
ABSTRACT

Module creation and reuse are essen-
tial for Genetic Programming (GP) to be
effective with larger and more complex
problems. This paper presents a particu-
lar kind of program structure to serve
these purposes: modules are represented
as λ abstractions and their reuse is
achieved through an implicit recursion.
A type system is used to preserve this
structure. The structure of λ abstraction
and implicit recursion also provides
structure abstraction in the program.
Since the GP paradigm evolves program
structure and contents simultaneously,
structure abstraction can reduce the
search effort for good program struc-
ture. Most evolutionary effort is then
focused on the search for correct pro-
gram contents rather than the structure.
Experiments on the Even-N-Parity
problem show that, with the structure of
λ abstractions and implicit recursion,
GP is able to find a general solution
which works for any value of N very effi-
ciently.

1.    Introduction
Genetic Programming (GP) [Koza, 1992] is increasing in
popularity as the basis for a wide range of learning algo-
rithms. The success of GP is generally attributed to its use of
an evolutionary-based search strategy combined with a
dynamic, tree-structure representation of the programs.
Recently, there have been many attempts to enhance GP per-
formance [Koza et al., 1996; Koza et al., 1997]. Among
them, supporting modules in program representation has
been shown to be beneficial [Koza, 1994; Rosca and Bal-
lard,1996]. Module creation and reuse can enhance GP in its
ability to scale to larger and more complex problems.

In this research, a structure which supports module cre-
ation and reuse is incorporated into the program representa-
tion. In this structure, modules are represented as λ
abstractions (see Section 2.2) and module reuse is achieved
through an implicit recursion (see Section 3.1). A type sys-
tem (see Section 3.3) is used to preserve the structure during
program evolution.

This style of module creation and reuse provides the fol-
lowing advantages:

• Module creation is neither a random process nor a prefixed
condition. A randomly generated module may or may not
be beneficial to the problem to be solved. On the other
hand, a hard-wired module template precludes the genera-
tion of more advantageous program structures. Our
approach is to generate modules dynamically, based on the
recursion structures specified in advance by the users. This
allows the exploration of beneficial program structures
under the constraints of the users’ specified conditions (see
Section 3.2).

• Implicit recursion provides reuse without the possible side
effect of infinite loops because there are no semantics of
recursion present in the program. This is an inherent fea-
ture of implicit recursion. Such a condition not only
relieves GP from handling infinite loops in a program but
also removes the need for GP to measure the semantic ele-
ments of recursive programs which would be used in
directing genetic operation.

• The structure of λ abstraction and implicit recursion pro-
vides structure abstraction (see Section 6) in the program.
Since the GP paradigm evolves program structure and con-
tents simultaneously, structure abstraction can reduce the
search effort for good program structure. Most evolution-
ary effort is then focused on the search for correct program
contents rather than the structure.

We have evolved solutions to the Even-N-Parity problem
[Koza,1992] using GP with the implicit recursion structure
included in the program representation. The results indicate
that with the structure of λ abstractions and implicit recur-
sion, GP is able to find a general solution which works for
any value of N very efficiently.

The paper is structured as follows: Section 2 provides
background and related work; Section 3 presents our new
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strategy; Section 4 describes the experiments; Section 5
summarizes the results; Section 6 analyzes the results and
Section 7 concludes and outlines future work.

2.    Background and Related Work

2.1   Recursion and Genetic Programming

Recursion is a general mechanism for program code reuse.
When the name of a program appears in its program body, it
is like making a new copy of the program code within the
program. Recursion leads to more compact programs and
can facilitate generalization.

Although a powerful reuse mechanism, recursion must be
used carefully to be effective. There are two important crite-
ria which must be satisfied for a recursive program to be
effective:

• a terminating condition (base case);

• the recursive calls must be successively applied to argu-
ments that converge towards the terminating condition.

