
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek
(Guest Editors)

Short Presentations

Visibility Preprocessing Using Spherical Sampling of
Polygonal Patches

Oscar E. Meruvia Pastor

Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Germany

Abstract

A technique is presented that permits fast view-reconstruction of individual objects. This method improves a pre-
vious approach to solve the problem of approximated view reconstruction by combining clustering of polygons
with visibility bitfields to determine visibility for novel viewpoints. The technique consists of three steps: patch
creation, spherical sampling, and rendering. In the first stage, the input 3D model is tiled in polygonal patches. In
the sampling stage images of the model are taken from several points on the surface of a viewing sphere. Patch-ID
bitfields, which are structures that contain visibility information, are computed for each picture. In the rendering
stage, a subset of the viewpoints computed for sampling is selected depending on the viewers position on the view-
ing sphere and the bitfields of the selected viewpoints are used to rebuild the visible parts of the model from the
new viewpoint.
The overall system presented here makes a very efficient use of memory resources, and involves practically no
overhead during rendering while significantly improving frame rate during interaction with large models. Al-
though the technique is not conservative, our results show that the reconstructed views are practically identical to
the original views of the model.
Key words: view reconstruction, visibility preprocessing, patch generation.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Traditional graphics systems compute views of a model by
sending all polygons in the model to a graphics pipeline
where one of the last stages is to determine the visible parts
of the model using the z-buffer algorithm. The z-buffer algo-
rithm is easily implemented in hardware and works for any
model from any viewpoint. However, a problem with this
graphics pipeline becomes apparent when the number of vis-
ible polygons at a given viewpoint is significantly less than
the number of total polygons included in the model. In this
case the system spends most of the time processing poly-
gons which are not visible in the final rendition and intro-
ducing delay in the response time. In this work we present a
technique to preprocess and then reconstruct external views
of arbitrary polygonal models in real-time. Our technique
relates to the area of computer graphics which deals with
visibility computation and preprocessing, mainly occlusion

culling but also image-based rendering and backface culling.
Occlusion culling techniques attempt to determine the set
of visible polygons of a model or scene from a particular
viewpoint before sending all the polygons to the graphics
pipeline. While occlusion culling techniques focus on com-
puting visibility for a user who moves in a virtual environ-
ment, our technique computes visibility for individual ob-
jects in the scene. To reconstruct the visible regions of indi-
vidual objects in real-time we apply two preprocessing steps
to the input model: patch tiling and spherical sampling. Dur-
ing visualization, we determine which of the samples taken
during preprocessing are relevant for the viewer depending
on the viewer’s position with respect to the input model. In
image-based spherical sampling12, images of a model are
taken from different viewpoints on the surface of a sampling
sphere which encloses the input model. An ID-bitfield en-
codes the list of visible polygons for each sample taken. The

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

ID-bitfield is a long bitfield ofn bits, wheren is the total
number of polygons in the model. Each position in the bit-
field is associated with a polygon in the model and indicates
whether a given polygon is visible or not from the viewpoint
where a picture was taken. The ID-bitfield and camera values
for every picture taken are stored in a file which is later used
by a renderer. During visualization, the task of the viewer is
to determine which of the images previously taken are rele-
vant for an arbitrary new viewpoint. A disadvantage of the
ID-Bitfield approach is that the time required to construct
the list of visible polygons is linear with respect to the num-
ber of polygons in the input model. Another drawback of the
original technique is that the process of sampling was not
automatic, which made it unpractical to take more than 60
samples.

In this work, we present several improvements to the tech-
nique above described. Specifically, the contributions of this
paper are:

1. Reduction of complexity by using polygonal patches.
When using patch-tiling, complete regions (patches) of
a model are discarded at once when they are not visible.
The time required to construct the list of visible patches is
linear with respect to the number of patches in the model,
thus, the reconstruction can be done in real-time if we
split the model in a few hundred patches (see Figure1).
Additionally, patch-tiling facilitates sampling, (since it is
easier to register a group of polygons than a single poly-
gon from an ID-buffer), allows efficient use of memory
resources, and eliminates long setup times .

2. Automatic sampling.
A sampling program was developed which takes pictures
of a model from viewpoints on the surface of a viewing
sphere at any desired sampling level using a subdivision
approach.

