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Abstract— Geostatistical modeling is a widely used approach
to model the heterogeneity of reservoir petrophysical prop-
erties. This paper investigates a geostatistical-based inversion
technique, a hybrid of sequential-self calibration (SSC) and
genetic algorithm (GA), to model reservoir permeability. In
this method, a GA is used to search the optimal master point
locations, as well as the associated optimal permeability. These
permeability values are then propagated to the entire reservoir
using Kriging algorithm to match the dynamic production data.

We demonstrate that GA is easy to implement and the results
are robust. Additionally, we experimented with various numbers
of master points, including a linked-list genotype which permits
a flexible number of master points. The results show that GA
is able to find various numbers of master points and their
locations that are suitable for the reservoir field we studied.
These numbers are within a small range and are sufficient to
capture the heterogeneity of the reservoir permeability to match
the production data.

The ability of the SSC-GA method to model reservoir
permeability by simultaneously optimizing the number of master
points, the locations of these master points and the associated
permeability in this case study suggests that the technique might
be effective with other larger fields.

I. INTRODUCTION

Geostatistical modeling refers to the process of gener-
ating earth subsurface models using statistical methods. In
petroleum industry, geostatistical modeling is a widely used
approach to model the heterogeneity of reservoir petro-
physical properties, such as permeability and porosity. This
approach incorporates both static and dynamic data to build
reservoir models. Static data, such as core measurements,
well logs and seismic data, are relatively easy to integrate
using traditional statistical algorithms and conditional simu-
lation [4]. In contrast, the integration of dynamic data, such
as pressure, flow rate and saturation data, requires multiple
computer flow simulations. The integration of dynamic data
to reservoir models is a inverse problem, which is known to
be difficulty to solve [8], [9].

To address this inverse problem, various geostatistical-
based inversion techniques have been developed [13]. The
main concept behind these techniques is to update the
initial geostatistical model to match dynamic data, without
disrupting the underlying geostatistical features built into
the initial model, such as histogram, variogram, and other
soft constraints. This differs from the traditional reservoir
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history matching process where local or regional multipliers
to reservoir properties are adjusted to match dynamic data
without the consideration of the underlying geostatistical
features in the original model. Such approach can potentially
cause the discontinuities inside the reservoir and may destroy
the correlation between geological features built into the
initial reservoir models. Since geostatistical-based inversion
techniques do not have these shortcomings, it is argued that
they can generate more realistic reservoir models.

Previously, we have investigated a geostatistical-based
inversion technique: a hybrid of sequential-self calibration
(SSC) and genetic algorithm (GA) method [11], [12]. In
this technique, a few number of master point locations in
the reservoir field are selected and their associated reservoir
property values identified. These property values are then
propagated to the entire reservoir using the statistical Kriging
algorithm. In order to construct reservoir models that match
the dynamic data, two critical questions need to be addressed.
First, what are the locations of these master points? Second,
what are their associated reservoir property values?

We have applied GA to search for the answers to both
questions. Indeed, as a global search algorithm, GA is able to
find both sets of parameters (master point locations and their
associated property values) to update the reservoir models
to the dynamic data. In [11], we reported that the locations
of the master points are not important in the well patterns
we studied. The SSC-GA technique can find good models
to match the production data using any randomly selected
locations, as long as the locations are not overly clustered
in one particular area of the field. In another work [12], we
showed that the SSC-GA technique is capable of identifying
important large-scale spatial variation patterns (e.g. well
connectivity, near well averages, high flow channels and low
flow barriers) embedded in the reservoir heterogeneity.

This paper investigates the number of master points in
the SSC-GA method. In particular, we address the question
“Does the number of master points in the reservoir model
have impact on the SSC-GA modeling results?”

We organize the rest of the paper as follows. Section II
presents the hybrid SSC-GA technique. In Section III, the
synthetic oil field used in this study is described. Section
IV gives the setup to run GA experiments. The results are
then reported in Section V. We discuss our findings and
address the posted question in Section VI. Finally, Section
VII concludes the paper.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

3079



II. THE HYBRID SSC-GA INVERSION TECHNIQUE

Sequential self-calibration (SSC) method is a
geostatistical-based inverse technique that allows for fast
integration of dynamic production data into geostatistical
models. The method was originally developed by Gomez-
Hernandez and coworkers [5] and later expanded by others
[6]. The main concept of SSC algorithm is intelligent
selection of master point locations and the propagation of
reservoir properties from these master point locations to
the entire field. In this way, there is no need to model
reservoir properties at the cell level, which is very time
consuming. Instead, only the master point locations and the
optimal perturbations for propagation to match the dynamic
production data need to be identified.