A recursive program which fails to meet the two require-
ments may or may not produce a result, depending on the
program evaluation style. With lazy evaluation, where argu-
ments of a function are evaluated only if their values are
needed, it is possible for programs containing infinite loops
to halt. On the other hand, strict evaluation requires a func-
tion’s arguments to be evaluated before the function body
and can make such a program loop forever [Hudak,1989].
How program evaluation style affects GP performance has to
be further studied.

To evolve recursive programs, GP faces two challenges:

1. Handling infinite loops in a recursive program: An
evolved program may produce infinite loops as the two
criteria are not always met. [Brave, 1996] adopted a finite
limit on recursive calls in his tree search program. Usually
such a limit affects the evolution process since a good pro-
gram may never be discovered if its evaluation requires
more than the permitted recursive calls. This shortcoming,
however, does not apply to a tree search program since the
maximum number of iterations required to search a tree is
its tree-depth. Thus stopping any recursion after tree-depth
number of iterations does not affect the behavior of the
program. Consequently, Brave’s approach is not a general
solution for handling infinite loops. [Wong and Leung,
1996] employed a logic grammar to enforce the base-case
structure in their “even-n-parity” programs. However, the
convergence of recursive calls was not guaranteed. When
infinite loops occur, they used an execution time limit to
halt the program. [Clack and Yu, 1997] also imposed a
recursion limit to evolve the “map” program. A “map”
program applies the first argument (a function) to each ele-
ment of the second argument (a list). Using the length of
the input list as the recursion limit seemed to be a sensible
decision.

Designing an appropriate fitness for infinite loops is a
crucial task in GP, which uses fitness based selection for
reproduction. A program which does not halt after the per-
mitted number of recursion calls may still contain good
partial solutions. Ideally, we would like to use them to
generate new and hopefully better programs. [Wong and
Leung, 1996] regarded a program which does not produce
a result after the allowed execution time as a program pro-
ducing a wrong result. No extra penalty is given to the pro-
gram. [Clack and Yu, 1997], on the other hand, penalized
recursion error proportionate to the length of the input list.
When the recursion limit is reached, the program was ter-
minated and returned with an empty list (no partial result
was returned). The program was penalized not only for
producing nothing but also for exceeding the recursion
limit. This is a severe punishment. How these fitness mea-
surements affect GP performance has to be further studied.

2. Measuring the semantic elements of a recursive pro-
gram to direct genetic operation: The GP paradigm uses
a syntactic approach to build programs; no semantic anal-
ysis is supported. A recursive program which contains a
perfect base-case statement may not be selected for repro-
duction since semantics are not considered in the GP fit-
ness function. [Whigham and McKay, 1995] has identified
this problem and suggested the application of genetic
operators in an environment where semantic analysis is
supported.

2.2 λ Abstractions and Genetic Programming
In our work, we allow λ abstractions in our programs. λ
abstractions are local function definitions, similar to function
definitions in a conventional language such as C. The fol-
lowing is an example λ abstraction together with an equiva-
lent C function.

(λ x (+ x 1)) (λ abstraction)

Inc (int x) (C function)
{return (x+1);}

However, λ abstractions are anonymous and cannot be
invoked by name. The reuse of λ abstractions is performed
by passing them as arguments to other functions. The fol-
lowing gives an example of the reuse of λ abstractions:

twice f x = f (f x)

twice (λ x (+ x 1)) 2
= (λ x (+ x 1)) ((λ x (+ x 1)) 2)
= + ((λ x (+ x 1)) 2) 1
= + (+ 2 1) 1
= + 3 1
= 4

λ abstractions are modules that are created and reused in our
programs. Similar to the structure of an Automatically
Defined Function (ADF) [Koza, 1994], a λ abstraction has
formal parameters and a function body. However, the deter-
mination of its structure and the overall program structure is



different from ADF. Koza adopted two approaches to defin-
ing the structure of a program with ADFs. The first one is to
statically define it before the GP run. Once the structure is
specified, every program in the population has the same
structure. Genetic operations are customized to preserve the
program structure. The second approach is to create various
kinds of program structure randomly during the first genera-
tion. Program structure is then open to evolutionary determi-
nation [Koza, 1994 Ch. 21]. With predefined program
structure, GP does not have the opportunity to explore more
advantageous structures. When an unsuitable program struc-
ture is given, GP is doomed. On the other hand, leaving GP
to determine the program structure among a wide range of
possibilities (Koza limited to 3,906 [Koza, 1994 pp. 529])
can be computationally expensive. This research provides a
middle ground: modules are determined dynamically by GP
but the possible selections are reduced to those allowed by
the higher-order functions present in the function sets.