3. Optimized view selection.
We now use a hierarchical sphere subdivision scheme,
which permits fast selection of the relevant samples out
of the faces of the sampling sphere when rendering.

The rest of the paper is organized as follows. Section 2
presents related work in visibility preprocessing techniques
and object-centered rendering. In Section 3, we describe our
technique step by step: patch generation, spherical sampling
and view reconstruction. Section 4 describes the experimen-
tal results of the technique. Conclusions and future work are
discussed in Section 5.

2. Related Work

Several occlusion culling techniques perform visibility pre-
processing when solving the problem of real-time visibility
computation. Since a user normally moves freely within a
virtual environment, these techniques have opted for sub-
dividing the virtual environment in viewing cells and then
computing visibility from within each cell5, 21. In Zhang et

al.21, for example, the model space is subdivided by a uni-
form grid of points, then a cube which surrounds each of the
grid points is created and a list of visible objects from inside
the cube is computed. While these techniques perform visi-
bility preprocessing from within a given cell, our technique
focuses on preprocessing visibility for individual objects in
a scene, and could be used together with techniques that de-
termine visibility at the object level. In this case, an algo-
rithm such as the one by Gotsman et.al.5, could find which
objects are visible for a certain viewpoint, and our technique
could be used to render the visible parts of the visible ob-
jects with respect to the user’s position. Occlusion culling
techniques can be divided in two categories, conservative
and non-conservative. Conservative occlusion culling means
that all polygons visible from a viewpoint are guaranteed to
be rendered. Non-conservative occlusion culling means that
most of the visible polygons are rendered, but some may not.
The technique here presented is non-conservative, since we
cannot guarantee that all visible polygons are present in the
reconstructed view. In practice, however , it is hard to notice
any difference between the original and the reconstructed
views when sampling is thoroughgoing (1026 samples or
more), as results show in Section 4.

A related family of techniques focuses on backface
culling7, 20. Zhang and Hoff20 present a technique where
a normal mask (a bitfield of 2 bytes length) is stored for
each polygon. Each bit in the normal mask is associated
with a cluster of normal vectors in a normal-space parti-
tioning scheme. With this approach significant culling rates
and speed-ups are obtained. However, the visibility test still
needs to be performed for all polygons in the input model,
and the memory requirements are high. Kumar et al.7 present
a technique where polygons are clustered by normals in a
preprocessing stage. However, this grouping scheme is not
compatible with the way graphics pipelines process textured
models, as discussed by Zhang20. To some extent, our tech-
nique combines both of these techniques because we group
polygons (in patches), and use bitfields to encode prepro-
cessed visibility information. Moreover, the technique pre-
sented here can also be applied to textured models. Ad-
ditionally, OpenGL13 permits hardware supported backface
culling, but the time required for rendering is still linear with
respect to the number of input polygons, because the culling
test needs to be performed in real-time for each polygon. Our
technique first approximates the set of visible polygons and
then sends this set to the graphics pipeline.

The last major group of visibility preprocessing tech-
niques is the group of image-based rendering. These tech-
niques preprocess visibility by taking pictures of those parts
of the scene which are farthest from the user. After this, im-
ages can be placed on 2D billboards in the place of 3D ge-
ometry at the back of the scene (similar to what is done in
occlusion culling). In object-centered image-based render-
ing, images of a specific model are taken from several view-
points around it4, 14, 2, such that a small subset is selected for

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

Figure 1: This sequence of images shows an image-based sample as obtained from a patch-ID bitfield. The first image shows
the sample from the point where the picture was taken, the following two images show the sample as it is being rotated. The last
image shows the sample in the original color. The surface of the bunny was tiled in 300 patches.

rendering according to the new viewpoint. Since images are
valid only within a small viewing range, one needs either
a large amount of images or images enhanced with depth
information14. Systems that take large amounts of images
require an efficient image selection mechanism and large
amounts of memory, or schemes for image compression17.
Finally, to appropriately react to changes in external illumi-
nation, images require surface normals.2 In the system here
presented, these problems do not occur, because we recon-
struct the 3D geometry and pass it to the standard graph-
ics engine. Furthermore, it is possible to sample a model
without textures, and then use the model with textures when
rendering, thus providing high quality renditions of the vis-
ible parts of a model. Finally, the approach requires a small
amount of extra memory (the patch-bitfields encoding) to
produce the appropriate view reconstruction.

