest 20% to the overall galaxy's light distribution.

ution of light in a galaxy. galaxy's light distribution.

Uncertainty Estimation

- Re-trained extrapolation model (R, G to NUV) multiple times with different random seeds.
- "donut-like" uncertainties location is accurate, with the most dominant uncertainty on the size and intensity.

Y Zaazou^{*}, A Bihlo, T Tricco, *ApJ* submitted (2025)

Std dev

earth.nullschool.net

Equatorial Deep Jets

P Brandt *et al. Nature* **000**, 1-3 (2011) doi:10.1038/nature10013

Al as a Pathfinder

- We want to understand the conditions under which coherent jets abruptly reverse direction.
- Our data is generated by a simplified statistical model of stratified, two-dimensional turbulence.
 - Describes the flow in terms of stream functions (excited & sheared).
 - Includes stochastic energy injection to drive turbulence.
- Ensemble average our data over 10,000 realizations.

The Reversal Phenomenon

Coherent mean positive flow abruptly transitions to coherent mean negative flow.

Jet Velocity

A Complicated Process

- This is a complicated process.
- Not so abrupt!
- There is a lead time before the velocity abruptly reverses.

Covariance of Excited and Sheared Stream Functions

- How early does a jet reversal start?
- What are the key moments that trigger a jet reversal?
- At what point is a jet reversal "locked in" (unavoidable)?

Al as an Explainability Tool

- We think we can use AI to answer these questions:
 - AI explainability tools (e.g., Shap, Accumulated Local Effects, etc),
 - Transformer models with the attention mechanism.
- Given a sequence of turbulent states, how far in advance can the model predict a jet reversal event?
- What are the key states or points in time that predict a reversal?

Parting Thoughts

Al in Physics Parting Thoughts

- Physics helped create AI. But how can physics now benefit from AI?
- Al Advantages:
 - Speed of results (once training has been done!).
 - Data quantity is increasing AI performs better with more data.
- Al Challenges:
 - Black box nature of AI. Physicists need explainability.
 - Lack of scientific robustness and reliability of models.