Higher-order functions are functions which take other
functions as arguments. Each time one of these functions is
used to create a program, the argument with a function type
is created as a λ abstraction (more details are given in section
3). A priori knowledge about module creation and reuse is
incorporated in functions and terminals to facilitate GP in
determining the most effective program structure.

ADFs and λ abstractions are modules which are simulta-
neously evolved with the main program. Koza stated that
ADFs provide two main functions in GP: First, they perform
a top-down process of problem decomposition or a bottom-
up process of representational change to exploit identified
regularities in the problem. Second, they discover and
exploit inherent patterns and modularities within a problem
[Koza, 1994]. These are also valid assessments about λ
abstractions.

Two other approaches which also support module cre-
ation and reuse are Module Acquisition (MA) [Angeline
1994] and Adaptive Representation through Learning (ARL)
[Rosca and Ballard, 1996]. In both approaches, program
structures are created and modified dynamically during the
GP run. One important concept about MA and ARL is that
modules are building blocks and should be protected from
destruction. Modules in MA and ARL are therefore frozen
for a period of time without any changes. The only way to
modify a module is to Delete (in ARL) or to Expand (in MA)
the module and to create a new one. Because of the less fre-
quent modification, the quality of the modules becomes very
important. [Kinnear, Jr.,1994] reported that the MA
approach, where modules are created using randomly
extracted program fragments, does not provide any perfor-
mance advantages. ARL adopts heuristics to detect good
program segments for module creation. This approach pro-
duces better programs than GP alone [Rosca and Ballard,
1996].

2.3   Even-N-Parity Problem
The Even-N-Parity has been used by Koza as a difficult
problem for GP to solve [Koza, 1992]. This program takes a
list of N boolean inputs, returning True if an even number of
inputs are True and False otherwise. This problem uses the
following function and terminal sets:

• Function Set: {AND, OR, NAND, NOR},

These are standard logic functions and are logically com-
plete.

• Terminal Set: {b0, b1,...,bN-1},

N boolean variables.

The test cases consists of all the 2N possible combinations of
N inputs. As N is increased, the problem becomes exponen-
tial harder. Koza was able to use GP to solve the problem up
to N=5. When N=6, none of his 19 runs found a 100%-cor-
rect solution [Koza, 1992].

Koza introduced ADFs as a mechanism for GP to con-
struct modules for reuse. With ADFs, GP is able to solve this
parity problem up to N=11 [Koza, 1994 Ch. 6].

[Wong and Leung, 1996] proposed a general solution
which can handle any value of N using recursion. Their
approach is to construct a logic grammar to enforce the base-
case program structure. Type knowledge can also be incor-
porated in the logic grammar. When both sets of information
are present in the grammar to guide the evolution, GP is able
to find the solution more efficiently than using ADFs. Within
60 runs which use 8 fitness cases (Even-3-Parity), 16 runs
found a solution that can work on any value of N. The gener-
ated programs, however, do not contain any subroutines,
although an “xor” function can be extracted from the pro-
grams. The construction of subroutines within recursive pro-
grams is not yet implemented in their work. (They also
demonstrated that their system required more computation
effort when noisy fitness cases were employed [Wong and
Leung, 1998]).

3.    A New Strategy
This paper presents a structure of λ abstractions and implicit
recursion to evolve program solutions for the Even-N-Parity
problem. Implicit recursion facilitates GP to generate gen-
eral solutions which work for any value of N. λ abstractions
provide the module mechanism for GP to exploit the struc-
ture inherent in the Even-N-Parity problem. By combining
implicit recursion with module mechanism, performance
advantages are anticipated over previous work with the
Even-N-Parity problem.