3. Sampling and Rendering Polygonal Patches

3.1. Patch Creation

A polygonal patch is a grouping of polygons which encloses
a region of the model. Organizing the model into polygonal
patches for sampling and rendering is central to our tech-
nique. Two main benefits derive from this clustering of poly-
gons. First, image-based sampling of polygon groups is eas-
ier than sampling individual polygons. The second advan-
tage is that by grouping the model’s polygons in patches, the
time required to reconstruct the view is bound by the num-
ber of patches and not of by the number of polygons in the
model.

The algorithm of patch creation works as follows. In the
beginning every single polygon of the model is seen as an in-
dividual patch and the information about the neighbours of
each patch is taken from the connectivity graph derived from
the original model. The patches are then fused with their

neighbors iteratively until the desired patch count is reached.
In each iteration the smallest patch (by area) is fused with
one of its neighbours such that the increase in the extension
of the patch is minimized (the extension of a patch is mea-
sured by the length of the diagonal of the patch bounding
box). By doing this, we ensure that patches grow in a com-
pact way (see Figure1).

3.2. Spherical Sampling

We generate bitfields that indicate which patches are visible
from viewpoints on the surface of a sampling sphere. We
call this process spherical sampling. To sample the model
we set a camera which moves around an object located at
the center of our sampling sphere, in a similar way as done
when manipulating objects with the Arcball18, or the Open
Inventor Viewer.

3.2.1. Generating Sampling Positions

We uniformly sample the model from positions on the sur-
face of a sphere enclosing the model. The samples are taken
looking towards the center of the object at a distance such
that the entire model lies within the viewing area.

To calculate the position of each sample, we adapted a
face subdivision algorithm commonly used to generate facet
approximations to a sphere1. We begin with an octahedron
as the starting shape. In each subdivision step each face is
subdivided into 4 faces, and the vertices of the faces are pro-
jected to the surface of the sphere. This algorithm generates
new sampling points and new faces in a uniform distribution
on the surface of the sphere at an exponential rate (base 4).
This sampling is more dense in each subdivision level, filling
the “holes” of the previous level.

Each vertex of the polyhedron corresponds to a camera

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

Figure 2: Levels of subdivision of the sampling sphere.

position from where pictures of a model located at the center
of the sphere are taken. Figure2 shows the first five approx-
imations (which contain 6, 18, 66, 258 and 1026 different
viewpoints respectively) obtained using this algorithm.

3.2.2. Generating Patch-ID Bitfields

In this stage the bitfields that correspond to each picture
taken are generated. The ID-bitfield is computed by scan-
ning the ID-buffer19, 16 of the pictures obtained from each
sampling point. In our case we initially assigned a unique
color to each patch and a position in an indexed array, which
is the patch-ID bitfield. In addition, a map is created from the
set of available colors to the set of available positions in the
array. Then we proceed to sample the model by taking pic-
tures of it from all the viewpoints generated by the sphere
subdivision algorithm with the model rendered in colored
patches.

The (color) indices of all visible patches from a given
viewpoint are obtained by inspection of the color buffer of
the rendered model. Each index found is used to set the bit
of the corresponding patch, indicating that the patch is vis-
ible from the viewpoint where the picture was taken. Once
all pictures have been taken, the bitfields and corresponding
camera positions are saved in a configuration file. The size of
this configuration file is relatively small since we need only
to store one bit per patch per picture and one camera position
for each picture taken.

Sampling a polygon patch is easier than sampling indi-
vidual polygons, because patches cover larger areas of the
color buffer than individual polygons do. The risk of failing
to sample polygons of sub-pixel size is a matter of image
resolution, and is practically eliminated when doing patch
sampling, because all polygons in the input model are guar-
anteed to belong to a patch and the patches themselves are
compact, i.e. they enclose all polygons inside a given area.
The risk of missing a whole patch depends more on visibility
issues (where the density of spherical sampling plays a more
important role) than on image resolution.

3.3. View Reconstruction and Rendering

To interactively render a model, we first determine which
of the generated sampling points are relevant for the new
viewpoint, and then we construct the parts of the model that
correspond to the sampling points selected.

3.3.1. Selecting a Set of Samples

Given the high density sampling that is performed, select-
ing the three closest samples to an arbitrary viewpoint effec-
tively allows us to do a good reconstruction of the model.