This concept has been tested by incorporating a gradient
method [10] and a genetic algorithm (GA) [11] to select
master point locations and to optimize perturbations. The
results show that GA outperforms gradient method and
enables the SSC technique to incorporate dynamic data, such
as fluid flow and pressures, to geostatistical models more
effectively [12].

A. Work Flow

Figure 1 gives the work flow of the hybrid SSC-GA tech-
nique. Initially, multiple equally-probable initial reservoir
models are created. The reservoir properties in these initial
models are generated by conventional geostatistical methods
using the specific histogram and variogram that are consistent
with the data. If static (hard and soft) data are available, they
should be honored with conditional simulation.

For each of the N initial reservoir models, a GA is applied
to update the model to match the dynamic data:

• Create a population of individuals, where each individ-
ual is a vector consists of possible master point locations
and their associated property values. The property val-
ues are generated based on a Gaussian function with
the mean and variance that are the same as that used to
create the initial model.

• Evaluate the fitness of each individual model in the
population with the following steps:

– Compute the perturbations at the master points,
based on their reservoir property values and the
values in the initial model;

– Interpolate the perturbations at the non-master point
locations using Kriging algorithm;

– Obtain an updated reservoir model by adding the
perturbations to the initial model.

– Conduct computer simulation on the updated model
by solving the flow equations using specific bound-
ary and well conditions to obtain flow responses;

– Calculate the mismatch between the flow responses
and the dynamic production data. This mismatch is
the fitness of the model. The smaller the mismatch
is, the fitter the reservoir model is.

– Apply selection, crossover and mutation to generate
a new population of individual models.

Fig. 1. The hybrid SSC-GA technique work flow.

– Loop back to the compute the perturbations step
until either the population converges or the maxi-
mum number of generation is reached.

For N number of initial models, N number of GA runs are
conducted, each of which delivers a population of updated
models at the end of the GA run. Among them, the reservoir
models with the smallest mismatch between simulation flow
responses and the dynamic production data is chosen is the
final model.

III. CASE STUDY

We used an artificial reservoir field generated from com-
puter simulation to study the number of master points in the
SSC-GA inverse technique. In this way, all data (statistic and
dynamic) are genuine without noise. The reservoir property
modeled by the SSC-GA is permeability.

In this field, there are 5 wells. On injection well (I) is at
the center while 4 other production wells (P1 to P4) are at
the 4 corners of the field. The injection rate at the injection
well (I) is 1600 STB/day and the production rate for the
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4 production wells is 400 STB/day/well. Additionally, we
made the following assumptions:

• The thickness of the reservoir is 100 feet across the
entire field.

• All four boundaries of the field are no-flow boundaries.
• The initial pressure is constant at 3000 psi for the entire

field.
• The porosity φ of the reservoir is 0.2 across the entire

field.
With the above assumptions, we applied the Sequential

Gaussian Simulation (SGS) method [3] to generate the
reference reservoir model. Figure 2 gives the simulated 2-D
model in 50x50 grids, where each cell is of size 80 feet x 80
feet. The permeability of each cell is represented by different
gray scaled colors. The permeability (k) unit is milliDarcy.
The mean and variance of the Gaussian histogram of ln(k)
are 6.0 and 3.0, respectively. The variogram is spherical with
range of 800 feet and 160 feet in the direction of 45 degree
and 135 degree, respectively.

Fig. 2. The 2-D reference model, where permeability of each cell is
generated using the Sequential Gaussian Simulation Method.

The main features of this reference field are:
• There is a high permeability zone and a low permeabil-

ity zone in the middle of the field;
• Interconnectivity between the injection well I and the

production well P3 is high;
• Interconnectivity between the injection well I and the

production wells P2 and P4 is low.
This reference field is considered as the true model. We will
apply the SSC-GA technique to reconstruct this reservoir
model by incorporating three sets of dynamic production
data.