3.1   FOLDR: Implicit Recursion
The issues that explicit recursion has highlighted in GP fos-
ter the idea of implicit recursion. There are three popular
higher-order functions which can provide recursion without
explicit recursive calls [Clack, Myers and Poon, 1995]:



• MAP: applies the first argument, a monadic operator (a
function which takes one argument), to each element of the
second argument (a list) to produce a list of the results. For
example:

map (+1) [1,2,3]
= [(+1 1),(+1 2),(+1 3)]
= [2,3,4]

• FOLD: places the first argument, a dyadic operator (a func-
tion which takes two arguments), between each of the
items in the list. With FOLDR, the empty list is substituted
with the given terminating value and the resulting expres-
sion is associated to the right. With FOLDL, the given ter-
minating value is prefixed to the expression and the
resulting expression is associated to the left. For example:

foldr (+) 10 [1,2,3]
= 1 + (2 + (3 + 10))
= 1 + (2 + 13)
= 1 + 15
= 16

foldl (+) 10 [1,2,3]
= ((10 + 1)+ 2) + 3
= (11 + 2) + 3
= 13 + 3
= 16

Given the same arguments, FOLDR and FOLDL may or
may not produce the same result. More information about
the differences between FOLDR and FOLDL functions can
be found in [Clack, Myers and Poon, 1995 Ch.4].

• FILTER: applies the first argument, a predicate operator (a
function which returns True or False), to each element in
the second argument (a list) to produce a list containing
items which satisfy the predicate operator. For example:

filter (>1) [1,2,3]
= [2,3]

An important characteristic of using implicit recursion is that
the programs do not produce infinite loops. The terminating
condition is an empty list, which is incorporated into the
higher-order functions. Moreover, there are no recursion
semantics in the programs as the recursion is performed in
the higher-order functions. Implicit recursion is therefore an
ideal mechanism to support recursion in GP.

For the Even-N-Parity problem, we include FOLDR in
our language to provide implicit recursion because FOLDR
produces a single output value and so does the Even-N-Par-
ity program. For different problem domains, other higher-
order functions might be more suitable. Moreover, combin-
ing different higher-order functions is possible.

It might be possible to evolve the Even-N-Parity program
using implicit recursion alone without λ abstractions. In this
case, the function argument to FOLDR would be selected
from the function set provided by the users. However, in this
paper, we would like to exploit the structure inherent in the

problem. The function argument is allowed to be discovered.
Research is underway to compare GP performance using
implicit recursion to solve the Even-N-Parity problem with
and without λ abstractions as described in the following sec-
tion.

3.2 λ Abstractions: Module Mechanism
In this work, the modules discovered by GP are represented
as λ abstractions. Functions are allowed to take other func-
tions as arguments. When an argument with function type is
present, a λ abstraction is generated and is used as the actual
value for that argument. By specifying primitive functions
that require functional arguments, users can direct GP to
build modules. For example, suppose the user includes
FOLDR in the function set. Since the first argument of
FOLDR is a function type, each time FOLDR function is
selected to construct the program, a λ abstraction will be
generated as the function argument. FOLDR reuses the cre-
ated λ abstraction through implicit recursion.

λ abstractions are constructed using the same function set
as that used to create the main program. The terminal set,
however, consists only of the arguments of the λ abstraction
to be created; no global variables are allowed. Argument
naming in λ abstractions follows a simple rule: each argu-
ment is named with a hash symbol followed by an unique
integer, for example #1, #2. This is an easy way to create
unique arguments within a λ abstraction. This consistent
naming style also allows crossover to be easily performed
between λ abstractions with the same number of arguments.
The following is an example of the FOLDR function with λ
abstraction (in bold) created as its first argument:

FOLDR (λ#1 λ#2 (+ #1 #2)) 10 [1,2,3]

3.3   Type System: Structure Preserving Engine
A type system is used to preserve the program structure of λ
abstractions and implicit recursion in the programs. Initially,
each primitive function and terminal is specified with type
information. Meanwhile, the input and output types of the
program to be evolved are specified. This information is
used by the type system to select type-matched functions and
terminals to construct type-correct programs.