Figure 3: The relevant samples for view reconstruction are
the (highlighted) vertices of the face of the viewing sphere
intersected by the viewing ray.

Since these three samples correspond to the vertices of
one face of the sampling sphere, the problem of finding the
three closest samples translates to the problem of finding the
face which is intersected by a (viewing) ray sent from the
center of projection to the viewer’s position, as shown in
Figure3. However, testing a linear array of hundreds or thou-
sands of faces to determine which one intersects this ray is
time consuming.

We developed an algorithm which takes advantage of the
hierarchy implicitly created by the face subdivision process
used to create the sampling sphere (Section 3.2.1). The first
eight faces of the octahedron represent the top level of the
hierarchy. Each time a face is subdivided, it is divided in four
new faces, which are considered descendants of the original
face at the following level of the hierarchy.

The algorithm first tests which of the initial faces of the
base octahedron intersects with the viewing ray. If a view-
ing ray intersects one face of the sphere at any subdivision
level, there is one face among its descendants which also is
intersected by the viewing ray, so we look for the intersect-
ing face only among the descendants of the parent face. We
recursively traverse the hierarchy until we find a face which
has no descendants, i.e. until we reach the last level of sub-
division on the sampling sphere. This will be the face we are
looking for. The number of tests to find the intersecting face
is linear with respect to the subdivision level (at most 4 tests
per subdivision level). Even when the number of faces and
viewpoints grows at an exponential rate, the algorithm finds
the relevant face in linear time.

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

3.4. Joining the Selected Samples

To join the information of the samples corresponding to the
vertices of the selected face, we perform a join operation
(inclusive OR) between the bitfields. After that, we include
in the scene graph those patches which have their bit set,
so that all visible patches from each selected viewpoint are
sent to the graphics pipeline. An advantage of this approach
with respect to the ID-Bitfields12 is that we do not construct
a view on a per-polygon basis, using a bitfield with as many
bits as the number of polygons in the model. Instead, we
construct a view on a per-patch basis with a limited number
of patches. The time required to construct the scene is lin-
ear to the number of patches in the model, as shown in the
experimental analysis.

4. Experimental Results

We tested culling performance (in terms of culling rate) and
interaction performance (in terms of frame rate) under sev-
eral conditions of sampling and patch tiling for different
models. All results were obtained on a SGI Onyx2 Infinite
Reality, with 2 195MHz MIPS R10000 CPUs, 900Mb main
memory, and video output set at 72.0 Hz. Sampling was done
using the Open Inventor offline renderer at a resolution of
510 by 480 pixels.

Conditions of sampling were derived from the possible
number of samples generated by the sphere generation al-
gorithm using 3, 4, 5 and 6 subdivisions which produce 66,
258, 1026 and 4098 sampling points. Sampling is the most
time consuming part of our algorithm. Sampling times vary
according to the size of the input model: small models (wing,
6,100 polygons) can be sampled at a rate of 3 samples per
second, large models (brain model, 288,344 polygons) re-
quire up to 3.5 seconds per sample (due to the offline ren-
dering), which accounts for up to 4 hours in the highest sam-
pling condition. The number of patches in which the models
were tiled was selected dynamically as the experiments oc-
curred, since we tried to find the most interesting regions in
terms of culling and frame rate optimization.

4.1. Analysis of Culling Performance

We defined a measure for culling performance called culling
rate as the average number of culled polygons on all possible
views from the model with respect to the total number of
polygons in the original model.

We found that culling rate depends directly on both the
number of samples and on the amount of patches in which
the model is tiled. Figure 4 illustrates that culling rate in-
creases with the number of samples. However, this increase
tends to be smaller as sampling increases. This is because
on each subdivision level the sampling points lie closer to
one another. We also observe from Figure 4 that varying the
number of patches directly affects the culling rate for the

Culling Rate vs Number of Samples

10

20

30

40

50

60

70

66-
Samples

258-
Samples

1026-
Samples

4098-
Samples

cu
llin

g 
ra

te
 (%

)

Human
Brain 500
patches

Horse
1000
patches

Horse
400
patches

 

Figure 4: Average of culling rate across number of samples
for different models and different number of patches.

same model (Horse). What is more, we can see that the ef-
fects of sampling add up with the effects of patch tiling in
culling rate.