A. Dynamic Production Data

The dynamic production data are generated from this ref-
erence model through computer simulation. The data include:

• water cut (WC) history of each production well;
• water saturation (WS) distribution of the entire reservoir

at the end of the last 400 days;

• bottom-hole pressure (BHP) of each well at the end of
the simulation.

We used the following procedures to generate these 3 sets
of data. Initially, the reservoir was saturated with oil. Water
injection and production are generated using a streamline
simulator for 2000 days. The mobility ratio used is 10 and
the standard quadratic relative permeability curves used are
with zero residual saturation for oil and water. The pressure
field is updated every 400 days to account for the change of
mobility during the streamline simulation. Compressibility
and capillary pressure are ignored in the simulation.

The generated water cuts for each of the 4 production
wells are shown in Figure 3. Note that the production well
P3 has fast water breakthrough while production wells P2
and P4 have late water breakthrough. The generated water
saturation distribution at the end of the last 400 days are
given in Figures 4. The generated BHP for injection well I
and the production wells P1 to P4 are given in Table I.

Fig. 3. Water cuts data of the reference model.

Fig. 4. Water saturation distribution of the reference model.
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TABLE I

BOTTOM HOLE PRESSURE FOR THE 5 WELLS.

Well I P1 P2 P3 P4

BHP 3034 2985 2468 3022 2917

IV. EXPERIMENTAL SETUP

We first created 100 initial models based on the same
histogram and variogram as that used to generate the ref-
erence field. These initial models are then updated by the
hybrid SSC/GA method described in Section II to match the
observed 3 sets of production data.

A. Genotype

The GA genotype is a mix-typed vector containing the
locations of the master points and their associated perme-
ability values. The data type of master point locations is
integer while the data type for permeability is real number.
Each genotype has length 2N, where N is the number
of master points. In this study, we experimented with 3
different N values: 15, 25, 50. Additionally, we conducted
one experiment using a flexible-length genotype (a linked-
list data structure). The value of N is between 1 and 2,500
and is decided by GA.

The linked-list is implemented as an one-dimension array
of 5,000 elements, indexed by integers from 0 to 4,999. The
contents indexed by an odd number are permeability while
the contents indexed by an even number are links to the
next master point location. Figure 5 gives an example of the
linked-list genotype.

Fig. 5. An example of the linked-list genotype.

The first element in the array (index 0), is the first master
point location (32). The associated permeability is indexed by
33. The next master point location is 150 (indexed by 32).
Its associated permeability is indexed by 151. The rest of
the master point locations and their associated permeability
can be traced using the same procedure. The linked-list ends
when the end-flag (-99) is encountered.

Except the end-flag (-99), all elements in the linked-list
are subject to GA crossover and mutation operations. When
any of the the indices to the next master point locations
is modified, the data structure changes and the number of
master points also changes. In other words, GA simultane-
ously optimizes 3 different variables to update the reservoir
model: the number of master points, the locations of these
master points and associated permeability at these master
point locations.

B. Initialization

Regardless of the size of N, the master points locations in
the initial population are selected among the 2,500 possible
cell locations using the stratified random method. The initial-
ization of permeability values at each master point location
is based on a Gaussian function with the same mean and
variance as that used to generate the initial model. As a
convention, permeability k is represented in log scale (ln(k)).
The ln(k) values are constrained to be between 0.804 and
11.196 throughout the GA runs. Note that if the ln(k) is not
Gaussian, we can use a different distribution function. Also if
we know the conditional Probability Density Function (PDF)
at any of the locations, we can use that PDF to generate
the initial ln(k) value at that location. In this way, different
kind of constraints can be honored in the initial geostatistical
models.

C. Fitness Function

The fitness function is the mismatch between the pro-
duction data (also called observed data) as described in
Section III and the simulation results from the reservoir
model updated using the genotype information (see the work
flow in Section II). Equation 1 gives the fitness function:

F =
m∑

i=1

o∑

j=1

Wf [f̂(wi, tj) − f(wi, tj)]2

+
n∑

i=1

Wp[p̂(wi) − p(wi)]2

+
q∑

i=1

Ws[ŝ(i) − s(i)]2

(1)

where f̂(wi, tj) and f(wi, tj) are the observed and simu-
lated water cuts at well i at time j. The observed and simu-
lated pressure at well i are p̂(wi) and p(wi), respectively. The
observed and simulated water saturation at cell i for a given
time are ŝ(i) and s(i), respectively. Each of the mismatch
of water cut, pressure and water saturation are assigned with
a different weight, represented as Wf , Wp and Ws. In this
study, Wf is 1, Wp is 10 and Ws is 1. There are m wells with
water cut data and n wells with pressure data. The number
of time steps for water cut data is o and the number of cells
with water saturation data is q.