The type information is specified using a type language.
The abstract type syntax is given by:

σ :: τ built-in type
      | υ type variable
      | σ1 −> σ2 function type
      | [σ1] list of elements all of type σ1
      | (σ1 −> σ2) bracketed function type

τ :: int | string | bool | generici
υ :: dummyi | temporaryi

Every expression in the program may be annotated with a
type:



• Constants such as 0 and identifiers such as x have a type
pre-defined by the user.

• Functions also have pre-defined types (for example, the
function HEAD has the type [a]->a where a is a dummy
type variable).

• Applications have a type given as follows:

if exp1 has type (σ1 -> σ2)
and exp2 has type σ1
then (exp1 exp2) has type σ2
else there is a type error.

• λ abstractions have the following type:

if x has type σ1
and exp has type σ2
then (λ x exp) has type σ1 -> σ2.

A function argument is denoted by the bracketed function
type. For example, FOLDR is specified with the following
type information:

FOLDR :: (a->b->b) -> b -> [a] -> b

The type information indicates that FOLDR can take three
arguments: the first one is a function, the second one is a
value and the third one is a list. It returns a single value.
Additionally, the first argument is a function which can take
two arguments and returns one value. This function argu-
ment will be created as a λ abstraction of two arguments.
Notice that FOLDR is a polymorphic function whose type
signature contains type variables. The type system instanti-
ates these type variables when the function is selected to
construct the program. It is very important to assure that type
variables are instantiated consistently so that the constructed
program is type-correct.

By allowing type variables in our type language, the gen-
erality of functions in the function set are enhanced. For
example, FOLDR can provide implicit recursion for many
different types of arguments. More details about polymor-
phism and generality in GP can be found in [Yu and Clack,
1998].

The type system also performs type checking during the
genetic operation of crossover and mutation. Thus, the struc-
ture of λ abstractions and implicit recursion can be preserved
throughout the evolutionary process. The “point-typing”
structure-preserving crossover [Koza, 1994 pp. 532] is per-
formed in the programs: a point is first selected from the first
parent program; depending on the source of the node (the
main program or a λ abstraction body), a node with the same
source is selected from the second parent program. If the
crossover point in the first parent program is inside a λ
abstraction, the crossover point in the second parent program
has to be inside a λ abstraction which has the same number
and type of arguments as the λ abstraction where the first
point was selected. This restriction assures that the offspring
will not contain any unbound global variables.

The crossover operation is also allowed to be performed
on λ abstraction nodes; this is termed “λ modular crossover”
as it results the swapping of a λ abstraction module in one
program with a λ abstraction module in another program.
This operation is similar to the modular crossover in [Kin-
near, Jr., 1994]. However, with the type system, the problem
of argument mismatching as mentioned in Kinnear’s work
does not occur in our implementation.

Each λ abstraction node is annotated with a type which
indicates the number and type of its arguments. The type
system limits the λ modular crossover to be performed
between two λ abstractions which have the same number and
type of arguments. There follows an example of the λ modu-
lar crossover operation. The two parent programs are:

FOLDR (λ#1Int(λ#2Int(/ #1 #2))Int->Int)Int-
>Int->Int 10 [1,2,3]

FOLDR (λ#1Int(λ#2Int(+ #1 #2))Int->Int)Int-
>Int->Int 20 [1,2,3]

Note the two swapping λ abstractions have the same type,
Int->Int->Int.The operation produces the following
new program:

FOLDR (λ#1Int(λ#2Int(+ #1 #2))Int->Int)Int-
>Int->Int 10 [1,2,3]

4.    Experiments
4.1   Parameters and Primitives
As in [Wong and Leung, 1996], a population size of 500, a
maximum generation of 50 and 60 runs are used in the
experiment. In addition, a maximum tree depth of 4 for the
main program is imposed. A λ abstraction is considered as
one single node in a program parse tree as it performs one
task just like the primitive functions in the function set. The
maximum tree depth allowed for a λ abstraction is also 4.
The crossover rate is 100%. The following are the primitives
and their types used in the experiments:

Output Type: bool.