Culling Rate vs. Number of Patches

10

30

50

70

90

0 1000 2000 3000 4000

patches

cu
llin

g 
ra

te
 (%

) Wing

Bunny

Human
Brain

 
Figure 5: Variation of culling rate across number of patches
for several models. 1026 samples were used in all condi-
tions.

In Figure 5 we present a more detailed analysis of the ef-
fects on the culling rate by changes in the number of patches
in which the model is tiled. We can see that even when
culling rates vary according to the model, the general be-
havior of all curves is the same, that is, a greater number
of polygonal patches increases the culling rate, but the im-
provements are less significant as the number of patches in-
crease.

We conclude that it is better to perform higher sampling
as a way to provide better culling quality. On the other hand,
even as we observed that a higher number of patches also
improves culling, increasing the number of patches has some
drawbacks in terms of frame rate as is shown in the next
section.

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

4.2. Analysis of Performance in Terms of Frame Rate

We measured the average frame rate achieved by our system
by rendering a model which was constantly rotating around
its vertical axis of rotation for a period of five minutes under
each condition. Models were rendered using double buffer-
ing and the maximum frame rate was bound by the refresh-
ing rate of the video output (72Hz). We tested frame rate
versus sampling density and number of patches separately.

Frame Rate vs. Number of samples

5

10

15

20

25

30

35

or
igi

na
l

66
 sa

mple
s

25
8 s

am
ple

s
10

26
 sa

mple
s

40
98

 sa
mple

s

fra
m

e 
ra

te
 (f

ps
) Horse

400
patches

Horse
1000
patches

Human
Brain 500
patches

 
Figure 6: Frame rate across number of samples.

Figure 6 shows how frame rate increases as the sampling
density increases. This occurs because culling improves as
sampling increases as described in the earlier section. Also,
sample selection takes advantage of the spherical subdivi-
sion algorithm described in Section 3.3, so even when the
number of samples increases exponentially, we can find the
relevant samples in linear time with respect to the subdivi-
sion level. Figure 6 also illustrates how frame rate improves
as more samples are taken, but starts reaching a plateau at
258 samples (which speaks for keeping the number of sam-
ples low). As the model is sampled above this level, frame
rate is bound by the amount of visible polygons.

Figure 7 illustrates the relationship between frame rate
and the number of patches for several models. All models
were sampled with 1026 samples. In all cases we observe
a plateau of performance for frame rate, which is reached
even with a relatively small number of patches (we should
consider that the Wing, Bunny and Brain models have ap-
proximately 6,100, 69,000 and 288,000 polygons each). Af-
ter that, we can observe that increasing the tiling above 1,000
patches (500 for the Wing model) starts affecting negatively
performance in terms of frame rate. Because the three perfor-
mance curves are very different for each model, we analyze
each case separately.

The Wing (or X-wing) model is relatively small, the
whole model can be rendered in real-time by our system,
so any decrease in performance can be blamed on the exper-
imental conditions. We can observe that frame rate is kept at
72 frames per second (fps) practically until the model is tiled

Frame Rate vs. Number of Patches

0

10
20

30
40

50

60
70

80

0 1000 2000 3000 4000

patches

fra
m

e 
ra

te
 (f

ps
) Wing

Bunny

Human
Brain

 
Figure 7: This figure illustrates how performance (in terms
of frame rate) is affected by the number of patches in the
sampled model. 1026 samples were used in all conditions.

in 500 patches. After that, frame rate starts to decrease and
falls significantly at 2000 patches. The data line for Wing
shows the maximum frame rate attainable for any model in
function of the number of patches alone, when using 1026
samples, and speaks for keeping the number of patches low.

The Bunny model exhibits a surprising behavior, because
the maximum performance is reached as soon as the model
is tiled in as few as 50 patches. We can hypothesize that for
certain model shapes (like a sphere), tiling the model in a
small number of patches is enough to cull away large por-
tions of the model, provided sampling is thoroughgoing. In
addition, a small list of patches can be managed easily.