D. Genetic Operators and Parameters

The GA is steady-state [1] with 60% replacement rate.
This means that at each generation, the better 40% of the
population remains while the other 60% is replaced by
newly created offspring. New offspring always make into
the population, regardless of whether their fitness are better
than the worse 60% of the original population or not.

We used the traditional roulette wheel (fitness propor-
tionate) method to select winners for reproduction. In this
method, the probability of an individual to be chosen is the
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fitness of the individual divided by the sum of the fitness of
all individuals in the population.

Two genetic operators are used to generate offspring:
uniform crossover and Gaussian mutation. Uniform crossover
picks gene values from both parents randomly to compose the
offspring. Gaussian mutation changes a gene value to a new
value based on a Gaussian distribution around the original
value.

We do not know whether this is the best combination
of genetic operators. In general, uniform crossover is more
disruptive than one-point and two-point crossovers. However,
for small population size, which does not provide the neces-
sary sampling accuracy, this disruption gives the exploration
needed for adaptive search [2]. In this problem, the size of
the search space is unbounded (the permeability values are
real numbers). To get enough sampling accuracy, it needs a
large population size, which is not possible because flow
simulation is very time-consuming. We therefore choose
uniform crossover and Gaussian mutation to work with a
small population size (50). Table II gives the GA parameter
values used to run the experiments.

TABLE II

GA PARAMETER VALUES.

Parameter Value
population size 50

number of generation 55
crossover rate 90%
mutation rate 1%

number of runs 100

V. RESULTS

When a different number of master points is used, the
SSC-GA method delivered a different result. However, re-
gardless of the number of master points used, all 50 models in
the GA last generation give a similar match to the production
data. Figure 6 shows the typical progress of a GA run. Before
generation 30, the fitness of the population improved quickly.
After that, only small improvements were observed. At the
end of the run, the population average fitness is very similar
to the best model fitness, which is also very similar to the
worst model fitness. This indicates that the population has
converged with all genotypes having similar contents. We
therefore chose the best model at the last generation as the
final model.

Figure 7 gives the fitness of the final models from all
100 runs, under different master point implementations. It is
clear that 15 master points are not sufficient to capture the
heterogeneity of the reservoir permeability, hence give poor
match to the production data. When the number of master
points is increased to 25, the performance improved. The
best results come from 50 master points implementation.

In Table III, we give the average fitness of the 100 runs for
the different number of master points implementations. We
have also computed their upper and lower bounds with 99%
confident interval, which are shown graphically in Figure 8.
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Fig. 6. The typical progress of a GA run.
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Fig. 7. Fitness of the fi nal models using different number of master points.

It is evident that a larger number of master points gives
a finer scale of permeability modeling, hence delivers better
results. However, they also increase the dimension of the
genotype and the size of search space. When the genotype
is a linked-list structure, which provides up to 2,500 master
points, SSC-GA did not deliver better results than the results
of 50 master points implementation (more discussion in
Section VI). Of course we should not forget that the main
concept of SSC is to use a small number of master points
to model reservoir properties. If we refine the the modeling
scale to the cell level, this is no longer a SSC technique.

VI. ANALYSIS AND DISCUSSIONS

Although the linked-list genotype allows the SSC-GA to
select a maximum of 2,500 master points, the 100 final
models contain only 10 to 30 master points. As mentioned in
Section V, increase the number of master points also increase
the size of the search space and make the optimization
task harder. For the permeability pattern in this field, 30
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TABLE III

SSC-GA EXPERIMENTAL RESULTS.

no. of masters mean stdev t-table upper lower
15 0.0206 0.021 2.6264 0.02 0.0211
25 0.0114 0.00456 2.6264 0.0113 0.0115
50 0.00949 0.00312 2.6264 0.0094 0.00957
∗ 0.0136 0.00685 2.6264 0.0134 0.0137

Fig. 8. Average fi tness of 100 runs and their intervals with 99% confi dence.

master points are sufficient to capture the heterogeneity of
the field. The experimental results show that the SSC-GA
technique was able to select a sufficient number of master
points to identify such pattern. This indicates that SSC-GA is
capable of simultaneously optimizing the number of master
points, the locations of these master points and the associated
permeability at these master point locations to match the
production data successfully.