Argument Type: [bool].

Terminal Set:

T = {L:: [bool]}

Function Set:

F = {HEAD:: [a] -> a,
TAIL:: [a] -> [a],
AND:: bool -> bool -> bool,
OR:: bool -> bool -> bool,
NAND:: bool -> bool -> bool,
NOR:: bool -> bool -> bool,
FOLDR:: (a->b->b)->b->[a]->b}



A FOLDR expression inside another FOLDR expression cre-
ates nested recursion. For example, the following is a pro-
gram with nested recursion of depth 2:

FOLDR (+)(FOLDR (+) 0 [1,2,3]) [1,2,3]
= FOLDR (+) 6 [1,2,3]
= 12

Nested recursive programs require a considerable amount of
time and space to evaluate. The depth of the nested recursion
is therefore limited to 100, which we think is powerful
enough to handle the Even-N-Parity problem.

4.2   Selection of Fitness Cases
The fitness cases of the Even-2-Parity and the Even-3-Parity
are selected to evaluate the programs. There are 22 + 23= 12
fitness cases. A general Even-N-Parity program can handle
any value of N, which may be either even or odd. The Even-
2-Parity fitness cases help GP to learn to handle an input list
with an even number of items while the Even-3-Parity fitness
cases train GP to work on an input list with an odd number of
items. With this set of fitness test cases, it is hoped that the
generated programs can be general solutions which work for
any value of N.

4.3   Handling of Run-Time Errors
A program which applies HEAD or TAIL to an empty list
gives a run-time error. When such an error occurs, the system
receives a default value for the expected type and continues
evaluating the program so that a partial solutions can be
returned for fitness evaluation. Meanwhile, a run-time error
is flagged and solutions marked with this flag are penalized
during the fitness evaluation.

4.4   Design of Fitness Function
The fitness function used is the same as that used by Koza
[Koza 199, pp.160] except for the punishment of the run-time
errors. Each program is evaluated against all of the fitness
cases. When a correct result is produced for a fitness case, the
program receives a 1; otherwise, it receives a 0. If run-time
error has been flagged, fitness is reduced by 0.5. The fitness
of a program is the sum of the fitness values for all of the fit-

ness cases. The maximum fitness value of a program in this
experiment is 12.

4.5   Selection of Crossover Locations
A crossover location selection scheme which biases toward
root crossover is used [Yu and Clack, 1998]. This selection
scheme is designed to accommodate the premature conver-
gence of the root nodes which was observed during the
experiments and has been reported in [Gathercole and Ross,
1996]. The premature convergence of the root node can
severely impair GP performance if the desired behavior of a
program depends highly on the root node. The modified
crossover location selection scheme provides program root
nodes with more opportunities to be replaced with new
nodes.

4.6   Crossover Operators
Crossover can be performed on λ abstraction nodes, fully
applied or partially applied function nodes. A crossover
location is first selected from the first parent program using
the scheme described in Section 4.5. Its type and the depth of
the node are used to select a crossover point in the second
parent. The same selection scheme is used to find a node
whose type “unifies” with the given type and whose depth is
such that the new tree will satisfy the maximum tree depth.
More details about the operation of type unification can be
found in [Yu and Clack, 1998].

5.    Results
60 runs were made and 57 of them found a solution. More-
over, all 57 are general solutions which work for any N num-
ber of inputs. To facilitate direct comparison, Koza’s method
[Koza, 1992 Ch. 8] is followed to measure the performance
of this new strategy. Figure 1 shows the performance curves
of the experiments.