An analysis of the Brain model lets us observe the ex-
pected trade-off between the number of patches and frame
rate. If the number of patches is too small, culling and frame
rates are not optimal. As the number of patches increases,
the culling rate improves, but the time required to manage
the patches list and create a new scene increases as well. We
can observe that the best frame rate is obtained when the
model is tiled into 1000 patches, and that increasing from
this point on only worsens frame rate, although not in a dra-
matic way, because frame time is spent more on rendering
the large amount of visible polygons, rather than on con-
structing the view. These results speak for keeping the num-
ber of patches low, and sampling around between 258 and
1026 samples to obtain optimal results.

Finally, Table 1 shows the improvements in performance
for the best configurations of number of patches for the five
test models. 1026 samples were used in all cases, since the
difference in frame rate to the next level of subdivision is
not significant. Results show that we can improve frame rate
from 0.4 up to 1.4 times the original values. However, as
the Dragon, Brain and the Skeleton Hand models show, the
benefits of visibility preprocessing are bound by the number
of visible polygons at any given time. For large models such

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

Model Polygons Patches 
Culling 

rate 
Original 
f.r. (fps) 

Optimal 
f.r. (fps)

Frame rate 
 Improvement

Bunny 69,451 
50 - 
1000 

15 - 60 
% 24.9 36.0 50% 

Horse 96,966 400 38% 19.8 30.7 55% 
Dragon 871,414 600 44% 2.2 3.6 67% 
Human 
Brain 288,334 1000 66% 7.4 18.0 144% 
Hand 654,666 1000 38% 2.8 4.0 43% 

 
Table 1: Improvements in terms of frame rate for the optimal
number of patches. The Wing model is originally rendered at
72 fps, the maximum frame rate. The Bunny model reached
optimal frame rate under a range of number of patches (see
Figure 7).

as these, Level-of-detail techniques6, 11, 15 are required as a
preprocessing stage to attain interactive frame rates (30 fps
and higher).

In general the results show that we can efficiently improve
performance by choosing an appropriate number of patches
and by performing a dense sampling (1026 sampling points).

4.3. Analysis of Visual Quality

Since it was hard to distinguish the original models from
the reconstructions, we used a test program to compare im-
ages of the reconstructed views with images of the original
model from viewpoints selected at random positions on the
viewing sphere. The program reported that all test images
were identical to the images of the complete models. This is
the case for all images shown in Figure8. We do not con-
tend that there are no positions where a difference could be
noticed, but our observations are that it is hard to find these
positions with a sampling density of 1026 viewpoints. On
the other hand, the quality of the reconstruction depends to a
great extent on the model. We can imagine there are models
which represent a greater challenge to this technique, like a
tree, but then it does not seem practical to attempt visibility
preprocessing of such a model.

A particular situation arises when the user tries to see a
model from a distance closer than that where the samples
are taken. In this case uncovered areas of the model may ap-
pear. In these situations we recommend to switch to the full
model, since it is our experience that the user will not only
try to see the model at a closer distance, but he will also try to
inspect specific regions of the model changing even the fo-
cus of attention and the center of rotation to a specific region
of the model. This problem does not occur for viewpoints
located farther from the sampling sphere, because the pro-
jective distortion is more significant when looking closer at
an object, than when looking farther from a given viewpoint
(see videos12).

4.4. Memory requirements

The largest amount of memory is required for the patch tiling
algorithm. Since tiles can be removed from memory once
they have been used in a patch fusion iteration, we only re-
quire the original model plus the tile connectivity informa-
tion at each iteration. The sampler and the renderer require
the memory necessary to store the (tiled) model, the patch-
bitfield (one bit per-patch per-sample), plus one image buffer
for the sampler. Configuration files containing the patch bit-
field information to be used by the renderer vary in size, ac-
cording on the number of samples encoded and patches in
the model. For instance, the human brain model configura-
tion file for 50 patches tiling, containing 1026 samples occu-
pies 183Kb of disk storage; while the configuration file for
the same model divided in 2000 patches, 1026 samples uses
709Kb. The human brain model itself occupies 12Mb of disk
space, either in the original form or tiled in patches.

5. Conclusions and Future Work

We have described a technique which provides high qual-
ity non-conservative view-reconstruction in real time for ex-
ternal views of a model. A preprocessing stage divides the
model in polygonal patches. In the sampling stage, image-
based visibility preprocessing is done by taking pictures of
a model from a viewing sphere. Finally, the rendering stage
consists in sample selection for a specific viewpoint. This se-
lection is performed with an algorithm that takes advantage
of the sphere subdivision scheme used in the sampling stage.