Although the overall results from the linked-list genotype
representation are not as good as the results from the 50
master points implementation, many of the final models from
the linked-list representation are better than the best model
from the 50 master points implementation. Some examples
are run 41, run 35 and run 24 (see Figure 7).

This suggests that by hard-wiring the number of master
points, SSC-GA loses some exploration power to find better
models with a different number of master points. However,
such constraint also ensures that the search is within a
defined area of the search space. When the defined area
is good, which is the case when 50 master points were
used, the results are good and the average results have
a tight confidence interval (see Figure 8). This trade-off
between exploitation and exploration is a common dilemma
in all optimization techniques. For optimization problems
where the results require high certainty, exploitation by using
constraints can deliver better results. On the contrary, if
finding the best model is the goal, exploration of flexible
representation may satisfy the objective better.

Are good models associated with a certain number of
master points? In other words, is the fitness of the model
correlated with the number of master points? Figure 9 shows
that such correlation does not exist. For example, both
models from run 93 and run 90 have 27 master points. Yet,
their fitness values are far apart. This indicates that there
is no single best number of master points to model the
permeability of the studied field. As long as the number is
large enough to capture the heterogeneity of the reservoir
property, a range of different number of master points can
deliver similar good results.

Figure 10 gives 2 final models that have different numbers
of master points, one has 24 and the other has 26. However,
the permeability at these master points are similar to the
reference filed (Figure 2). As a result, the globally updated

model matches the reference field very closely.
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Fig. 9. Fitness vs. number of master points using a flexible length genotype
representation.

In [11], we reported that the locations of the master points
are not important for SSC-GA to model the permeability for
the same reservoir field. The SSC-GA technique can find
good model to match production data using any randomly
selected master point locations, as long as the locations are
not overly clustered in one particular ares of the field. This
work shows a similar result: there is no one best number of
master points to model the reservoir permeability. The GA
with a linked-list genotype representation is able to find a
suitable number of master points and delivers good models
that match the reference field.

The computation time used for the GA runs is not most
economical. Each set of 100 runs took about 8 hours to
complete, using a single Pentium CPU machine. However,
as the computer power increases so rapidly, we anticipate a
speedy decrease of the modeling time. Nevertheless, in order
to apply the technique to real reservoir fields, a more efficient
fitness evaluation scheme is needed. Currently, developing
surrogates for computational expensive fitness function to
accelerate evolutionary optimization is an active research
area [14], [7]. We are optimistic about applying the SSC-
GA technique to the real world reservoir field in the near
future.

Fig. 10. Master point locations and their associated permeability for two
fi nal models with a different number of master points.
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VII. CONCLUDING REMARKS

The concept of intelligent master points selection and then
applying statistical algorithm to propagate properties from
those master point locations is a very appealing approach
for reservoir modeling. This is because experimental studies
indicate that the properties of earth surface follow a certain
kind of statistical distributions [3]. Additionally, reservoir
modeling in fine scale is still computationally too expen-
sive. This alternative approach can provide useful reservoir
information within a reasonable time frame.

However, finding the optimal number of master points,
their locations and the optimal perturbation in those locations
is not always easy. Previously, we have shown that SSC-
GA can deliver good results using any randomly selected
master point locations, as long as they cover the overall
reservoir space[11]. This paper extends that work to show
that using a particular linked-list implementation, SSC-GA
can identify the number of master points necessary to capture
the heterogeneity of the reservoir permeability and deliver
good models that match closely to the reference field.

These encouraging results suggest that the SSC-GA tech-
nique is potentially capable of delivering good results for real
world reservoir fields. We continue this work by developing
and incorporating cheap surrogates for reservoir simulator to
reduce the modeling time, which is crucial to the success of
deploying the SSC-GA system.
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