The curve P(M,i) shows the cumulative probability of
success to solve the problem by generation i using a popula-
tion size of 500. The curve I(M, i, z) indicates the number of
programs that have to be processed to produce a solution by
generation i with probability z. In this work, the probability z
is set to 99%. The curve of I(M,i,z) reaches a minimum value

Table 1: Summary of Performance

Results
Implicit Recursion + λ

Abstractions
Generic Genetic

Programming
GP with ADFs

Programs Even-N-Parity Even-N-Parity Even-7-Parity

Runs/Success 60/57 60/17 29/10

Minimum I (M,i,z) 14,000 220,000 1,440,000

Number of Fitness Cases 12 8 128

Fitness Cases Processed 168,000 1,760,000 184,320,000



of 14,000 at generation 3 (marked on the figure). This means
that if this problem is run through to generation 3, processing
a total of I(M,i,z) = I (500, 3, 0.99) = 14,000 individuals (i.e.
500 x 4 generations x 7 runs) is sufficient to yield a solution
of this problem with 99% confidence. Since 12 fitness cases
are used to test the programs, the number of fitness cases to
be processed is 14,000*12 = 168,000. Compared with other
related works by Koza using ADFs [Koza, 1994, pp. 196]
and by Wong and Leung using a Generic Genetic Program-
ming (GGP) system [Wong and Leung, 1996], our perfor-
mance excels. Table 1 summarizes the performance of these
3 different approaches in evolving Even-N-Parity program.

Figure 1:  Performance curves for the Even-N-Parity
program with population size of 500.

6.    Analysis and Discussion
The results of the experiments indicate that by using the
structure of λ abstractions and implicit recursion, GP is able
to evolve very efficiently Even-N-Parity programs which
work for any value of N. Koza’s ADFs provide a mechanism
for module creation and reuse which has helped GP learn the
Even-N-Parity program up to N=11 but its performance
details are not reported (Table 1 uses the performance infor-
mation for Even-7-Parity on [Koza, 1994 pp.195]). The GGP
system by Wong and Leung uses recursion to support pro-
gram code reuse (however, no module creation mechanism is
provided). The GGP system can learn the Even-N-Parity
programs which work for any value of N more efficiently
than the ADF approach.

The GP system presented in this paper supports both
recursion and modules. With the structure of λ abstractions
and implicit recursion, this system can learn the Even-N-Par-
ity programs which work for any value of N and it can do
this by processing a much smaller number of programs than
the number required either by the ADF approach or by the
GGP system (see Table 1). More than 50% of the 60 runs
obtained a solution before generation 5 and two of them
found a solution during generation 0 through random search
under the constraints of the specified program structure. This

is an exceptional performance compared with any other pre-
vious work with the same problem.

Besides the benefits of recursion and modules, the
authors believe there is one more factor which contributes to
such an exceptional performance:

Higher-order functions provide structure abstraction in
the program parse trees. The type system protects this struc-
ture abstraction and helps GP to find good program struc-
tures during program evolution.

The ability of traditional GP to build good solutions from
partial solutions hierarchically has been challenged
[O’Reilly and Oppacher, 1995]. The module mechanisms of
ADFs, MA and ARL can facilitate GP in hierarchical pro-
cessing by abstracting program contents. Our module mech-
anism of λ abstractions promotes the use of hierarchy further
by supporting program structure abstraction. As an argu-
ment to a higher-order function, a λ abstraction is con-
strained to sit underneath the higher-order function in the
program tree hierarchy. During program evolution, this two-
layer-hierarchy program structure grouping is protected from
disruption by the type system; crossover can only change its
contents but not its structure. In other words, GP uses the
two-layer-hierarchy structure as one unit to exploit the most
advantageous program structure. Figure 2 shows three pro-
gram structure groupings that have identical structure. Note
that they may have different contents since the three λ
abstractions may be different.

Figure 2:  Program structure grouping for FOLDR.