The technique is conceptually simple and can be applied
to any polygonal model, improving interaction in terms of
frame rate from 50% to 144% while providing high quality
renditions of a model.

Areas of extension for this work are:

• User-centered interaction. Use of this technique in user-
centered interaction, where visibility is preprocessed for
every object in a scene with respect to the currrent camera
position. Additionally, a space partitioning scheme would
help determine visibility inside a cell and spherical sam-
pling would help determine visibility of the individual ob-
jects according to the user position with respect to the
models.

• Spatial partition. Introduction of a distance parameter to
improve culling and discovering of hidden faces when the
user zooms into a model when using an orthographic cam-
era.

• Inventor Selection Node. Creation of a selection node for
use of the technique with individual objects contained in
larger scenes.

• Enhancement of the sample selection process. It is possi-
ble to develop an algorithm to determine the minimal set
of positions from where a picture of the model should be
taken to cover all visible regions of a model. This would
be an object-centered variant of the “art gallery problem”

c© The Eurographics Association 2002.



Meruvia / Visibility Preprocessing of Polygonal Patches

that could be effectively used to reduce the set of samples
taken3.

Acknowledgements

The author would like to thank Prof. Thomas Strothotte for
his valuable comments and suggestions, and Lourdes Peña
Castillo for reviewing drafts. Figure 2 included with per-
mission of P. Bourke1.The Human Brain model was pro-
vided by Thomas Witzel, the X-wing (Wing) model was
obtained from the VRML Object Supermarket10. The Horse
model is available at the Large Geometric Models Archive8.
The Skeleton Hand, Bunny and Dragon models are from
the Stanford 3D Scanning Repository9. This work was sup-
ported by a scholarship of the state of Sachsen-Anhalt, Ger-
many.

References

1. P. Bourke.Sphere Generation. Swinburne University of
Technology, 2002.http://www.swin.edu.au/astronomy/
pbourke/modelling/sphere. 3, 8

2. Q. Dinh, R. A. Metoyer, and G. Turk. Real-time light-
ing changes for image based rendering. InProc. of the
IASTED International Conference, Computer Graph-
ics and Imaging, pages 58–63, 1998.http://www.cc.
gatech.edu/∼metoyer/. 2, 3

3. S. Fleishman, D. Cohen-Or, and D. Lischinski. Au-
tomatic camera placement for image-based modeling.
In Pacific Graphics’99 Conference Proc., 1999. http:
//www.math.tau.ac.il/∼shacharf/publications.html. 8

4. S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen.
The lumighraph. InSIGGRAPH 96 Conference Pro-
ceedings. ACM, 1996. http://research.microsoft.com/
MSRSIGGRAPH/96/Lumigraph.htm. 2

5. C. Gotsman, O. Sudarsky, and J. Fayman. Optimized
occlusion culling using five-dimensional subdivision.
In Computers and Graphics, 23(5), pages 645–654. Eu-
rographics, 1999.http://www.cs.technion.ac.il/∼sudar/
cag.ps.gz. 2

6. P. Heckbert and M. Garland.Survey of Polygonal Sur-
face Simplification Algorithms.Carnegie Mellon Uni-
versity, 1997.http://www-2.cs.cmu.edu/∼ph. 7

7. S. Kumar, D. Manocha, B. Garret, and M. Lin. Hier-
archical backface culling. In7th. Eurographics Work-
shop on Rendering., pages 231 – 240. Eurograph-
ics, 1996. ftp://ftp.cs.unc.edu/pub/users/manocha/
PAPERS/VISIBILITY/backface.pdf. 2

8. Large Geometric Models Archive.Georgia Institute of
Technology, 2002.http://www.cc.gatech.edu/projects/
large_models/. 8

9. Stanford 3D Scanning Repository.Stanford University,
2002.http://graphics.stanford.edu/data/3Dscanrep/. 8

10. The VRML Object Supermarket.The University of Ed-
inburgh, 2002.http://www.dcs.ed.ac.uk/home/objects/
vrml.html. 8

11. D. Luebke. Developer’s survey of polygonal simpli-
fication algorithms. InIEEE Computer Graphics &
Applications/ (May 2001)., May 2001. http://www.cs.
virginia.edu/∼luebke/publications.html. 7