The data collected from 10 test runs has been analyzed to see
whether structure abstraction is beneficial to GP. During gen-
eration 0, various program structures are created. All those
programs with more than two FOLDRs had fitness value 0,
which means they cannot solve any of the 12 test cases. A
few programs with no FOLDR had above average fitness.
But all the programs which contain either 1 or 2 occurrences
of FOLDR receive better than average fitness. All 57 correct
Even-N-Parity programs generated from our experiments
also contain either 1 or 2 occurrences of FOLDR (see Table
2). This suggests that the structure of the Even-N-Parity pro-
gram is generally determined at generation 0. Most evolu-
tionary processes search for the correct program contents to

FOLDR

λ abstraction

FOLDR

λ abstraction

FOLDR

λ abstraction



fill in the program structure. Table 2 displays all 57 gener-
ated correct Even-N-Parity programs.

Those functions in italics are generated functions repre-
sented as λ abstractions in the programs. They are anony-
mous functions in the programs but we provide them with
names here for easy reference. The Truth Table for these
generated λ functions is presented in Table 3. Note that those
λ abstractions which compute xor might contain very differ-
ent code. The values True and False in Table 2 indicate
expressions which produce True or False under all condi-
tions.

Much research work has asserted that type constraints can
reduce the number of ways to construct programs and
improve GP performance [Montana, 1995; Haynes, Wain-
wright, Sen and Schoenefeld, 1995; Haynes, Schoenefeld
and Wainwright, 1996; Clack and Yu, 1997]. [Harris, 1997]
used abstraction on user-defined types to enforce a hierarchy
in the program parse tree, but in a specialized domain and
with the hierarchy defined by the user’s knowledge of that
domain: this explicit program structuring method improves

Table 2: Generated Correct Programs

Quantity Even-N-Parity

22 nor (foldr xor (head L)(tail L)) False

9 foldr xor (nor (head L)(head L)) (tail L)

6 nor (foldr xor (head L)(tail L))
(foldr exor (head L)(tail L))

6 foldr xor (nand (head L)(head L))(tail L)

6 nand (foldr or (head L)(tail L))
(foldr xor (head L)(tail L))

5 nand (foldr xor (head L)(tail L)) True

2 foldr xor (foldr xand (head L)(tail L))
(tail (tail L))

1 nor (foldr xor (head L)(tail L))
(foldr xor (head L) (tail L))

Table 3: Truth Table

x y xor exor xand

True True False False True

True False True False False

False True True True False

False False False False True

GP performance in his image template matching experi-
ments. In this work, type constraints and higher-order func-
tions are used in a general context to support structure
abstraction and enhance GP performance. It is anticipated
that type constraints can assist GP learning in other ways yet
to be discovered.

7.    Conclusion and Future Work

The structure of λ abstractions and implicit recursion pro-
vides GP with an effective mechanism to perform module
creation and reuse. This work has demonstrated its power by
evolving Even-N-Parity programs. We are continuing the
investigation of its applicability to other problems. By incor-
porating this mechanism, GP is able to evolve a correct pro-
gram by processing far fewer programs than the number
required in any previous work. All evolved correct programs
are general solutions which work well for any number of
inputs. As was outlined in the introduction, three main fac-
tors have contributed to this result:

• Module creation is neither a random process nor a prefixed
condition. Instead, modules are generated dynamically
based on the recursion structures specified in advance by
the users. This allows the exploration of beneficial pro-
gram structures under the constraints of the users’ specified
conditions.

• Implicit recursion provides reuse without the possible side
effect of infinite loops since there are no recursion seman-
tics present in the program. This not only relieves GP from
handling infinite loops in a program but also from measur-
ing the semantic elements of recursive programs which
would be used in directing genetic operation.

• The structure of λ abstractions and implicit recursion pro-
vides structure abstraction in the program. As the GP para-
digm evolves program structure and contents
simultaneously, abstraction of structure can reduce the
search effort for good program structure. Most evolution-
ary effort is then focused on the search for correct program
contents rather than the structure.

Further research is being directed in the following areas:

• Evaluation of the performance of a partial application
crossover operator according to the type distribution in the
program parse trees. Type information plays an important
role in the crossover operation since they are used to assure
only type-correct programs are generated. The distribution
of type in the program parse tree nodes will be analyzed to
see how it affects the partial application crossover opera-
tor.

• Enhancement of the recursion ability so that other forms of
recursion, such as mutual recursion, can be expressed.
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