12. O. Meruvia and T. Strothotte. Approximated view re-
construction using precomputed id-bitfields. InEu-
rographics ’2001 Short Presentations., 2001. http:
//isgwww.cs.uni-magdeburg.de/∼oscar/. 1, 5, 7

13. J. Neider and T. Davis. OpenGL Programming
Guide, chapter 2. Addison-Wesley Publishing
Company, 1997. http://www.opengl.org/developers/
documentation/specs.html. 2

14. M. M. Oliveira, G. Bishop, and D. McAllister. Re-
lief texture mapping. InProceedings of the 27th an-
nual conference on Computer graphics and interac-
tive techniques, pages 359–368. ACM Press/Addison-
Wesley Publishing Co., 2000.http://doi.acm.org/10.
1145/344779.344947. 2, 3

15. E. Puppo and R. Scopigno. Simplification, lod and
multiresolution - principles and applications. InTech-
nical report, Eurographics ’97 Tutorial Notes, 1997.
http://www.disi.unige.it/person/PuppoE/. 7

16. T. Saito and T. Takahashi. Comprehensible rendering of
3-d shapes. InSIGGRAPH 90 Conference Proceedings,
pages 197 – 206. ACM, 1990.4

17. J. Shade, D. Lischinski, D. H. Salesin, T. DeRose,
and J. Snyder. Hierarchical image caching for ac-
celerated walkthroughs of complex environments. In
SIGGRAPH 96 Conference Proceedings, pages 75–82.
ACM Press, 1996.http://doi.acm.org/10.1145/237170.
237209. 3

18. K. Shoemake. Arcball Rotation Control, Graphics
Gems IV, pages 175–192. Academic Press, 1994.3

19. T. Strothotte and S. Schlechtweg.Non-Photorealistic
Computer Graphics: Modeling, Rendering, and Anima-
tion. Morgan Kaufmann Publishers, April 2002.4

20. H. Zhang and K. Hoff III. Fast backface culling using
normal masks. InProc. of the 1997 Symposium on In-
teractive 3D Graphics, pages 103–106. ACM, August
1997. 2

21. H. Zhang, D. Manocha, T. Hudson, and K. Hoff III.
Visibility culling using hierarchical occlusion maps. In
SIGGRAPH 98 Conference Proceedings, pages 77 – 88.
ACM, 1998. 2

c© The Eurographics Association 2002.

http://www.swin.edu.au/astronomy/pbourke/modelling/sphere
http://www.swin.edu.au/astronomy/pbourke/modelling/sphere
http://www.cc.gatech.edu/~metoyer/
http://www.cc.gatech.edu/~metoyer/
http://www.math.tau.ac.il/~shacharf/publications.html
http://www.math.tau.ac.il/~shacharf/publications.html
http://research.microsoft.com/MSRSIGGRAPH/96/Lumigraph.htm
http://research.microsoft.com/MSRSIGGRAPH/96/Lumigraph.htm
http://www.cs.technion.ac.il/~sudar/cag.ps.gz
http://www.cs.technion.ac.il/~sudar/cag.ps.gz
http://www-2.cs.cmu.edu/~ph
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/VISIBILITY/backface.pdf
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/VISIBILITY/backface.pdf
http://www.cc.gatech.edu/projects/large_models/
http://www.cc.gatech.edu/projects/large_models/
http://graphics.stanford.edu/data/3Dscanrep/
http://www.dcs.ed.ac.uk/home/objects/vrml.html
http://www.dcs.ed.ac.uk/home/objects/vrml.html
http://www.cs.virginia.edu/~luebke/publications.html
http://www.cs.virginia.edu/~luebke/publications.html
http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/
http://www.opengl.org/developers/documentation/specs.html
http://www.opengl.org/developers/documentation/specs.html
http://doi.acm.org/10.1145/344779.344947
http://doi.acm.org/10.1145/344779.344947
http://www.disi.unige.it/person/PuppoE/
http://doi.acm.org/10.1145/237170.237209
http://doi.acm.org/10.1145/237170.237209


Meruvia / Visibility Preprocessing of Polygonal Patches

Figure 8: Some examples of the visualizations obtained by our technique. All images were identical to the images obtained
when the original models were rendered. In all cases 1026 samples were taken.

c© The Eurographics Association 2002.


